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Abstract

Objective—Obese adults have a greater risk of morbidity and mortality from infection with 

pandemic H1N1 influenza A virus (pH1N1). The objective of the present study was to elucidate 

the specific mechanisms by which obesity and overweight impact the cellular immune response to 

pH1N1.

Design and Methods—We stimulated peripheral blood mononuclear cells from healthy weight, 

overweight, and obese individuals ex vivo with live pH1N1 and then measured markers of 

activation and function using flow cytometry and cytokine secretion using cytometric bead array 

assays.

Results—Our data indicate that CD4+ and CD8+ T cells from overweight and obese individuals 

expressed lower levels of CD69, CD28, CD40 ligand, and interleukin-12 receptor, as well as, 

produced lower levels of interferon-γ and granzyme B, compared to healthy weight individuals, 

suggesting deficiencies in activation and function. Dendritic cells from the three groups expressed 

similar levels of major histocompatibility complex-II, CD40, CD80, and CD86, as well as, 

produced similar levels of interleukin-12.
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Conclusions—The defects in CD4+ and CD8+ T cells may contribute to the increased morbidity 

and mortality from pH1N1 in obese individuals. These data also provide evidence that both 

overweight and obesity cause impairments in immune function.
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INTRODUCTION

There are over 1.4 billion overweight adults and approximately 500 million adults that are 

obese worldwide (1); reports indicate that obese adults have a greater risk of morbidity and 

mortality from infection with pandemic H1N1 influenza A virus (pH1N1) (2, 3). In 2009, 

for the first time, the Centers for Disease Control and Prevention (CDC) recognized obesity 

as an independent risk factor for influenza complications (4). However, little is known about 

the mechanisms mediating the obesity-associated increase in risk of complications and death 

from influenza infection. Recently, we have shown that there is an obesity-associated 

decrease in CD8+ T cell responses and a decline in antibody levels 12 months after 

immunization with seasonal trivalent influenza vaccine (S-TIV) in humans (5).

The cellular immune response to influenza virus infection requires appropriately functioning 

dendritic cells, CD4+ T cells, and CD8+ T cells (Supplementary Figure 1). Dendritic cells 

present antigen to and promote activation of influenza-specific CD4+ T cells and CD8+ T 

cells. Once activated, CD4+ T cells provide help, in the form of cytokine synthesis and 

secretion, to promote CD8+ T cell activation and cytotoxic function and B cell activation 

and antibody production. It is primarily the TH1 subset of CD4+ T cells that mediates the 

immune response to influenza (6) and seems to have a particularly important role in 

responding to pH1N1 (7). In addition, CD4+ T cells have been shown to have cytotoxic 

activity against pH1N1-infected target cells (8). CD8+ T cells limit the spread and severity 

of influenza infection by inducing apoptosis in influenza-infected cells, and may have an 

especially significant function in cross-reactive immune responses to pH1N1 (9).

To further understand how obesity and overweight impact the cellular response to influenza 

virus in humans, we stimulated peripheral blood mononuclear cells (PBMCs) from healthy 

weight, overweight, and obese individuals ex vivo with live pH1N1. We demonstrate that 

influenza-stimulated CD4+ and CD8+ T cells from both overweight and obese adults have 

significant deficiencies in markers of activation and function, while the associated dendritic 

cell markers of activation and function remain intact. These defects in CD4+ and CD8+ T 

cells could contribute to the increased morbidity and mortality from influenza infection in 

obese adults. Our data are particularly compelling because they provide evidence that both 

overweight and obesity cause impairments in immune function.
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METHODS AND PROCEDURES

Study population and samples

Participants were recruited as part of a prospective observational study carried out at the 

University of North Carolina at Chapel Hill Family Medicine Center, an academic outpatient 

primary care facility, in Chapel Hill, NC (5). Eligible participants were adult (≥18 years of 

age) patients who received the 2010-2011 S-TIV. Exclusion criteria were 

immunosuppression, self-reported use of immunomodulator or immunosuppressive drugs, 

acute febrile illness, history of hypersensitivity to any influenza vaccine components, history 

of Guillian-Barre syndrome, or use of theophylline preparations or warfarin (5). All 

procedures were approved by the Biomedical Institutional Review Board at the University 

of North Carolina at Chapel Hill.

