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Abstract

Here we experimentally show that second-harmonic generation (SHG) imaging is not sensitive to 

collagen fibers oriented parallel to the direction of laser propagation and, as a consequence, can 

potentially miss important structural information. As an alternative approach, we demonstrate the 

use of reflective micro-prisms to enable multi-view SHG imaging of mouse tail tendon by 

redirecting the focused excitation and collection of subsequent emission. Our approach data 

corroborates the theoretical treatment on vanishing and nonvanishing orientations, where fibers 

along the laser direction are largely transparent by SHG. In strong contrast, the two-photon excited 

fluorescence of dye-labeled collagen fibers is isotropic and is not subject to this constraint. We 

utilized Pearson correlation to quantify differences in fluorescent and backward detected SHG 

images of the tendon fiber structure, where the SHG and TPEF were highly statistically correlated 

(0.6–0.8) for perpendicular excitation but were uncorrelated for excitation parallel to the fiber axis. 

The results suggest that improved imaging of 3D collagen structure is possible with multi-view 

SHG microscopy.

Second-harmonic generation (SHG) imaging has emerged as a powerful modality for 

visualizing the collagen assembly in a wide range of normal and diseased tissue types [1,2]. 

Applications for imaging structural changes in many pathologic conditions, including 

cancers [3–5], fibroses [6,7], and connective tissue disorders [8] have received considerable 

attention, as changes in the collagen rich extracellular matrix (ECM) are often revealed by 

SHG imaging via changes in fibrillar morphology, intensity, and polarization properties. A 

limiting aspect of SHG imaging is that it is not a true 3D technique. Specifically, while 3D 

data is built up from stacking a series of 2D en face images, due to the electric dipole 
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interaction, fully axially oriented fibers (i.e., along the laser direction) are transparent. This 

phenomenon is not commonly seen in fluorescence imaging as probe molecules (either dyes 

or fluorescent proteins) typically have rotational freedom, and absorb at all angles. The most 

notable exception is imaging of membrane staining dyes (e.g., DiI or ANEPPS), where a 

“ring stain” is often observed due to the rotational constraints of the dye molecules being 

bound in the membrane. The endogenous SHG contrast from collagen molecules within 

fibrils has these same constraints. This situation results in a loss of information in 

determining the structure of 3D ECM.

A solution to this problem is to acquire SHG images from different directions of the 

excitation laser relative to the fixed specimen. We note that this is distinct from probing 

different structural aspects via performing polarization analysis from the same direction of 

laser propagation [9]. Here we demonstrate SHG microscopy in conjunction with reflective 

micro-prisms to image the collagen fiber structure in mouse tail tendon from multiple 

vantage points to tailor true 3D visualization of the collagen fibers within a matrix. Such 

prisms have previously been used for several other applications [10–13]. Here we utilize the 

micro-prisms to excite and collect the backward directed SHG from different views. 

Backward detected SHG is comprised of a mixture of the emitted signal and subsequent 

scattering at the SHG wavelength. In tendon, the emitted directionality, which we have 

denoted FSHG/BSHG, is ~7:1 [14,15], but given the strength of the absolute intensity, this is 

more than sufficient for imaging.

Collagen I fibers consist of a complex hierarchal assembly, as shown in Fig. 1 First, 

individual triple helical collagen molecules are covalently linked to into fibrils with 

diameters ranging from 20 to 200 nm, depending on the tissue. Fibrils are further organized 

into fibers, where the latter are the quantity visualized in the SHG microscope. Additionally, 

fibers can crimp, causing the components of the bundle to appear offset from the long axis.

The induced polarization of a medium subjected to an intense electromagnetic field can be 

related in a power series of the field strength Ei (i, j, k are Cartesian components) by the 

expression

(1)

where Pi is the ith component of the induced polarization, and ε0 is the vacuum permittivity, 

 denotes the nth order susceptibility and is a tensor of rank corresponding to the number 

of subscripts. For example,  can be expressed by the third-rank d-tensor given by 

, and the effective d-value is written as deff = êd, where ê is a unit vector 

describing the electric field or polarization field of the light wave. The tensor related to 

SHG, χ(2), reflects the symmetry and nonlinear optical properties of the material and is the 

quantity visualized in the microscope.

For the cylindrical structure of collagen fibrils (C∞ symmetry), the most general vector 

expression for the polarization dependence of SHG is [16]
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(2)

where the coordinate system of the laser electric field or the polarization field of the light 

wave is related to the collagen fiber by the unit vectors ê1, ê2, and ê3.

