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Three novel 1-alkyldaphnane-type diterpenes, stelleralides A–C (4–6), and five known compounds
were isolated from the roots of Stellera chamaejasme L. The structures of 4–6 were elucidated by
extensive spectroscopic analyses. Several isolated compounds showed potent anti-HIV activity.
Compound 4 showed extremely potent anti-HIV activity (EC90 0.40 nM) with the lowest
cytotoxicity (IC50 4.3 μM), and appears to be a promising compound for development into anti-
AIDS clinical trial candidates.

Stellera chamaejasme L. (Thymelaeaceae) is a toxic perennial herb widespread in northern
and southwestern China and Nepal. Its roots have been used in traditional Chinese medicine
(TCM) as emulgent and dermatological agents. Previous studies on the chemical
constituents in the roots of this plant have identified diterpenoids,1,2 biflavonoids,3,4,5 and
lignans6 with antitumor, antimalarial, and antibacterial activities. Highly functionalized
daphnane diterpenes from Trigonostemon thyrsoideum also showed inhibitory activity
against HIV-1,7 while SJ23B, a jatrophane diterpene from Euphorbia hyberna, displayed
strong activity in the nanomolar range against HIV in vitro.8 In addition to the potent
antiviral activity of diterpenes, their mechanism of action is also of high interest. For
example, prostratin, a tigliane diterpene, interferes with HIV infection by two mechanisms:
decreasing the expression of HIV receptors on the surface of healthy cells, and activating the
HIV-1 expression of latent HIV hidden in their reservoirs, which is a major stumbling block
to the eradication of HIV. The AIDS Research Alliance hoped to complete the final stages
of preclinical study on prostratin in 2010 prior to clinical trials.9

During our ongoing chemical studies on Nepalese medicinal plants, we also investigated the
chemical constituents of the roots of S. chamaejasme, and isolated eight daphnane-type
diterpenes (1–8), including three new compounds, stelleralides A (4), B (5), and C
(6).10,11,12 All compounds were screened for anti-HIV activity in MT4 cells.13,14
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A methanol extract of the roots of S. chamaejasme was partitioned between EtOAc and
H2O. The EtOAc-soluble fraction was subjected to chromatography on an ODS column,
eluting with MeOH and H2O mixtures in different ratios. Separation of the MeOH-eluted
fractions using a combination of silica gel column chromatography (CC), ODS CC, and
preparative HPLC afforded eight diterpenes, three new (4–6) and five known (1–3, 7 and 8)
compounds. The known compounds were identified as gnidimacrin (1),15 pimelea factor P2
(2),1,16 wikstroelide F (3),17,18 simplexin (7),1,19,20 and huratoxin (8),16,21,22 by detailed MS
and NMR spectroscopic analysis and comparison with literature data. Wikstroelide F (3)
was isolated for the first time from the genus Stellera..

Stelleralide A (4)23 was isolated as a white amorphous powder, [α]D 22 +8.1 (c 0.13,
MeOH). Its molecular formula C39H52O12 was determined from the positive-ion
HRFABMS data (m/z 735.3328, [M+Na]+). The 1H and 13C NMR spectra of 4 and 1 were
quite similar, suggesting that 4 is a 1-alkyldaphnane derivative. Detailed comparison of the
NMR data revealed that the resonances for two benzoyl moieties in 1 were replaced by those
for one benzoyl moiety and one acetyl moiety in 4. In the HMBC spectrum of 4, correlations
were clearly observed between δH 4.92 (H-3) and δC 168.3 (Bz-CO) and between δH 4.11,
4.88 (H2-18) and δC 170.9 (Ac-CO), indicating that the benzoyl and acetyl moieties are
attached at C-3 and C-18, respectively. Thus, the structure of 4 was determined as shown in
the Chart.

Stelleralide B (5)24 was also isolated as a white amorphous powder, [α]D 23 -17.0 (c 0.12,
MeOH), with a molecular formula of C44H54O11 determined from positive-ion HRFABMS
(m/z 781.3552, [M+Na]+). The 1H and 13C NMR spectra of 5 resembled those of 1–4,
suggesting that 5 is also a 1-alkyldaphnane derivative. A detailed comparison of its 13C
NMR spectrum with that of 1 showed that the C-2′ resonance in 1 was shifted upfield to δC
33.4 in 5, indicating that the C-2′ hydroxy group in 1 is replaced by hydrogen in 5. In
confirmation, the molecular formula of 5 (C44H54O11) is one oxygen atom lower compared
with that of 1 (C44H54O12). Thus, the structure of 5 was determined as shown in the Chart.