A total of 454 participants were enrolled in the study between September 2010 and 

December 2010. At enrollment, informed consent, demographic characteristics, height, 

weight, and a blood sample were obtained. One 0.5mL dose of the 2010-2011 S-TIV (Sanofi 

Pasteur) containing A/Perth/16/2009(H3N2) and B/Brisbane/60/2008, as well as, A/

California/7/2009(pH1N1), was administered in the deltoid muscle using a 1.5-inch needle. 

Participants returned 28-35 days later for a post-vaccination blood draw. Serum and PBMCs 

were obtained from blood samples as previously described (5). Height and weight 

measurements were used to calculate body mass index (BMI). Participants were classified 

by BMI as healthy weight (BMI 18.5-24.9), overweight (BMI 25.0-29.9), or obese (BMI 

≥30.0) (1). Demographic characteristics of the 454 participants are presented in Table 1A.

A sample group of 83 total participants, comprised of 28 healthy weight, 28 overweight, and 

27 obese participants, was created by taking simple random samples without replacement 

from strata formed by age, race, gender, smoking status, and diabetes status. Age was 

dichotomized into groups of individuals <53 or >54 years of age because 54 years of age 

was the median age in the overall study population. Race was dichotomized into African 

American or Caucasian. Smoking status was defined as non-smoker, previous smoker, or 

current smoker. Diabetes status was defined as either having diagnosed diabetes or not. 

Demographic characteristics of these 83 participants are presented in Table 1B. PBMCs 

from these 83 participants obtained 30 days post-vaccination were used for the experiments 

presented in this manuscript.

A subgroup of 45 participants, comprised of 15 healthy weight, 14 overweight, and 16 obese 

participants, was created by taking simple random samples without replacement from the 

sample group of 83 participants. PBMC supernates from these 45 participants were used to 

measure cytokines. Demographic characteristics of these 45 participants are presented in 

Table 1C. A study overview is shown in Table 1D.

PBMC stimulation

For 72 hours, PBMCs were cultured with or without stimulation with 20 μL of 5 μg protein/ 

μL stock of live pH1N1 (equivalent to a multiplicity of infection of approximately 1) at 

37°C in 5% CO2. PBMC supernates were collected after 66 hours in culture and replaced 

with media containing GolgiPlug (BD Biosciences).
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PBMC staining and FACS

PBMCs were stained with human fluorochrome-conjugated human antibodies as shown in 

Table 2. Sample data were acquired using an LSR II flow cytometer and FACSDiva 

software (BD Biosciences), and were analyzed using Kaluza analysis software (Beckman 

Coulter). The gating strategies are described in detail in Supplementary Information; a 

representative example of the gating strategy used to analyze CD4+ T cells is shown in 

Supplementary Figure 2.

Cytometric bead array assays

Cytometric bead array assays (BD Biosciences) were performed to measure levels of the 

following cytokines secreted in PBMC supernates: IL5, IL6, IL7, IL12, IFNγ, and tumor 

necrosis factor-α (TNFα). Sample data were acquired using an LSR II flow cytometer and 

FACSDiva software. Data were analyzed using FCAP Array software (BD Biosciences). 

Individual cytokine concentrations of each supernate were calculated by reference with a 

standard curve.

Statistical analyses

Statistical analyses were performed using JMP statistical software (SAS). Differences in cell 

populations, cytokine levels, and antibody titer levels between the healthy weight and 

overweight or obese groups were analyzed with a two-tailed Student’s t-test. For each 

individual, fold increase was calculated by dividing stimulated by unstimulated cytokine 

levels. Pairwise comparisons in fold increase between BMI groups were assessed using the 

Wilcoxon rank sum test. P values < 0.05 were considered statistically significant. No 

adjustment was made for multiple comparisons.