In accordance with previous approaches [17], collagen fibrils are assumed to have C∞ mm 

symmetry (x = z) along the fiber axis (the y-axis in Fig. 1) as this simplifies the treatment 

relative to the exact C3v. Cylindrical symmetry (x = z) implies that d16 = d34 and d21 = d23 

and Kleinman symmetry gives d16 = d21. Therefore, we can assume d = d16 = d34 = d21 = 

d23 For circular polarization (as commonly used) [9], the electric field of the laser along the 

collagen fiber can be described by

(3)

After inserting ê, Eq. (2) becomes

(4)

since here ê2 = ∅, deff = ∅, it is seen that there will not be any SHG emission in this case. 

This is rigorously true only if all of the dipole moments align exactly along the direction of 

the fiber axis. However, a previous study suggested that the collagen molecules may have a 

small tilt angle with respect to the fibril axis [18], where in this more realistic scenario, the 

SHG will be greatly diminished but not completely extinguished. By contrast, if the 

excitation laser propagates along the z axis as [sin(ω*t), cos(ω*t), 0], the following 

expression would apply:

(5)

(Here y is the unit vector in y direction) in which case only y axis polarization components 

will result in nonvanishing SHG emission. We note that there will be a small axial 

contribution at high NA (~ > 1.0) due to polarization scrambling (unpublished results).

We can experimentally verify these suppositions and take steps toward 3D imaging by 

imaging mouse tail tendon from different orthogonal views. Tendon is ideal for this purpose 

due to the regularity of the fibril/fiber structure. In this experiment, we arrange two 1-mm 

micro-prisms (Precision Optical, Costa Mesa, California) at orthogonal vantage points of the 

tendon. One micro-prism is placed facing the end (end view) of the mouse tail tendon, and 
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one is placed on the side (side view) as shown in Fig. 2. The excitation beam path changes 

direction on the mirrored face of the prism and propagates into different sides of the tendon. 

Using a 40× 0.8-NA water immersion lens (Olympus), we achieved a penetration depth of 

about 160 um on both the side and end views. Images are collected in the backward SHG 

geometry. The full 0.8-NA is retained at this thickness.

We placed the mouse tail tendon in both a straight and bent (u-shape) configuration in front 

of the prisms as shown in Fig. 2. The tendon was wet mounted in PBS using a chamber with 

a silicon spacer and carefully sealed with nail polish to avoid evaporation. Double-sided tape 

was used to secure the tendon to the glass slide. To afford comparison with fluorescence, the 

tendon was stained with the dye eosin-y (labels proteins) for 40 min, and rinsed with DI 

water. Using 890-nm excitation, we sequentially acquired two-photon excited fluorescence 

(TPEF) and SHG images with a 620-nm/90-nm filter and 445-nm/20-nm bandpass filter 

(Semrock, Rochester, New York), respectively.

SHG and two-photon fluorescent images of stained mouse tail tendon are acquired using 

excitation and collection from multiple orientations, where in each case the collection is in 

the epi-direction of the excitation. The fluorescence from the eosin dye acts as a control 

relative to the SHG. This is because as the dye binds nonspecifically to collagen fibers and 

will have an overall isotropic distribution and should be observed from all orientations. The 

SHG and TPEF comparison is obtained for two cases, where the tendon is left straight [Fig. 

2(b)] and also for the case where it is bent into a u-shape near the surface of the end view 

prism [Fig. 2(c)]. Based on Eqs. (4) and (5), quantifiable differences in the SHG emission 

should result when exciting the tendon from different angles for fibers oriented parallel and 

perpendicular to the laser direction.

As shown in Fig. 3, the bent u-shaped mouse tail tendon configuration yields similar results 

by both SHG (row 2) and TPEF (row 1) for the end (column a) and side (column b) views. 

These results are indeed all consistent with Eqs. (4) and (5). Note that some regions of the 

crimp (top and bottom) lack SHG contrast but are seen by TPEF. This is because these fibers 

are oriented parallel to the laser propagation, and the SHG should vanish. This effect with 

tendon has been shown previously [19].

