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1. Introduction
Chromosome segregation requires the assembly of a multi-protein complex at

the centromere, known as the kinetochore, along with re-organization of the cyto-

skeleton from an anastomosing microtubule network into a highly polarized

bipolar spindle. Electron microscopy of chemically preserved kinetochore/

microtubule attachment sites demonstrates a conserved trilaminar structure,

from Schizosaccharomyces pombe to human [1–3]. Within this structure, the inner

kinetochore associates with chromatin and the outer kinetochore forms the inter-

action surface for kinetochore microtubules. Although this ultrastructure has

been known for years, and significant advancements been made in understanding

the molecular, biochemical and functional properties of the over 65–90 conserved

kinetochore proteins (yeast [4] and mammals [5]), the molecular architecture of the

kinetochore/microtubule attachment site is largely unknown.

Kinetochores in budding yeast remain stable throughout the cell cycle, and

during mitosis each associates with a single kinetochore microtubule, making it

an ideal model to investigate the higher order structure of the inner kinetochore.

During metaphase, the 16 sister kinetochores cluster and bi-orient between the

two centrosomes or spindle pole bodies (SPBs), the microtubule organizing

centre in yeast [6]. The sister kinetochore clusters are separated from one another

by approximately 1 mm. The distance between sister kinetochores is remarkably

conserved in yeasts, Drosophila, Caenorhabditis elegans and humans [7].

When S. cerevisiae kinetochore components are fluorescently tagged, individ-

ual proteins at single microtubule attachment sites cannot be resolved, however

the cluster of 16 sister chromatids appears as a single diffraction-limited fluor-

escent signal [8]. The stereotypic organization of the yeast spindle allows one

to investigate the number and spatial organization of kinetochore clusters in

metaphase. The spindle can be visualized through fluorescent tagging of SPB

components (e.g. Spc29-RFP), allowing quantitative measurement of the

length of the spindle and geometrical position of the kinetochore. These spatial

coordinates provide a reference, to which the X (parallel to the spindle) and Y
(perpendicular to the spindle) coordinates of kinetochore proteins of interest

can be mapped. Using this two-dimensional method, the linear (X ) distance

between the SPB and kinetochore proteins GFP-Cse4 and GFP-Ndc80 are com-

parable to measurements made using super-resolution microscopy [9,10]. In

the Y-dimension, the outer kinetochore Ndc80 (Ndc80-GFP) is minimally dis-

placed from the kinetochore microtubule plus-end (94 nm) consistent with its

function in linking kinetochore microtubules to the inner kinetochore. The dis-

placement of CENP-A (Cse4-GFP) is nearly twice that of GFP-Ndc80 (94 nm

versus 181 nm) [9]. This finding is unaccounted in molecular models of the

kinetochore that place a single CENP-A-containing nucleosome proximal to

the kinetochore microtubule plus-end. Assuming an octameric structure, the

CENP-A nucleosome in this model should be 5 � 11 nm, considerably smaller

that the diameter of a microtubule (25 nm) and the observed displacement of

the aggregate GFP-Cse4 signal from 16 kinetochores (181 nm).

Model convolution of a mathematical simulation of the yeast spindle

[9] provides the opportunity to model geometries that are consistent with

experimental findings. Haase et al. [9] determined that the coordinates of
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Figure 1. The inner kinetochore of point and regional centromeres. Centromeres are organized as a network of chromatin loops or folds with the foundational CENP-A-
containing core chromatin (small green circles) adjacent to the kinetochore microtubule (grey bars). The pericentric region of a single chromatid (of 16� 2 for replicated
chromosomes) in one-half of the spindle is shown. The kinetochore (not shown) would connect the CENP-A-containing nucleosome (small green circle) to a single
kinetochore microtubule in the point centromere and multiple microtubules in the regional centromere. Both point and regional centromeres contain a CENP-A
cloud of accessory molecules (green shaded oval). The CENP-A cloud frames the cohesin barrel (red rings) organized around the pericentric chromatin in metaphase.
Condensin rings (yellow) anchor chromatin structures at the centromere. Depletion of cellular levels of CENP-A/Cse4 in budding yeast (decreasing concentration denoted
by green triangle, top) specifically affects the formation of the CENP-A/Cse4 cloud, and the fundamental inner kinetochore structure remains the same. Depletion of
cellular CENP-A levels is tolerated in other organisms and may reduce the CENP-A abundance in the core, the cloud or both. Reduction of the cloud is indicated by loss of
the large shaded oval. Reduction of the core (in the regional centromere) is denoted by fewer small green circles at the apex of the loops proximal to the multiple
kinetochore microtubules (grey bars).
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Cse4-GFP were consistent with a single, CEN-positioned