RESULTS

Dendritic cell activation and function remain intact in PBMCs from overweight and obese 
individuals

To determine how obesity affects dendritic cells, flow cytometry was used to measure 

markers of activation and markers of function. As expected, there were increases in cell 

numbers between unstimulated and pH1N1-stimulated PBMC samples in the three BMI 

groups for all dendritic cell populations measured, showing clear evidence of increased 

proliferation. However, there were no differences in total CD3−CD11c+ dendritic cell 

numbers (Figure 1A), nor in activated dendritic cells expressing CD80 and CD86 (Figure 

1B), major histocompatibility complex-II (MHC-II) (Figure 1C), and interleukin-12 (IL12) 

(Figure 1D) among any of the groups in either unstimulated or stimulated PBMCs.

These data show that overweight and obesity do not alter baseline levels or influenza-

induced proliferation of dendritic cells, and do not impair dendritic cell activation or 

expression of CD80, CD86, MHC-II, and IL12.
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Activation and function of CD4+ T cells are impaired in PBMCs from overweight and obese 
individuals

We next examined the T cell response to pH1N1 stimulation. As in dendritic cells, there 

were increases in cell numbers in all the CD4+ T cell populations measured between 

unstimulated and stimulated PBMCs for all three BMI groups, again showing clear evidence 

of increased proliferation. Similarly, there were no differences in any of the CD4+ T cell 

populations analyzed among the healthy weight, overweight, and obese groups in 

unstimulated PBMC samples. Total numbers of CD4+ T cells were similar in stimulated 

PBMCs from healthy weight, overweight, and obese individuals (Figure 2A), suggesting 

that overweight and obesity do not alter influenza-induced proliferation of CD4+ T cells and 

that any differences in the CD4+ T cell subpopulations are not simply a result of overweight 

and obese individuals having fewer CD4+ T cells overall. When we examined numbers of 

CD4+ T cells expressing the activation marker CD69 (Figure 2B), as well as, activated 

CD4+ T cells expressing CD28 (Figure 2C), CD40 ligand (CD40L) (Figure 2D), IL12 

receptor (IL12R) (Figure 2E), interferon-γ (IFNγ) (Figure 2F), both IFNγ and granzyme B 

(GrB) (Figure 2G), and CD28, CD40L, IFNγ, and GrB (Figure 2H), we found that they were 

all significantly lower in stimulated PBMCs from overweight and obese individuals, 

compared to healthy weight individuals. These data suggest that when exposed to pH1N1, 

both overweight and obese individuals have a significant loss in ability to activate CD4+ T 

cells responses, compared to healthy weight individuals.

Activation and function of CD8+ T cells are impaired in PBMCs from overweight and obese 
individuals

Similarly, there were increases in cell numbers in all CD8+ T cell populations measured 

between unstimulated and stimulated PBMCs for all three BMI groups, showing clear 

evidence of proliferation. There were no differences in any of the CD8+ T cell populations 

analyzed among healthy weight, overweight, and obese groups in unstimulated PBMC 

samples. Total numbers of CD8+ T cell numbers were similar in unstimulated PBMCs from 

healthy weight, overweight, and obese individuals; in stimulated samples, numbers were 

similar between healthy weight and obese individuals, while numbers were higher in 

overweight individuals (Figure 3A). This suggests that overweight and obesity do not 

negatively impact pH1N1-induced proliferation of CD8+ T cells and suggest that any 

differences in the CD8+ T cell subpopulations are not a result of overweight and obese 

individuals having fewer total CD8+ T cells. When we examined numbers of CD8+ T cells 

expressing the activation marker CD69 (Figure 3B) and IFNγ (Figure 3C), as well as, 

activated CD8+ T cells expressing CD28 (Figure 3D), CD40L (Figure 3E), IFNγe (Figure 

3F), both IFNγ and GrB (Figure 3G), and both CD28 and IL12R (Figure 3H), we found that 

they were all significantly lower in stimulated PBMCs from overweight and obese 

individuals, compared to healthy weight individuals. As with the CD4+ T cell populations, 

these data suggest that overweight and obese individuals do not activate their CD8+ T cells 

in response to pH1N1 to the same level as healthy weight individuals.
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No differences in levels of IL12 and IL7 secreted by PBMCs from healthy weight, 
overweight, and obese individuals

