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Abstract

Evolutionary paradigms of human health and nutrition center on the evolutionary discordance or

“mismatch” model whereby human bodies, reflecting adaptations established in the Paleolithic

era, are ill-suited to modern industrialized diets resulting in rapidly increasing rates of chronic

metabolic disease. Whereas this model remains useful, we argue that its utility in explaining the

evolution of human dietary tendencies is limited. The assumption that human diets are

mismatched to our evolved biology implies that they are instinctual or genetically determined and

rooted in the Paleolithic. We review current research indicating that human eating habits are

primarily learned through behavioral, social and physiological mechanisms starting in utero and

extending throughout the life course. Those adaptations that appear to be strongly genetic likely

reflect Neolithic, rather than Paleolithic, adaptations and are significantly influenced by human

niche-constructing behavior. Incorporating a broader understanding of the evolved mechanisms by

which humans learn and imprint eating habits and the reciprocal effects of those habits on

physiology would provide useful tools for structuring more lasting nutrition interventions.
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Introduction

Concerns about the alarming number of American adults consuming poor diets associated

with the development of obesity, cardiovascular disease, and type 2 diabetes mellitus

(T2DM)1-3 have prompted a great deal of research into the “true” or evolved ways that

humans are meant to eat for optimal health.4-8 In their seminal 1985 paper, Eaton and

Konner9 first posited that many of the chronic metabolic disorders now rampant in the

industrialized world result from a way of life that is mismatched to human evolutionary

history. They suggested that the “Paleolithic diet,” an ancestral diet characterized by higher

protein, less total fat, more essential fatty acids, lower sodium, and higher fiber, should serve

as a reference standard for modern human nutrition. This argument has been widely

incorporated into popular scientific and diet research10, leading to the assumption that
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modern human bodies, largely representing traits evolved during the Paleolithic period (2.6

million to 12,000 years ago) have been outpaced by culture change resulting in a gene-

culture mismatch and the epidemic “diseases of civilization.”11

However, this lingering perception that we are “Stone-Agers in the Fast Lane”11 limits both

our understanding of the long-standing flexibility that characterizes human dietary evolution

and the utility of evolutionary models in shaping dietary interventions, particularly in a

modern world in which many people are structurally limited in their lifestyle choices.12-15 In

this paper, we: 1) discuss the limitations of the reliance on the mismatch, or evolutionary

discordance, model as the sole model of human diet evolution and fundamental cause of

cardiometabolic disease; 2) review recent research in nutrition, evolutionary medicine,

paleoanthropology, and physiology that documents considerable ecological, genetic, cultural

and behavioral variation in human diet and metabolism; and 3) propose strategies for

nutrition intervention that focus on the flexibility and diversity that have characterized much

of human diet evolution, and the mechanisms through which human feeding behaviors are

shaped within individual lifetimes, rather than on a return to an idealized hunter-gatherer

subsistence pattern.

The Mismatch Hypothesis: Applications and Limitations for Understanding

Human Dietary Evolution

The mismatch hypothesis has its origins in the “thrifty genotype” hypothesis16 that

populations who had remained hunter-gatherers into modern historical periods maintained

traits that would favor insulin resistance and energy storage in times of famine, an adaptive

complex-turned-liability in modern sedentary agricultural life. “Paleolithic Nutrition”

expanded on this by compiling data from populations still engaged in more “traditional”

foraging subsistence to generate testable hypotheses centered on the transition to

agricultural, then industrialized, diets and its effects on rates of cancers,17 T2DM,18,19 heart

disease,20 and hypertension.21 More recent mismatch studies have modeled differential

nutritional outcomes of modern versus non-agricultural populations related to specific

macro-22-24 and micronutrients25 and factors such as net dietary acidity,26 diet breadth,27,28

seasonality, physical activity,29,30 and the production of toxic by-products by cell

mitochondria.31 These studies have ushered in a major paradigm shift by incorporating an

explicitly evolutionary interpretation of human diet and its relationships to modern health

crises,32 framing explanations for the dramatic increases in obesity and diabetes incidence

and prevalence as populations adopt Westernized diets and lifestyles18,33,34 and highlighting

the importance of recent changes in food availability and dietary breadth in generating