Cse4 nucleosome present at the inner kinetochore (and

aligned with the outer kinetochore Ndc80 complex marking

the microtubule plus-end) and a peripheral population of

three to four Cse4 molecules per kinetochore associated

with the chromosome surface. These results confirm and

extend an earlier study demonstrating an average of five

Cse4 molecules per kinetochore [11] and resolve prior uncer-

tainty regarding the number and position of Cse4-containing

nucleosomes in budding yeast [11–14]. Experimental find-

ings indicate the peripheral population of Cse4 is confined

to a ‘plate’ with a radius of approximately 250 nm perpen-

dicular to the mitotic spindle (figure 1). This plate frames

the cohesin barrel organized around the pericentric chroma-

tin in metaphase [15]. Computer simulations predict that

peripheral Cse4 is located at random positions (within

25 kb) flanking the well-positioned CEN nucleosome, variable

among chromosomes and, consequently, below the level of cur-

rent biochemical detection methods [11]. This result highlights

the limitations of biochemical techniques in understanding

higher order chromatin structure as the peripheral pool of

Cse4 is not detectable by chromatin immunoprecipitation

(ChIP) in wild-type cells [16,17]. These findings also advance

our understanding of the budding yeast inner kinetochore

during mitosis and define it as a chromatin surface, and struc-

turally similar to the trilaminar arrangement observed at

mitotic kinetochores of higher eukaryotes [1–3].

Realization of kinetochore protein geometry, and CENP-A in

particular, reconciles protein counts attained from different

microscopy platforms. Using fluorescence correlation spec-

troscopy (FCS) with its small cone of illumination focuses on

the invariant (bright) pool, leaving the peripheral pool to back-

ground subtraction [18]. In wide-field microscopy, integrated

intensity over a relatively large area (greater than 250 nm)
leads to a larger estimate of protein counts than FCS-based

methods [11,19]. Discussions regarding the nature of the GFP-

constructs (internal versus C-terminal or N-terminal [14]) were

tested in Lawrimore et al. [11] where different Cse4 fusion pro-

teins yielded virtually identical protein counts (see [11, fig. 1];

Cse4-GFP B, C-terminal versus Cse4-GFP Cirþ and Cir0,

internal). The evidence for functional diversification came

from mutational experiments in which two pools could be sep-

arated genetically (via pat1D [9,20]). Loss of the peripheral pool

was accompanied by a change from anisotropic to isotropic geo-

metry of the clustered Cse4 molecules, as well as reduction in

their number [9,20]. The extra molecules create a cloud of

CENP-A that may be critical for centromere repair or neocentro-

mere formation (figure 1, see below). Lando et al. [21] similarly

noted that there may be an ‘elite’ core of CENP-A at the front-

line of kinetochore microtubule engagement in fission yeast.

Using super-resolution microscopy [14], Wisniewski et al. [14]

confirmed the geometrical anisotropy of CENP-A in budding

yeast. However without co-localization of the outer kinetochore

components they were unable to define the position of the cloud

relative to microtubule plus-ends.

How does dissection of the molecular architecture of the

kinetochore in budding yeast inform our understanding of

larger, regional centromeres? One point of consideration is

the relationship between CENP-A-containing nucleosomes

and microtubule attachment sites. The regional centromeres

of the fission yeast, Schizosaccharomyces pombe, have an

approximately 12–13 kb CENP-A-containing core chromatin

domain that is constrained by chromatin barriers and flanked

by domains of pericentromeric heterochromatin [22,23]. Like

centromeres of budding yeast, the three S. pombe centromeres

cluster throughout the cell cycle [24]. Recent examination of

centromere clusters using quantitative photo-activated local-

ization microscopy estimates the presence of approximately
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15–35 molecules of CENP-A at each anaphase kinetochore,

or an average of approximately 10–20 CENP-A-containing

homotypic nucleosomes [21], similar to findings from

Lawrimore et al. [11]. More intriguing is that although these

budding and fission yeast species diverged 400–1000 Ma

[25,26] and differ in centromere ‘type’ (point versus

regional), the ratio between the number of CENP-A mol-

ecules and the number of microtubule attachment sites is

consistent (budding yeast: 5–6 CENP-A/kMT; fission yeast:

25 CENP-A/4 kMTs ¼ 6–7 CENP-A/kMT [11,21]).

Human centromeres are considerably larger than yeasts and

it has been estimated that each kinetochore can interact with

approximately 20–25 microtubules, though it is unclear how

many load-bearing attachments occur at any given time. Several

fluorescence-based microscopy studies of three-dimensional

metaphase chromosomes have suggested that kinetochore

size varies two- to threefold [27–29]. The plasticity of human

kinetochores is further exemplified by studies demonstrating

that the extent of CENP-A-containing core chromatin on

stretched chromatin fibres is heterogeneous between homolo-

gous chromosomes and varies among non-homologous

chromosomes and between individuals [30]. A recent study

determined the number of CENP-A molecules present at kine-

tochores in human retinal pigment epithelium (RPE) cells [31].