To determine if overweight or obesity altered PBMC cytokine production, we then measured 

protein levels of cytokines secreted into the PBMC culture media. Similar to the flow 

cytometry data, while there were increases in secreted IL12 between unstimulated and 

stimulated PBMCs, we found that there were no differences in IL12 (Figure 4A) levels 

among the BMI groups when comparing unstimulated PBMCs with each other and 

stimulated PBMCs with each other. In addition, we found that there were no differences in 

IL7 (Figure 4B) levels among the BMI groups, both in the unstimulated and stimulated 

samples. These findings suggest that dendritic cells from overweight and obese individuals 

secrete similar amounts of IL12 and IL7 as dendritic cells from healthy individuals. These 

data, along with the flow cytometry data, suggest that activation and function of dendritic 

cells are intact in PBMCs from overweight and obese individuals.

Higher levels of IL5 in supernates from obese individuals

We also found that IL5 levels were higher in supernates from obese individuals (Figure 4C) 

and that IFNγ levels trended lower (Figure 4D) in supernates from obese individuals, 

compared to healthy weight individuals. Because it is not known which cells produce which 

cytokines released into the supernate, any potential differences in IFNγ levels may have 

been mitigated, as it is known that dendritic cells have the ability to secrete IFNγ (10) in 

addition to T cells. The higher levels of IL5 in the supernates from obese individuals suggest 

that the CD4+ T cells from obese individuals are differentiating more to the TH2 subset of 

CD4+ T cells, which produce high amounts of IL5, and less to the TH1 subset of CD4+ T 

cells. Indeed, a recent study showed that CD4+ T cells from morbidly obese individuals 

were skewed towards a TH2-dominated phenotype (11).

Impaired upregulation of TNFα secretion in PBMC supernates from obese individuals

A part of the coordinated immune response to influenza virus includes an increased 

production of the proinflammatory cytokines TNFα and IL6. Although there were no 

differences in levels of TNFα (Supplementary Figure 3A) and IL6 (Supplementary Figure 

3B) between the healthy weight and overweight groups and between the healthy weight and 

obese groups in unstimulated and stimulated PBMCs, we did find that the fold increase 

between unstimulated and stimulated PBMC supernates from obese individuals was lower 

for TNFα (Figure 4E) and trended lower for IL6 (Figure 4F), compared to healthy weight 

individuals. These data suggest that obese individuals may not be able to upregulate 

production of TNFα in response to pH1N1 as effectively as healthy weight individuals, 

perhaps due to resistance in the pathways that upregulate TNFα secretion associated with 

increased adiposity.

DISCUSSION

Seasonal influenza virus strains typically affect the very young and the very old more than 

young or middle-aged adults. However, elderly adults maintained relatively low pH1N1 

infection rates, while obese adults had a significantly greater risk of morbidity and mortality 

from pH1N1 than healthy weight adults (12). We found that there were no significant 
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differences in pre-vaccination or post-vaccination serum titers to pH1N1 among the healthy 

weight, overweight, and obese groups (see Supplementary Information and Supplementary 

Figure 4). In the absence of cross-protective antibodies, the cellular immune response to 

influenza virus has a significant role in limiting the spread and severity of influenza 

symptoms and promoting clearance of the virus (13). Furthermore, studies have shown that 

the cellular immune response to influenza is a better predictor than the antibody-mediated 

immune response of protection from influenza (14). A number of studies have shown that 

previous natural infection or vaccination against seasonal influenza A viruses increase 

cellular immune responses against pH1N1 in the absence of humoral immune responses 

humans (8, 15, 16) and evidence from animal studies corroborates these data (9, 17).