disease risk.18 This approach has also informed clinical interventions in at-risk populations:

emerging research demonstrates that restricting refined carbohydrates and dairy products

and emphasizing vegetables and lean proteins leads to encouraging reductions in fat mass,

serum cholesterol and circulating glucose levels,35,36 particularly in aboriginal

populations.37

However, the evolutionary discordance model centers on assumptions that “our current gene

pool is hardly changed from that of Stone Age humans,”38: 26 and that “genetically, man

remains adapted for the foods consumed [during the Paleolithic],”39: 1 which has led to a
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“dissociation between our genes and our lives.”40: 109 We argue that this perspective fuels

perceptions that: 1) the diet of the evolutionary past, or EEA, was more or less universal, (2)

the microevolutionary changes of the past twelve millennia were not sufficiently significant

or adaptive to outweigh traits originating in the Paleolithic, and (3) human dietary behavior

is determined primarily through instinctual and/or genetic mechanisms. All three of these

assumptions are problematic, as the following discussion demonstrates.

Environments of Evolutionary Adaptation (EEA)

Though it may be reasonable to assume that our nutritional requirements, which are

relatively universal across human populations, were established in the prehistoric past, the

question of which prehistoric past is the relevant one remains.41,42 Despite decades of

critique attacking the notion of a single EEA as an overly simplistic view of dynamic,

variable prehistoric environments and lifestyles,12,43,44 proponents of the mismatch

hypothesis rely on the idea of a single type of ancestral diet and place the mismatch between

our evolved physiology and modern environments at the boundary between the Paleolithic

and Neolithic eras with the introduction of agriculture. Yet, variation in ancestral diets has

been thought for some time to be more than just a function of hunting-gathering vs.

agriculture, but also a function of geography, food availability, seasonality and climatic

conditions.41 Paleoanthropological research into human diet evolution, drawing on analyses

of preserved remains and materials, geochemical analyses, and modern human and non-

human analogs, highlights the long-standing plurality and flexibility in human subsistence

behavior.45-49 Studies of modern hunter-gatherer populations further highlight the

importance of social factors, such as reciprocal food sharing50,51 and gendered divisions of

subsistence labor and risk,52 in shaping what was consumed and by whom.

Growing evidence further indicates that agricultural diets are not as easily associated with

“diseases of civilization” as first thought. For example, the mismatch hypothesis assumes

that prior to cultivation, hunter-gatherers obtained very few of their carbohydrates from

cereal grains9,32 and, because the carbohydrates from fruits and vegetables are somehow

better than those from grains, were less likely to suffer from cardiometabolic diseases such

as obesity, T2DM, and cardiovascular disease.43 Modern hunter-gatherers and

horticulturalists, however, have a wide range of carbohydrate intakes,53,54 and even those

relying on single cultivars high in carbohydrates remain free from many of the “diseases of

civilization.” Moreover, the boundaries between hunting-gathering and agriculture were

likely quite fluid over much of the past 14,000 years,55 indicating that mismatch was not an

automatic, inevitable response to the move from predominant foraging to agriculture.43

On-going genetic variation

Emerging genomic evidence has called into question the assumption that human populations

are essentially unchanged since the Paleolithic.10 Recent studies reveal that humans have

continued to evolve well into the Neolithic period, perhaps at accelerated rates relative to

those of the Paleolithic.56 Importantly, the most significant of these evolutionary changes

are directly tied to changes in diet and subsistence,57 including variation in the number of

genes that code for amylase production depending on starch consumption58 and the parallel

evolution of lactase persistence in ancestral pastoralist populations.59-62 In fact, current data
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likely underestimate the number of independent alleles coding for lactase persistence,62

meaning such mutations could have occurred at different points during human evolution and

only became adaptive (rather than selectively neutral) after human cultures developed

dairying practices. These examples represent only a few along a diverse spectrum of

plausible evolutionary models linking specific environments to complex traits such as

metabolism and cardiometabolic disease.63

Developmental and social flexibility in diet

Paradoxically, another limitation of the evolutionary discordance hypothesis is that it relies

too heavily on human diets as a set of genetic adaptations. Numerous studies suggest that no