Like the studies in yeast, Bodor [31] used microscopy to detect

fluorescently labelled CENP-A. Using three independent

quantification methods, the author found approximately 200

homotypic CENP-A nucleosomes at each mitotic kinetochore.

Although these studies are limited to a single cell type, it is intri-

guing that the estimated ratio between CENP-A molecules and

the number of microtubule attachment sites (400 CENP-A/

20 kMTs¼ 20 CENP-A/kMT) is consistent with chicken

(62 CENP-A/4 kMTs � 15 CENP-A/kMT [32]) and within a

factor of two or three of yeasts.
2. Centromere plasticity
Centromeres are frequently referred to as ‘plastic’ loci. This

description originally referred to the fact that the primary

sequence underlying the centromere varies within an organism

and among many organisms; moreover, functional neocentro-

meres can assemble at various genomic loci. Likewise, the

size of CENP-A-containing core chromatin domains varies

within and among organisms. It has been known that the

pool of CENP-A exceeds that required for accurate segregation

function in humans [33]. Several recent studies extend and

support this conclusion.

In S. cerevisiae, reduction of cellular Cse4 to approxi-

mately 50% of wild-type levels has a small, but measurable

effect on segregation fidelity. In this study, Cse4 levels are

indirectly reduced in a pat1D mutant [9] that exhibits 30�
increase in chromosome loss [20]. It remains unclear whether

the segregation defect is a direct consequence of the reduced

level of cellular Cse4, or of the absence of Pat1, which has a

demonstrated effect on kinetochore function [20]. Centromere

chromatin is more accessible to DraI nuclease digestion and

sister chromatid separation is delayed in pat1D mutants

[20]. In Candida albicans, 33–50% of molecules in rad51 or

rad52 mutants are tolerated [34], and segregation proceeds

normally in S. pombe strains bearing a reduced amount of

CENP-A at centromeres, although mild growth defects are

observed [19,21]. Heterozygous RPE1 cells with a single
integrated copy of CENP-A express about 50% of wild-type

levels with a fractional increase (0.5–2.5%) in the appearance

of cells with micronuclei. Thus, the critical quantity of CENP-

A is approximately 100 CENP-A nucleosomes in humans, com-

parable to the size of the core fraction in budding yeast taking

into account the number of kinetochore microtubules. In a sep-

arate study, centromere function was assessed following the

conditional deletion of CENP-A. Intriguingly, functional centro-

meres were detected even after seven divisions in the absence of

new CENP-A, suggesting that dilution to approximately 1%

of the starting amount of CENP-A can be tolerated in vivo [35].
3. Core versus accessory/peripheral/cloud
CENP-A molecules

A new aspect of centromere plasticity is the presence of

CENP-A molecules outside of the core domain (CENP-A

cloud, figure 1), and recent studies in the budding yeasts

and chicken cells provide important insights into the

functional significance of accessory CENP-A.

The nucleosomes in the S. cerevisiae pericentric region are

dynamic [36], with the balance between eviction and insertion

modulated by chromatin remodellers, including STH1/NPS1

and ISW2. Whereas the core Cse4 histone is stable in metaphase

[14,37], its loss from a single chromosome would be catastrophic.

The apparent confinement of peripheral Cse4 molecules to the

vicinity of the kinetochore allows for rapid incorporation of

Cse4 in the event of eviction at the centromere [9]. The proposal

that a peripheral Cse4 is important for these rogue loss events is

reminiscent of the abundance of Sir2 proteins at telomeres [38].

Gasser et al. [38] proposed a mechanism, known in enzymology

as the Circe effect [39], in which a local ligand is enriched relative

to the binding site. The Circe effect refers to ‘the utilization of

attractive forces to lure a substrate into a site in which it under-

goes a transformation of structure’ [39]. In situations such as

budding yeast, where loss of a single nucleosome is catastrophic,

it behoves the system to keep several molecules in the vicinity as

a reservoir for contingencies.

Low levels of CENP-A have been detected adjacent to

the core CENP-A domains in DT40 chicken cells. When a

large portion of the Z centromere was conditionally deleted,

neocentromeres most frequently formed near the original Z

centromere [40]. Centromere proximal neocentromeres also

assemble in C. albicans, following the conditional deletion

of varying amounts of endogenous CEN1, 5 and 7. Peripheral

or low levels of Cse4 are not detected biochemically outside

of the defined centromere; however, based on studies of

S. cerevisiae, it is reasonable to hypothesize that low levels at

random positions would be undetectable by this method.