We found that there were no impairments in markers of dendritic cell activation and 

function and no defects in dendritic cell cytokine secretion in PBMCs from overweight and 

obese participants. In contrast, we found that there were significant impairments in CD4+ 

and CD8+ T cell activation and function and alterations in T cell cytokine secretion in 

PBMCs from overweight and obese participants. Expression of CD69, a T cell activation 

marker, was lower in CD4+ and CD8+ T cells, while expression CD40, a dendritic cell 

activation marker, was not impaired in dendritic cells from overweight and obese 

participants. CD40 signaling promotes expression of MHC-II and of the costimulatory 

molecules CD80 and CD86, which bind CD28 on T cells, thereby increasing the capacity of 

dendritic cells to effectively present antigen. While dendritic cells from overweight and 

obese individuals express levels of CD80 and CD86 similar to healthy weight individuals, 

these T cells are likely receiving reduced costimulatory signaling, due to the decreased 

expression of CD28, which promotes proliferation, expansion, sensitivity to antigen, and 

survival of T cells. In addition, the CD4+ and CD8+ T cells from overweight and obese 

individuals may not be effecting optimal CD40-CD40L interactions due to the decreased 

expression of CD40L. However, it has been shown that activated dendritic cells can also 

produce CD40L, which can then act in a paracrine fashion to stimulate CD40 on other 

dendritic cells (18), thereby potentially bypassing the defective CD40 expression of T cells 

in our study. Despite comparable levels of IL12 production by dendritic cells from healthy 

weight, overweight, and obese individuals, the essential IL12R signaling pathway may not 

be optimally activated, due to the decreased expression of IL12R, likely resulting in 

impairments in the downstream effects of IL12R signaling, including differentiation to the 

TH1 cell subtype and IFNγ production in CD4+ T cells (19) and cytotoxic activity and IFNγ 

production in CD8+ T cells (20). There were also comparable levels of IL7 production by 

dendritic cells from the three groups, which is required to effectively trigger the T cell 

response to influenza (21). Finally, the robust flow cytometry data indicate that overweight 

and obesity impair production of IFNγ and GrB, suggesting that the respective anti-viral and 

apoptotic functions would be severely defective. Interestingly, a previous study showed 

increased numbers of dendritic cells, but impaired antigen presentation, in the lungs of 

influenza-infected, diet-induced obese mice (22). However, in a mouse model of a 

secondary influenza infection, dendritic cells from diet-induced obese mice showed no 

impairments in antigen presentation (23). In addition, secreted IL5 protein levels were 

higher and, although not statistically significant, IFNγ levels trended lower in supernates 

from obese individuals, in comparison to healthy weight individuals, although any potential 
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differences in IFNγ levels may have been mitigated, as it is known that cells other than T 

cells in the PBMC culture can secrete and utilize IFNγ (10). In all immune responses, there 

needs to be a balance between T 1 and T + H H2 CD4 T cell activity; however, it is 

primarily the T 1 CD4+ H T cells that mediate the response to influenza. IL5 is secreted 

predominantly by the T 2 subset of CD4+ H T cells and is more closely associated with 

allergic responses rather than viral pathogens (24). These T cell data are similar to findings 

from studies utilizing diet-induced obese mouse models. In influenza-infected obese mice, 

there were lower levels of CD8+IFNγ+ T cells isolated from the spleen, compared to from 

lean control mice (22). During a primary influenza infection, increases in IFNγ mRNA 

expression in lung were both lower and delayed in obese mice, compared to lean control 

mice. During a secondary influenza viral challenge, diet-induced obese mice displayed 

reduced levels of influenza-specific CD8+ effector memory T cells in lung, compared to lean 

control mice (25). Another study showed that during a secondary influenza viral challenge, 

diet-induced obese mice showed lower levels of IFNγ expression and IFNγ-producing 

influenza-specific CD8+ T cells in lung tissue, compared to lean control mice; even when 

memory CD8+ T cells from obese mice were stimulated with influenza-pulsed dendritic 

cells from lean control mice, IFNγ expression was lower (23).

In addition to the anti-viral activity, controlled increases in inflammation are an important 

component of the immune response to influenza virus. We found that the fold increase in 

secreted cytokines between unstimulated and stimulated PBMC supernates from obese 

individuals was lower for TNFα, in comparison to healthy weight individuals. These data 

are similar to findings in animal models, showing that during a primary influenza infection, 

increases in TNFα and IL6 mRNA expression were both lower and delayed in obese mice, 

compared to lean control mice (26). In addition, when diet-induced obese mice were primed 

with a primary infection of the mouse-adapted influenza virus strain X-31 (H3N2), followed 

by a dose of influenza PR8 (H1N1) 4 weeks later, obese mice displayed a lower fold 

increase in mRNA expression of TNFα compared to lean control mice (23).