“wisdom of the body” exists to drive food selection in direct response to physiological

needs.64-67 Instead, the majority of dietary behavior in omnivores is socially learned rather

than instinctual, including the development of taste preferences and aversions,68,69

definitions of what is “food” versus “not-food”70,71 and patterns for combining different

food resources.72-74

Research from the fields of nutrition and human biology within the last few decades has

increasingly focused on developmental environments, rather than ancestral ones, as salient

predictors of later metabolic disease. 75-79 Pre- and early post-natal nutritional cues may

transmit important information about the expected energetic environment to the developing

human, providing an important non-genomic form of inheritance that could enhance fitness

during short-term environmental shifts. Fetal nutrition may also alter DNA methylation and

chromatin modification, two key epigenetic processes contributing to gene expression,80

creating differential risks for obesity81 and possibly energy extraction and utilization.82,83

Fetal imprinting and other epigenetic processes during development underscore the

importance of fetal environments in shaping long-term body composition and metabolic

health in ways that are not genetically determined.

Mechanisms Generating Flexibility in Human Diets

The genetic, physiological and behavioral mechanisms underlying human dietary and

nutritional adaptations are far more complex and dynamic than a mismatch among

Paleolithic bodies and post-Neolithic cultural environments. We argue through the three

examples below that understanding the mechanisms that generate flexibility and diversity in

human feeding behaviors and metabolic responses to new dietary niches is critical for fully

interpreting modern human subsistence and dietary behavior in evolutionary context.

Neuroanatomical and Cognitive Mechanisms of Food Preferences and Diet

Human dietary behaviors are mediated in part by evolved processes in the brain that are

shared with other primates.34,57,84-92 Interestingly, the processing of food-related stimuli

appears to occur independently of the hedonic value (liking versus disliking) of the foods

consumed,33,91 reinforcing the distinction between homeostatic (i.e., concerning energy

balance) and hedonic (i.e., reward-seeking) mechanisms of feeding behavior, summarized in

Figure 1.
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Among humans, responses to food and eating situations are strongly associated with hedonic

experiences93 and emotional states considered critical to “ground[ing] social intelligence.”94

Therefore, much of human subsistence and eating behavior is produced by neural

mechanisms linking emotional state, cultural context, and memory to the sensory properties

of foods94-96 and the anatomical structures involved in feeding. Merely thinking about one’s

favorite foods has been shown to activate brain centers for long-term and associative

memory97 and possibly the primary olfactory cortex.98 Humans also appear to change their

subjective ratings of the pleasantness of a food (i.e., to reach sensory-specific satiety) by

merely chewing a food for a period of time, without swallowing it and thus without it

reaching the stomach.99 This cognitive feedback network generates the salient and often-

intense associations that individuals experience between smells or tastes and memory or

emotional state, independent of energy balance.91 In addition, recent evidence from rats100

suggests that fatty mouthfeel sensations detected in oral taste receptors trigger the release of

endocannabinoids in the upper intestine via signaling by the vagus nerve; moreover, rat

models demonstrate that sugar can act to change dopamine and opioid receptor binding in

the nucleus accumbens of the brain, prompting a reward response that is similar to that

observed in (and thus likely co-opted by) narcotics.101 If identified in humans, such a

relationship would further support the notion that taste, sensation, and associative memory

form a complex feedback network that significantly shapes human taste preferences and

feeding behavior in non-genomic ways.

Taste Perception, Food Choice and Social Learning

Adaptive models that consider the interaction of biological and cultural factors73,102-105

have highlighted their dual importance in shaping human diets. For example, people tend to

exhibit a liking of sweet tastes and a dislike of bitter tastes and irritants starting at

birth,106,107 which some suggest represents an adaptive proclivity for nutrient-dense, safe

foods and an avoidance of poisonous plants and other harmful compounds in nature.107-110

Accordingly, multiple alleles have been identified that mediate differences in human taste

receptors, resulting in individual variation in the perception of sugars, fats, and bitter

compounds.89,108,111-114 However, circulating levels of leptin, a hormone involved in

energy regulation, and sex steroids115 also appear to influence sweet taste perception and

preference in humans. The fact that sugars also activate a dopaminergic or reward response,

noted above, has been implicated in possible links between chronic psychosocial stress and

increased sensitivity to sweet tasting foods.116 Studies highlighting the link between chronic

social stress and elevations in circulating ghrelin, a hormone associated with energy

depletion and food intake, further implicate psychosocial stress and increased

consumption.117 The combined effects of a stress-induced dopaminergic response and

ghrelin elevation could well induce excessive consumption of sweets and other unhealthy

foods. Results of these studies point to other physiological and environmental factors that

may attenuate or even override genetic tendencies.

