
Nucleic Acids Research

The diagonal-traverse homology search algorithm for locating similarities between two sequences

C.Thomas White, Stephen C.Hardies, Clyde A.Hutchison III and Marshall H.Edgell

Department of Microbiology and Immunology, Curriculum in Genetics, Program in Molecular
Biology and Biotechnology, University of North Carolina, Chapel Hill, NC 27514, USA

Received 12 August 1983

ABSTRACT
We present a fast computer algorithm for finding homology

between two DNA sequences. It generates a two-dimensional
display in which a diagonal string of dots represents a stretch
of homology between the two sequences. Our algorithm performs
the search very rapidly, and has no internal data storage
requirement except for the sequences themselves. These
characteristics make it particularly well suited for execution on
microcomputers. Without slowing execution, the matching
criterion can be that a specified fraction of contiguous bases
must be identical. Even with gapped sequences, we have found
large search windows to be surprisingly good for detecting poor
homologies with nearly complete background suppression. A
diagonal search pattern is used that reports the finds in a
compact and logically ordered form. A simple and rapid plotting
algorithm for unsophisticated printers is also reported.

INTRODUCTION

A frequent problem in molecular biology is to determine
whether two different sequences are related. The sequences in
question may be experimentally determined amino acid sequences or

nucleotide sequences. Two-dimensional plots representing all of
the homologous segments between two sequences have appeared in

the literature under a variety of names (1-10). We will refer to

them as "dotplots". The horizontal and vertical axes of the plot
correspond to positions within the respective sequences. Each
(x,y) point within the plot is marked with a dot if the
corresponding x-th position of one sequence matches the y-th
position of the other. Extended homologies between the two
sequences will appear as a diagonal string of dots.

The wealth of recently acquired DNA sequence data provides
numerous applications for computerized comparison techniques.
Dotplots can be used to address questions of evolutionary

) R L Press Limited, Oxford, England.

Volume 12 Number 1 1984

751

Nucleic Acids Research

relationships, rearrangement, and movement of sequence through

gene conversion among related genes (3,12-16). Dotplots promote

discovery because their visual form interacts well with the

scientist's intuition. They are also useful in mounting

preliminary surveys over large amounts of sequence because of

their algorithmic speed and simplicity.

A computer algorithm to generate dotplots for analyzing the

relationships among cytochrome c amino acid sequences was written

by Gibbs and McIntyre (9) and also applied to nucleotide

sequences. It used the simplest possible criterion for

displaying a dot, which is that the two individually compared

amino acids or nucleotides be identical. This strategy produces

a considerable background of chance inatches, particularly for

nucleotide data. McLachlan (2) described the suppression of this

background by requiring that individual dots correspond to a

short "span" of homology to merit display. This strategy of

comparing multiple nucleotides or amino acid residues per printed
dot is common to subsequent programs (3-10). We will refer to

the size of the region compared for a single dot as a "window",
and to the number of individual matches required within the

window for the dot to be printed as the "stringency".

Unfortunately, the use of windows to suppress background has

often led to significantly increased execution time.
When sequences diverge, they accumulate small insertions and

deletions as well as substitutions. Therefore, alignment of the

sequences to reveal their evolutionary relationships must include

gap positions; places where one sequence has no homolog to the

other. Discovering where to put the gaps can be complicated, and

mathematically defined alignment algorithms have been developed

for this purpose (17-19). In dotplots, gaps cause the diagonal

string of dots to break and shift to a new diagonal. When a gap

falls in a search window, it may prevent detection of homology.

One finding in this paper is that gaps caused less of a problem

with very large search windows than we had expected.

Because we wanted to use our dotplotting system on a

microcomputer, we had to design the software to compensate for

the limitations of the hardware. The programs had to be very

fast, but still effectively suppress noise. It had to not

752

Nucleic Acids Research

require large amounts of memory devoted to storing arrays. We

also wanted it to produce plots without requiring sophisticated

graphics equipment. To meet these ends, we devised a search

algorithm, most similar to that used by Staden (10), which

allowed a simple unweighted window and variable stringency
withiout any penalty in execution time. We rearranged the typical
left to right search pattern to one that traverses the full

length of each diagonal in order. This allows direct reporting

of the results in a tabular form where the exact coordinates and

extents of homologies are obvious. We also designed a simple and

rapid plotting algorithm that rotates the plot by 45 degrees,

thereby producing good quality scaled plots with standard

printing equipment.

METHODS

Internal Data Representation.

If sl and s2 are each members of a sequence, the search
algorithm uses a boolean function MATCH(sl,s2) that evaluates to

<true> if the elements are considered to match. Otherwise,
MATCH(sl,s2) evaluates to <false>. In order to obtain a MATCH

function that executes rapidly and correctly matches ambiguous
positions, we first convert the internal representation of the

DNA sequence into a bit string. That is, 4 consecutive bits

represent AGCT such that 1000 is A, 0100 is G, 1100 is A or G,
etc. For a fast MATCH function, we then use the elementary
machine instruction that performs a logical AND.

Definition of the Intermediate Data Structure.

The results of the search program are defined both by what

is found and the order in which the finds are reported.