There are several significant strengths of the present study. The use of human samples and 

the ex vivo nature of the experiments enables the results to be immediately and directly 

applicable to human populations. There are also some limitations of the study. Ex vivo 

models are inherently limited in comparison to in vivo models; however, they are often the 

best available option when the goal is to have direct relevance to human populations. We 

could not control for previous exposure to different strains of influenza virus, either through 

natural infection or vaccination. It would be very difficult to find a population in the US that 

was naive to all influenza virus strains that had cross-reactivity with pH1N1. However, this 

could also be considered a potential strength of our study, as our results are based on an 

intent-to-treat type of approach, which lends itself well in considering implications to the 

general US population. Finally, although our study has significant clinical implications for 

individuals exposed to, immunized against, or infected with pH1N1 influenza A virus, we 

were not able to directly assess whether the impairments in CD4+ and CD8+ T cells from 

overweight and obese individuals correlate with poorer clinical outcomes, although those 

studies are very important to conduct. Our group is currently conducting a study examining 
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the efficacy of influenza vaccination in different BMI groups that includes clinical diagnosis 

of influenza infection.

The data from our combined experiments clearly indicate that CD4+ and CD8+ T cells from 

overweight and obese individuals have substantial defects in activation and function when 

stimulated ex vivo with pH1N1, despite the associated dendritic cell functions remaining 

intact. These defects likely contribute to the increased morbidity and mortality from pH1N1 

in obese individuals. Our results are particularly compelling because they show that both 

overweight and obesity negatively impact immune function. With the dramatic increases in 

overweight and obesity worldwide and the heightened potential for influenza pandemics, 

these findings have important implications for understanding how adiposity affects the 

cellular immune response.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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What is already known about this subject:

• Epidemiological reports indicate that obese adults have a greater risk of 

morbidity and mortality from infection with pandemic H1N1 influenza A virus 

(pH1N1).

• There is an obesity-associated decrease in CD8+ T cell responses and a decline 

in antibody levels 12 months after immunization with seasonal trivalent 

influenza vaccine in humans.

What this study adds:

• The data from our study indicate that CD4+ and CD8+ T cells from overweight 

and obese individuals have substantial defects in activation and markers of 

function, despite the associated dendritic cell functions remaining intact.

• These defects likely contribute to the increased morbidity and mortality from 

pH1N1 in obese individuals.

• Our results are particularly compelling because they show that both overweight 

and obesity negatively impact immune function.
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Figure 1. Activation and function of dendritic cells remain intact in PBMCs from overweight 
and obese individuals
PBMCs were incubated with (filled bar) or without (open bar) live pH1N1 virus and 

dendritic cell populations were analyzed. There were no differences in (a) total 

CD3−CD11c+ dendritic cells, nor in (b) activated dendritic cells expressing CD80 and 

CD86, (c) MHC-II, and (d) IL12 among any of the BMI groups in both unstimulated and 

stimulated PBMCs. Data were collected on approximately 30,000 events run in the dendritic 

cell/monocyte gate. Results are displayed as the mean ± s.e.m. (n=26-28 per group).
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Figure 2. Activation and function of CD4+ T cells are impaired in PBMCs from overweight and 
obese individuals
PBMCs were incubated with (filled bar) or without (open bar) live pH1N1 virus and CD4+ T 

cell populations were analyzed. Total CD4+ T cells (a) were similar among groups, while 

CD4+ T cells expressing CD69 (b), as well as, activated CD4+ T cells expressing CD28 (c), 

CD40L (d), IL12R (e), IFNγ (f), both IFNγ and GrB (g), and CD28, CD40L, IFNγ, and GrB 