Importantly, the degree to which genetically-based preferences predict actual consumption

behavior is unclear.113,118 For example, bitter taste perception is indeed genetically-

based,111 but a demonstrated dislike for bitter tastes is not only dose-dependent,119 its role

in determining feeding behavior is belied by the worldwide popularity of coffee, tea,
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chocolate, and hops. Even if initially disliked, repeated exposure has been shown to

engender preferences for bitter tastes and irritant compounds (such as capsaicin in chili

peppers) in humans and nonhuman primates.120,121

Food habits socially learned during critical periods of development can have lasting effects

on aversions, preferences and choices throughout life.67,122 Many highly salient taste

associations and resultant eating behaviors are “learned” pre- and post-natally through

exposure to flavor volatiles from garlic, mint, vanilla, carrot, anise and alcohol in amniotic

fluid and breastmilk.119,123 These exposures subsequently influence flavor acceptance,

variety, and willingness to try new foods.65,106,124 Conversely, food aversions appear

universally to be learned in association with the negative physical consequences of eating a

particular food, even altering the hedonic value of a previously-liked food to one of

disgust.69 Eating behaviors and preferences—both individual and collective—are further

manipulated through the social environments in which individuals are immersed,67,125,126

including ethnic tradition,65,127 family experience,125,126 and cultural practices.128-131

A classic body of anthropological research has revealed highly adaptive systems of behavior

in cuisines.73 The rules, combinations, processing techniques, and flavor themes that

characterize different cuisines often reflect local ecological constraints132 and provide the

context in which food preferences are learned.133,134 More recently, proponents of Niche

Construction Theory135—an evolutionary framework that proposes that organisms cause

evolutionary change through their creation of new environments due to their metabolism and

behavior—have argued that cuisines also allow human groups to carve out wider niches than

would exist without their manipulation,136 making poisonous foods edible137 and

indigestible resources digestible,138 staving off microbial contamination,72 and achieving

more complete nutrition.74,104 Cuisines are thus components of larger socially-learned

behavioral repertoires that have created significant selective processes on human

populations through the creation of novel and widely varying dietary niches.136,139,140

Human Dietary Niches and Metabolism

Whereas prenatal diets appear critically important to shaping long-term physiology,

metabolism, and feeding behavior, postnatal diets may also be distinctly important through

the establishment and maintenance of the human gut microbiome. Composed of an

estimated one hundred trillion microbes, this microniche plays important roles in digestion,

immune function and nutrient production.141 The human infant is born with a sterile

intestine and experiences rapid bacterial colonization during birth, breastfeeding, and solid

food supplementation; these early exposures shape lifelong patterns of gut

colonization.141-143 Humans, like most mammals, are colonized by relatively few bacterial

phyla, reflecting a long history of microbial niche stability likely associated with broad

dietary patterns.144,145 However, human populations tend to show excess phylotypic

diversity at the species and strain level145 and patterned diversity among families and local

communities.146 These patterns suggest that local environments and diets may result in the

development of distinct intestinal microbiomes in different human populations.

Since one important function of gut bacteria is the metabolism of indigestible

polysaccharides into simple sugars and short-chain fatty acids,141 the disruption of co-
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evolved mutualism between human populations and gut microbiota may be a contributing

factor to the increasing prevalence of chronic and degenerative diseases145 and risk of

obesity.147,148 Moreover, recent work suggests that high-fat diets may promote obeseogenic

bacterial communities in the gut, promoting inflammation, insulin resistance and

diabetes.149 These examples may point to a mismatch between humans and their recent

dietary environment, but they also highlight the dynamic and varied nature of gut

microbiomes, and the critical link between created dietary niches and human metabolic

physiology.