Stelleralide C (6)25 was isolated as a white amorphous powder, [α]D 23 +14.0 (c 0.12,
MeOH). Its molecular formula C37H46O11 was determined from the positive-ion
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HRFABMS data (m/z 689.2932, [M+Na]+). The 1H and 13C NMR spectra of 6 showed
resonances characteristic of the alkyl part of 1-alkyldaphnane derivatives, including a
quaternary carbon resonance at δC 120.7 (C-1′). However, large differences were observed
between the A ring backbone resonances of 6 and those of 1–5. Namely, in the 13C NMR
spectrum, 6 showed resonance for an acetal carbon at δC 112.1 and a lactone carbonyl
carbon at δC 175.7. In addition, a singlet methyl at δH 1.96 assignable to H-19 was observed
in the 1H NMR spectrum of 6. The acetal carbon resonance at δC 112.1 was assigned to C-2,
because HMBC correlations (Figure 1) with protons at δH 3.15 (H-1), 3.49 (H-10) and 1.96
(H-19) were clearly observed. Similarly, the lactone carbonyl resonance at δC 175.7 was
assigned to C-3 based on the HMBC correlations (Figure 1) with protons at δH 5.42 (H-5)
and 3.49 (H-10). In addition, the presence of a β-oriented 2,4-epoxide moiety was deduced
from spectroscopic evidence, in which resonances assignable to H-2 and H-4 were not
observed in 1H NMR spectrum and the resonance for H-5α (δH 5.42) was shifted to lower
field as compared with those of 1–5, due to the anisotropic effect of the adjacent carbonyl
group attached to C-4. In the ROESY spectrum (Figure 2) of 6, the presence of correlations
of δH 1.96 (H3-19) with δH 1.10 (H3-10′) and 3.15 (H-1), and the lack of a correlation
between δH 1.96 (H3-19) and 1.42 (H-9′), indicated a β-orientation of 19-methyl moiety.
Furthermore, the correlations between H3-10′/H-1 and H-10/H-9′ in the ROESY spectrum
indicated a 9′S configuration in 6.

The isolated compounds (1–8) were evaluated for anti-HIV activity against NL4-3 in MT4
cells, as well as cytotoxicity. The data (EC90 and IC50 values, respectively) are listed in
Table 1. New compound 4 and the known compound 1 were the most potent compounds,
with anti-HIV EC90 values of less than 1 nM (0.40 and 0.41 nM, respectively), where EC90
was the compound concentration that inhibited HIV-1 replication by 90%. Structurally, the
two compounds differed only in the C-18 substituent (OAc in 4 and OBz in 1). Compound 4
(IC50 4.3 μM) was less cytotoxic than 1 (IC50 2.8 μM). Compounds 2, 3, and 5 showed
lower, but significant anti-HIV potency with EC90 values between 1.4 and 1.7 nM. All three
compounds are unsubstituted at C-2′, while the more potent 1 and 4 contain an OH group at
this position. Unlike in the other compounds, the long C-1′ alkyl chain of 7 and 8 does not
form a macrocyclic ring at C-1, and these two compounds were less potent. The least potent
compound was 6, which contains a 2,4-epoxide moiety and lactone ring.

In conclusion, eight 1-alkyldaphnane type diterpenes, including three new compounds,
stelleralides A–C, were isolated from the roots of Stellera chamaejasme. Two compounds,
new 4 and known 1, exhibited extremely potent anti-HIV EC90 values of less than 1 nM.
The structural difference between these two and several less potent compounds was the
presence of a C-2′ OH group. Synthesis of structurally modified analogs will be pursued to
establish structure-activity relationship (SAR) correlations and optimize these lead
compounds as anti-AIDS clinical trial candidates..

The daphnane diterpenes described in this study share some structural similarity to other
diterpenes, such as prostratin (12-deoxyphorbol-13-acetate), DPP (12-deoxyphorbol-13-
phenylacetate), and ingenol derivatives. Prostratin has been well documented for its anti-
HIV-1 activity.26,27,28 DPP is a tigliane diterpene, similar to prostratin. DPP exhibited more
potent anti-HIV-1 activity than prostratin.29 In addition to the tigliane diterpenes, ingenol
derivatives were reported to have anti-HIV-1 activity comparable to that of DPP.30,31 The
anti-HIV-1 activity of these compounds was, at least in part, due to their ability to activate
protein kinase C and downregulate HIV-1 receptors, CD4 and chemokine receptors.26,28,30

The mechanism of action of the daphnane diterpenes reported here is currently under
investigation. However, due to their structural similarity to other phorboids, it is likely that
activation protein kinase C and down regulation of HIV-1 cellular receptors might be
responsible for their potent anti-HIV-1 activity.
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Figure 1.
Key HMBC and 1H-1H correlations of 6.
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Figure 2.
Key correlations in ROESY spectrum of 6.
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Table 1

Anti-HIV Activity of 1–8.

no. anti-HIV (NL4-3) EC90 (μM) cytotoxicity (MT4) IC50 (μM)

1 0.00041 2.8

2 0.0014 3.2

3 0.0017 7.3

4 0.00040 4.3

5 0.0016 14.5

6 0.091 3.4

7 0.0080 22.5

8 0.0058 9.4
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