(h), were significantly lower in stimulated PBMCs from overweight and obese individuals, 

compared to healthy weight individuals. There were no differences in unstimulated PBMCs 

among groups. Data were collected on approximately 50,000 CD3+ events run in the 

lymphocyte gate. Results are displayed as the mean ± s.e.m. (n=26-28 per group). *P<0.05 

compared to stimulated PBMCs from healthy weight individuals.
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Figure 3. Activation and function of CD8+ T cells are impaired in PBMCs from overweight and 
obese individuals
PBMCs were incubated with (filled bar) or without (open bar) live pH1N1 virus and CD8+ T 

cell populations were analyzed. Total CD8+ T cells (a) were similar between healthy weight 

and obese individuals, while numbers were higher in overweight individuals. CD8+ T cells 

expressing CD69 (b) and IFNγ (c), as well as, activated CD8+ T cells expressing CD28 (d), 

CD40L (e), IFNγ (f), both IFNγ and GrB (g), and both CD28 and IL12R (h), were 

significantly lower in stimulated PBMCs from overweight and obese individuals, compared 

to healthy weight individuals. There were no differences in unstimulated PBMCs among 

groups. Data were collected on approximately 50,000 CD3+ events run in the lymphocyte 

gate. Results are displayed as the mean ± s.e.m. (n=26-28 per group). *P<0.05 compared to 

stimulated PBMCs from healthy weight individuals.
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Figure 4. PBMC cytokine secretion from overweight and obese individuals suggests a shift 
towards a TH2-dominated response
Secreted cytokines were measured in supernates from PMBCs incubated with (filled bar) or 

without (open bar) live pH1N1 virus. There were no differences in IL12 (a) and IL7 (b) 

levels between the healthy weight and overweight groups and the healthy weight and obese 

groups, both from unstimulated and stimulated PBMCs. IL5 levels (c) were higher and IFNγ 

levels (d) trended lower in stimulated PBMC supernates from obese individuals, compared 

to healthy weight individuals, while there were no differences in unstimulted PBMC 

supernates. Fold increase (filled bar) between unstimulated and stimulated PBMC 

supernates was lower for TNFα (e) and trended lower for IL6 (f), in stimulated PBMC 

supernates from obese individuals, compared to healthy weight individuals. Results are 

displayed as the mean ± s.e.m. (n=14-16 per group). Data below the limit of detection were 

assigned a value of half the lower limit of detection. The lower limits of detection of the 

assays were as follows: IL12, 0.6 pg/mL; IL7, 0.5 pg/mL; IL5, 1.1 pg/ml; and IFNγ, 1.8 

pg/ml. *P<0.05 compared to PBMCs from healthy weight individuals within treatment 

group.
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Table 1

Demographic Characteristics

A: Demographic Characteristics of the Study Population

Healthy Weight Overweight Obese Total

Enrolled 111 (24.4%) 145 (31.9%) 198 (43.6%) 454

BMI 22.3 ± 1.6 27.2 ± 1.5 37.8 ± 7.9

BMI Range 18.5 – 24.9 25.0 – 29.9 30.0 – 76.5

Age 50.0 ± 14.5 49.0 ± 13.7 51.0 ± 14.1 54.1 ± 15.3

Age Range 19 – 88 18 – 83 22 – 86

Gender Female 70 (25.4%) 80 (29.0%) 126 (45.7%) 276 (60.8%)

Male 41 (23.0) 65 (36.5%) 72 (40.4%) 178 (39.2%)

Race White 85 (27.7%) 108 (35.3%) 113 (37.0%) 306 (67.4%)

AA 19 (14.0%) 35 (25.7%) 82 (60.3%) 139 (30.6%)

Other 7 (58.3%) 2 (16.7%) 3 (25.0%) 12 (2.0%)

Smoking No 66 (25.1%) 85 (32.3%) 112 (42.6%) 263 (57.9%)

Previous 33 (40.9%) 45 (25.0%) 54 (34.1%) 132 (29.1%)

Yes 12 (20.3%) 15 (25.4%) 32 (54.2%) 59 (13.0%)

Diabetes No 103 (29.1%) 124 (35.0%) 127 (35.8%) 354 (77.0%)

Yes 8 (8.0%) 21 (21.0%) 71 (71.0%) 100 (23.0%)

B: Demographic Characteristics of PBMC Samples for Flow Cytometry and Hemaglutination Inhibition Assay Experiments