New evolutionary frameworks for understanding diet

The above sections detail the various ways in which human dietary habits and resulting

metabolic states are deeply ingrained through various forms of environmental exposure and

social learning, well before birth and continually throughout early life. The result is that one

must differentiate when describing behavior that is inborn versus instinctive, imprinted

versus genomic, unconscious versus hard-wired. Whilst an enormous amount of insight is

gained from reconstructing hunter-gatherer subsistence and nutrition in deep antiquity, we

argue that using these data as foundations of an evolutionary paradigm aiming to inform

modern nutrition interventions is insufficient for generating meaningful and sustainable

policies. Moreover, the use of Paleolithic subsistence patterns as a de facto standard up to

which all subsequent human subsistence should be measured is impractical for a number of

reasons.

Arguments that the evolutionary discordance hypothesis provides the “unifying hypothesis

on which to build a dietary strategy for prevention”39: 1 needed to fix modern nutrition crises

advocate for one overarching strategy based on one, or a relative few,32 set(s) of broad

genetic and behavioral foundations. These arguments assume that human diets are primarily

influenced by genetic traits selected for Paleolithic living, when, instead, much of human

subsistence is guided by behavioral flexibility contingent on local ecologies and social

learning, and therefore detached from a particular evolutionary environment. Adding to this

counterpoint are the valid critiques that its focus on meat and fish as the desirable proteins32

is ecologically unsustainable given the current and projected global human

population,150,151 and that an emphasis on lean meat, preferably from free-ranged or wild

animals, and vegetables is economically unviable for many of the populations that

experience the highest rates of obesity and metabolic disease.15 Therefore, the Paleolithic

diet, when taken as the best option for optimal metabolic health, results in a limited view of

both human dietary behavior and the modern structural barriers limiting subsistence choice

in the most high-risk populations.

Potential Nutrition Interventions

Basing policies and interventions on an evolutionary framing requires expanding the list of

evolved traits and mechanisms that shape the bulk of human eating behavior. Here we

provide several illustrative examples of ways in which a more developmental, mechanistic,

and behavioral perspective could provide effective strategies for intervention that do not rely

on an assumption of evolutionary discordance.
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1. Rethinking the Human Sweet Tooth

The assumption that humans evolved an affinity for sweet and fatty tastes that is highly

adaptive but mismatched to modern contexts might reasonably lead one to conclude that

unchecked consumption of sugary and high-fat foods is something of an inevitability.

However, a wider perspective focuses on the mechanisms of an affinity for sweet and fatty

tastes rather than ending the explanation with a discordant adaptation. Humans learn to like

sugar along with a host of other flavors in utero; moreover, sugars are associated with the

secretion of endogenous opiates that confer pleasurable sensations and activate reward

pathways in the brain. Similarly, the consumption of fatty foods stimulates the production of

endogenous cannabinoids that create comparable reward effects.100 In modern environments

characterized by cheap, readily available sugary and fatty foods,12,15 and psychosocial stress

that is both uniquely human152 and differentially endured,153 an unchecked consumption of

sugars and high-fat foods could more reasonably reflect socially learned and socially

reinforced behaviors than an adaptation gone awry.117,154

Intervention strategies based on this broader perspective would not assume that removal of

sugars, other simple carbohydrates, and excessive saturated fats from the diet is necessary

because they trigger a mismatch born of adaptation. Instead, interventions could focus on

manipulating the intrauterine flavor-scape or early life diets to impart an affinity to a broader

range of taste stimuli unrelated to sweet tastes. Plant-based spices and aromatics can play a

significant role in positive associations with foods based on flavor & olfactory properties;

these associations would be unrelated to fat or caloric content, and could therefore make

them useful tools in shaping children’s preferences for plant-rich diets. Importantly,

interventions aimed at preventing metabolic diseases could also benefit from focusing as

strongly on reducing sources of psychosocial stress as on controlling food intake.

2. Broadening the Genetic Scope

Moving away from a paradigm of Paleolithic dietary profiles might open up more options

for healthy diet recommendations based on understandings of Neolithic adaptations as well.