Together, these studies suggest that peripheral CENP-A can pre-

serve centromere integrity, either in trans by shifting the protein

to where it is needed, or in cis by seeding a neocentromere.

Candida albicans has a regional centromere, but grows as a

budding yeast. CENP-A appears as two clusters representing

the aggregate of eight sister chromatids in metaphase of mito-

sis. As discussed above, the amount of CENP-A in wild-type

is two times greater than that required for cellular viability

[34]. CENP-A protein levels drop two- to threefold in rad50
and rad51 mutant cells [34]. RAD50 and RAD51 are required

for homologous recombination and are essential in meiosis

and when cells incur DNA damage, notably double-strand

DNA breakage. It has been known for several years that



Figure 2. The CENP-A cloud and the Circe effect. The localization of the CENP-A/Cse4 cloud to the vicinity of the kinetochore may contribute to the centromere
resilience. The CENP-A cloud (indicated by green shaded oval) represents the accumulation of CENP-A to the area, but not necessarily to the pericentric chromatin per
se. If the CENP-A-containing core domain is damaged ( purple bolts; loss of core CENP-A, small green circles, and breach of DNA), for example during replication
stress, CENP-A molecules in the cloud may be quickly and efficiently re-incorporated by the recombination machinery (indicated by X, black) acting at centromere
repeats (blue and white arrows). In the extreme event of centromere deletion, the core domain is compatible with neocentromere formation (not shown). A single
strand of pericentric chromatin is shown in the half-spindle as described in figure 1.
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replication forks pause when going through the centromere

[34,41]. Mitra et al. [34] propose that the accessory pool of

CENP-A may ameliorate potential damage from fork restart

in DNA synthesis. Accumulation of single-stranded DNA at

paused replication forks recruits protein involved in homolo-

gous recombination in the event of failed restarts or fork

regression. Rad50 and/or Rad51 may bring in CENP-A for

repair purposes. Interestingly, it has been shown that

CENP-A is recruited to sites of DNA damage [42]. The

recruitment of CENP-A to sites of damage may represent a

conserved mechanism shared between the accessory pool at

centromeres and sites of damage (figure 2).

In addition to DNA repair, there are reports that centromere

proteins may function in recombination. Two members of the

CCAN complex (CENP-S and CENP-X) that are proximal to

chromatin were identified as MHF1 and MHF2, for their inter-

action with FANCM (Fanconi’s anaemia complementation

group M) [43]. It has been proposed that inter-repeat recombina-

tion is a mechanism to form loops [44]. Likewise, cohesion- and

condensin-generated loops have been proposed as integral com-

ponents of the spring-based mechanisms in centromere function

[15,45–47]. A unifying mechanism for chromatin clamps (cohe-

sion and condensin) and recombination may be loop formation,

with the recombination function as a means towards this end in

organisms with centromere repeats (figure 1).
4. Limits of malleability
Together, these recent studies suggest that functional centro-

meres are extremely malleable. Yet, aneuploidy, genome

instability and some cancers can all be traced to defects in centro-

mere structure and function. An outstanding question, then, is

the cause(s) of the defects attributed to centromere dysfunction.

Recent studies in fission yeast may provide some clues. The
CENP-A-containing core domain is flanked by chromatin

barriers, which prevent pericentric heterochromatin and centro-

meric cohesin from impinging on the CENP-A core [48]. The

insertion of exogenous DNA into the barriers causes both struc-

tural and functional changes at the centromere. Cytologically,

centromeres are decondensed, suggesting mislocalized cohesin

and/or condensin. In addition, ChIP experiments demonstrate

an increase in enrichment of CENP-A at the core domain in

the cell population. These mutants have decreased viability

and a high incidence of mitotic defects [49]. An intriguing

hypothesis is that the higher order structure of the kinetochore,

which may involve an intramolecular loop (or several loops,

figure 1), is altered in these mutants, prohibiting or disrupting

proper microtubule attachment. Although this remains to

be experimentally tested, it is compelling that these mutant

centromeres ‘cure’ themselves through an intra-centromere

recombination-like mechanism that results in a precise excision

of the exogenous DNA, restoration of wild-type levels of

CENP-A and normal chromosome segregation.
5. Concluding remarks
Recent advances in quantitating the amount of CENP-A at

endogenous centromeres have led to a molecular understand-

ing of the inner kinetochore and have identified similarities

among point and regional centromeres. The presence of a

CENP-A cloud opens up new questions regarding mechan-

isms that lure proteins to active sites and poise cells for

catastrophic events as suggested by W. Jencks several dec-

ades ago [39]. Future studies in yeast and other organisms

will undoubtedly reveal additional information regarding

the geometry/architecture/three-dimensional structure of

the kinetochore and improve our understanding of the

molecular defects that lead to missegregation/aneuploidy.
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