Healthy Weight Overweight Obese Total

Participants 28 28 27 83

BMI 22.7 ± 1.7 26.8 ± 1.4 37.3 ± 7.8

BMIRange 19.0 – 24.8 25.0 – 29.6 30.4 – 54.9

Age 50.7 ± 14.2 49.2 ± 13.4 53.4 ± 12.9 50.4 ± 14.0

Age Range 19 – 69 23 – 70 24 – 70

Gender Female 16 (32.7%) 17 (34.7%) 16 (32.6%) 49 (59.0%)

Male 12 (35.3%) 11 (32.3%) 11 (32.3%) 34 (41.0%)

Race White 23 (33.3%) 23 (33.3%) 23 (33.3%) 69 (83.1%)

AA 5 (35.7%) 5 (35.7%) 4 (28.6%) 14 (16.9%)

Smoking No 15 (31.9%) 17 (36.2%) 15 (31.9%) 47 (56.6%)

Previous 9 (40.9%) 7 (31.8%) 6 (27.3%) 22 (26.5%)

Yes 4 (28.6%) 4 (28.6%) 6 (42.9%) 14 (16.9%)

Diabetes No 25 (35.7%) 26 (37.1%) 19 (27.1%) 70 (84.3%)

Yes 3 (23.1%) 2 (15.4%) 8 (61.5%) 13 (15.7%)

C: Demographic Characteristics of PBMC Supernates for Cytokine Analysis Experiments

Healthy Weight Overweight Obese Total

Participants 15 14 16 45

BMI 22.9 ± 1.7 27.1 ± 1.3 37.8 ± 7.2
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C: Demographic Characteristics of PBMC Supernates for Cytokine Analysis Experiments

Healthy Weight Overweight Obese Total

BMI Range 19.0 – 24.8 25.0 – 29.0 30.4 – 53.3

Age 49.1 ± 16.3 48.6 ± 15.1 55.5 ± 11.3 51.2 ± 14.3

Age Range 19 – 69 23 – 66 19 – 69

Gender Female 7 (28.0%) 7 (28.0%) 11 (44.0%) 25 (55.6%)

Male 8 (40.0%) 7 (35.0%) 5 (25.0%) 20 (44.4%)

Race White 10 (27.0%) 12 (32.4%) 15 (40.5%) 37 (82.2%)

AA 5 (62.5%) 2 (25.0%) 1 (12.5%) 8 (17.8%)

Smoking No 8 (32.0%) 7 (28.0%) 10 (40.0%) 25 (55.6%)

Previous 4 (33.3%) 6 (50.0%) 2 (16.7%) 12 (26.7%)

Yes 3 (37.5%) 1 (12.5%) 4 (50.0%) 8 (17.8%)

Diabetes No 14 (38.9%) 13 (36.1%) 9 (25.0%) 36 (80.0%)

Yes 1 (11.1%) 1 (11.1%) 7 (77.8%) 9 (20.0%)

D: Study Overview
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Table 2

Fluorochrome-conjugated Antibodies Used for T Cell and Dendritic Cell FACS Panels

A: T Cell FACS Panel

Antibody Fluorochrome Manufacturer

Anti-CD3 V500 BD Biosciences

Anti-CD4 Qdot 605 Invitrogen

Anti-CD8 Qdot 655 Invitrogen

Anti-CD28 PE-Cy7 BioLegend

Anti-CD40ligand (CD40L) ACP-Cy7 BioLegend

Anti-CD69 PE-Cy5.5 Invitrogen

Anti-interleukin-12 receptor (IL12R) APC BD Biosciences

Anti-interferon-α (IFNα) FITC BioLegend

Anti-granzyme B (GrB) PE-Texas Red Invitrogen

B: Dendritic Cell FACS Panel

Antibody Fluorochrome Manufacturer

Anti-CD3 AmCyan BD Biosciences

Anti-CD11c Pacific Blue BioLegend

Anti-CD40 PE-Cy5 BD Biosciences

Anti-CD80 Alexa Fluor 700 BD Biosciences

Anti-CD86 PerCP-Cy5.5 BioLegend

Anti-major histocompatibility complex-II (MHC-II) Pacific Orange Invitrogen

Anti-IL12 PE BioLegend
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