For example, decades of research have failed to identify the hypothetical “thrifty gene” first

suggested by Neel16 as a pre-agricultural adaptation responsible for high rates of diabetes

among Native American and aboriginal Australian populations. This lack of evidence has

also prompted criticism that the emphasis on genetic mechanisms also ignores social and

economic barriers to improved nutrition as the likelier culprits.155 However, recognizing

that aboriginal populations may not have a “thrifty gene,” but instead have fewer amylase

copy number variants, might permit focused dietary interventions based on genetic

screening for the absence of a Neolithic adaptation rather than the presence of a Paleolithic

one. Differences in salivary amylase concentrations might also influence the composition of

digested food that enters the intestinal tract in ways that could promote the growth of

obeseogenic bacterial communities in contexts of starch-heavy diets.

3. Harnessing the Human Microbiomes

Attending to the central role of constructed microniches within the human body, and their

interaction with aspects of human metabolism such as the amylase concentration example

above, may prove more feasible than only attending to high-fat diets alone. Shifting the
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focus of inquiry in this manner could lead to the development of prebiotic and probiotic

supplements or diets that are specifically tailored to promote particular species of beneficial

microflora156 as part of long-term diet modification. These broader perspectives, still rooted

in evolutionary medicine but equally focused on physiological mechanisms and behavioral

flexibility, provide loci for intervention that do not focus on hunter-gatherer diets heavy in

lean meats or seafood, the latter of which is becoming a particularly unsustainable form of

subsistence.157 The rising interest in therapeutic use of probiotics to address obesity158 and

related metabolic diseases would thus benefit from this broader evolutionary framework.

Conclusions

Almost three decades after the evolutionary discordance hypothesis was put forth,

worldwide obesity, heart disease, and T2DM statistics continue to skyrocket; these trends do

not suggest that this hypothesis is incorrect, but rather incomplete in relying primarily on

genetic understandings of human diet and the assumption of Paleolithic life as the human

evolutionary standard. The ability to use evolutionary medicine in multiple applications for

diet in addition to the evolutionary discordance hypothesis by itself would therefore open up

new avenues for intervention in populations whose dietary options are already constrained

by structural and economic barriers to resources like fresh produce and lean protein.10

Certainly an acknowledgement of both the long-standing diversity and socially learned

mechanisms in human diets shifts the focus away from the “lifestyle factors” of individuals

living at odds from their evolutionary past. It does not challenge research showing that a diet

rich in plant materials and lean proteins is beneficial to health; it simply questions the extent

to which this diet is unequivocally Paleolithic in nature159, and the extent to which

consuming this diet is somehow hard-wired in human genes. It also underscores the

importance of increasing nutrition interventions for pregnant women and children, and

broadening the variables that are manipulated in these interventions, as a long-term

investment in reducing the heavy burden of diet-related health care costs.99 Such emphasis

on flexibility and social context would serve as an important counter-point to the blanket

prescription of an “evolutionarily appropriate diet.”

The evolutionary discordance hypothesis has provided a valuable theoretical framework for

studying human diet in an evolutionary context, but its focus on a single model of human

ancestral diets, and its assumption that cultural evolution outpacing genetic evolution is a

fundamental cause of disease in the modern world, have resulted in an incomplete view of

the flexibility and variability in human dietary behavior and health in the past and present. A

growing body of scholarly data suggests that no such thing as an evolved human diet exists,

and that popular notions of returning to a diet that is more true to human nature are

inconsistent with the ways in which humans metabolisms and eating habits develop. Much

of the story of human evolution is about hominin populations learning about and

manipulating resources in their environment to more effectively meet their nutritional needs

and hedonic wants; understanding the versatile and generative nature of human diet

evolution provides a more nuanced and productive avenue to promoting optimal nutrition. It

also provides new avenues for practical intervention and long-term improvements in

nutrition among at-risk populations, a necessary step for not only comprehending this
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fundamental aspect of human behavior, but more comprehensively applying it to modern

settings.
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Figure 1.
Schematic representation of the areas of the brain that mediate aspects of feeding behavior

in primates, including humans. Homeostatic mechanisms center on maintaining energy

balance before, during, and following food consumption; Hedonic mechanisms center on the

perceived liking or disliking of those consumed food resources and their effects on

influencing future feeding behavior.
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