The side view images for the straight tendon remain similar (column c). However, this 

configuration shows highly significant differences in the SHG (row 2) and TPEF (row 1) end 

view images (column d). Fiber and fiber bundles sticking out of the focus plane and also the 

tip of the tendon where it was initially cut can be clearly observed in the fluorescence 

images. As predicted by Eq. (4), there is essentially no SHG contrast from these fibers as 

they are aligned parallel to the excitation laser beam (see Fig. 1) where only the boundary of 

each fiber bundle can be discerned with much lower comparative intensity. Furthermore, 

when examining axial sections through the fiber, this low signal quickly vanishes away from 

the boundary and may be the result of the cutting process. These results qualitatively agree 

with theoretical predictions of the diminished SHG emission when the fibers align with the 

propagation direction of the excitation laser.
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Correlation analysis was used to statistically evaluate the similarity of TPEF and SHG 

images on a pixel-by-pixel basis for different views of the tendon fibers. The Pearson 

coefficient was determined over the entire 100–160 µm stacks in 1-µm step sizes of the two 

imaging modalities for both the side and end views. When the two image stacks are perfectly 

similar, the Pearson coefficient is 1.0 and becomes 0.0 when no correlation exists.

For the u-shaped mouse tail tendon orientation, the obtained Pearson coefficients (after 

thresholding) for the front and side views were 0.77 and 0.81, respectively, and are 

statistically correlated. Note that complete correlation is not expected due to the crimped 

regions, where fluorescence will occur, but SHG will be largely extinguished as these fibers 

will be parallel to the laser propagation. For the straight tendon arrangement, the Pearson 

coefficient is 0.60 from the side view but decreased significantly to −0.08 indicating very 

little correlation between the TPEF and SHG image stacks. To view these correlations (and 

lack thereof) graphically, Row 3 of Fig. 3 shows the overlap of the grayscale intensity 

histograms of the respective SHG and TPEF distributions, where for perfect correlation, all 

points would fall on the diagonal. The observed greatly diminished SHG intensity and lack 

of correlation with the TPEF for the end view of the straight tendon configuration agrees 

with the theoretical prediction that little SHG emission will result from fibers that lie parallel 

to the direction of laser propagation.

While the emission angles for SHG from tissues are not known as they are not perfectly 

phase-matched, based on phase-matching arguments, little SHG is expected in the 

orthogonal direction to the excitation [20]. Moreover, scattering from the orthogonal 

direction will be minimal, as the high scattering anisotropy of tendon (~0.95) leads to 

essentially all forward directed scatter [14]. Thus the SHG collected in the backward 

direction from the reflective prism is highly similar to that of en face imaging. We note that 

it is possible to achieve this result through tilting the specimen relative to the laser direction, 

and obtaining multiple views through two micro-prisms is superior due to design 

considerations. We also point out that working distance considerations preclude 

simultaneous side/end view prism viewing and normal en face imaging.

In summary, by comparing fluorescence and SHG images, we demonstrate some of the 

limitations of the SHG method for true 3D imaging of collagen. While we have not 

presented new theory, validation of these visualization constraints of SHG imaging require 

the appropriate arrangement for multi-view imaging. This approach can be implemented for 

a range of SHG investigations. This is important as there is great promise in understanding 

3D collagen structure, as the multi-view approach here coupled with directional SHG 

(forward–backward), and polarization-resolved measurements could reveal new insight in 

the role of collagen in normal and diseased biological processes.
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Fig. 1. 
End view (y axis) and side view (x axis) of laser propagation direction relative to the fiber 

axis (y axis)
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Fig. 2. 
(a) Experiment setup showing the layout of the micro-prisms in the chamber, (b) Straight 

tendon in bright field with a 10× objective, (c) Bent u-shaped tendon in bright field with the 

same objective.
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Fig. 3. 
Fluorescence image (a1), SHG image (a2), and 2D intensity histogram (a3) for fluorescence 

and SHG image from side view for bent tendon; fluorescence image (b1), SHG image (b2), 

and 2D intensity histogram (b3) for fluorescence and SHG image from the end view for bent 

tendon; fluorescence image (c1), SHG image (c2), and 2D intensity histogram (c3) for 

fluorescence and SHG image from the side view for straight mouse tendon; fluorescence 

image (d1), SHG image (d2), and 2D intensity histogram (d3) for fluorescence and SHG 

image from the end view for straight mouse tendon. The x and y axes for 2D intensity 

histograms correspond to normalized SHG and TPEF image pixel intensities, respectively. 

The heatmap is normalized from highest pixel frequency to lowest in 256 color bins. Field 
size = 150 × 150 µm.
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