Preliminary Definitions. Consider sequence A to be indexed

by the integer x, such that 1 <= x <= length(A), and A[x] refers

to the x-th element of sequence A. Consider sequence B to be

similarly indexed by the integer y.

Definition: Part A. For the comparison of sequences A and B

consider a homology criterion to be given requiring M matches

within a window of W consecutive bases. (x,y) defines the

position of a matched window if and only if:

(1) x is in the range 1 to length(A)-W+l, and

753

Nucleic Acids Research

(2) y is in the range 1 to length(B)-W+l, and

(3) for i=0 to W-1,

MATCH(A[x+i],B[y+i]) is true at least M times.

Then the search program is confined to reporting all sets of

positive integers (X,Y), and only those sets, which meet the

following criteria.

(4) (X,Y) must be a matched window.

(5) There must not be a matched window with coordinates

(X-l,Y-l).

Each successful report is in the form (X,Y,L,N) where:

(6) L is the maximum length such that each

window (X+i,Y+i) in the range i=0 to L-W

is a matched window.
(7) N is the total number of times that for i=0 to L-1,

MATCH(A[X+i],B[Y+i]) is true.

Definition: Part B. The reported sets are ordered such that

for any two of them, (Xl,Yl,Ll,Nl) precedes (X2,Y2,L2,N2) if and

only if:

either (Xl-Yl > X2-Y2),

or (Xl-Yl = X2-Y2, and Xl < X2)

Part A of the above definition requires that all segments

continuously meeting the M out of W match criteria are to be

reported, so long as they are not themselves contained within a

larger matching segment. The specification in Part B is given

with the expectation that the order can be taken advantage of by

modules processing this structure. Lines 2 and 3 above would

exclude finding homologies that cross the arbitrary end point of

circular sequences. To avoid that we first extend circular
sequences by a circular permutation equal to W-1.

RESULTS AND DISCUSSION

Advantages of the Diagonal-Traverse Homology Search Algorithm.
Increase in Speed. The driving motivation behind the

development of this algorithm was a desire to reduce the time

required to perform homology searches and produce dotplot maps.

This motivation was instilled in us by the desire to use

microcomputers that run orders of magnitude slower than a typical

754

Nucleic Acids Research

mainframe. We achieved a great enough speed that even the
smallest and slowest microcomputers can be used to compare

sequences whose lengths are in the tens of kilobases. A four
megahertz Z-80-based machine in our lab searched two

five-kilobase sequences in under twenty-five minutes to produce
the largest dotplots in this paper. The smaller ones were

produced in a under a minute.
A number of things were done to keep the execution time of

the search down. We chose a noise suppression system that uses a
simple unweighted window of variable length and a variable
stringency, and does not cause an increase in execution time with
increased window size. This same strategy was also used in the
design of a program described by Staden (10). As a result, the
search time is proportional only to the product of the length of
the two sequences and is independent of the length of the search
window. We reordered the search and simplified the method of

reporting the results to reduce the number of operations required
in the elemental comparison operation. This part of the

algorithm determines the overall execution time because the
program spends most of its time repetitively executing it. Our
algorithm executes only 30 machine instructions as it loops
through the elemental compare operation, resulting in an

execution time on a 4 megahertz machine of the product of the
sequence lengths times 0.6 x 10-6 min.

The Utility of Large Search Windows. With each search being
so economical to perform, it became much easier to compare the

results of many searches of the same sequences with different
search stringencies. We had previously found with a slower

program (12) that a good strategy for discovering homologies
between highly diverged sequences is to use low stringency
coupled with large search windows. However, one expects large
windows to eventually run into problems because of gaps. A

rather surprising discovery we have made with our faster
algorithm is that windows even larger than 50 base pairs work

well to distinguish poor homology from background. In fact,
background can be nearly eliminated without losing homology
between distantly related sequences (Figures 1 and 2.)

SV40 to polyoma comparisons have been used as a benchmark

755

Nucleic Acids Research

POLYOMA
early region late region

-2

-3 (1

-4

-5
I I

2 3 4 5
40/70

POLYOMA
early region late region

* .:., ..:

2 3 4 5
14/20

Figure 1. Dotplots of SV40 versus polyoma genomes with large
and small windows. The sequences are 5' to 3' from left to
right and top to bottom, respectively. Dots around the border
mark off increments of 200 base pairs.

for search algorithms with search windows of 5 (3) or 40 (9) in

length. Figure 1 shows two dotplots each comparing the nucleic

acid sequences of SV40 (20) on the vertical axis versus polyoma

5' 3'
5' ;,* ; i

HUMAN

vs.
LEMUR ; *
75 3% ..'.i

HUMAN
vs.

MOUSE
63%

8/10

.vt's'; > ss,- vN

8/10

..

L ' '

19/30

s..I

26/60

Figure 2. Dotplots of beta-globin IVS 2 sequences with 3
different sized windows. The genes are human delta, lemur
pseudo delta, and mouse beta h2. Dots around the border mark
off increments of 50 base pairs. The indicated percent homologies
were calculated from aligned sequences and without counting qap
positions.

756

0

C,) -3

-4

-5

c %.2 , %
o'.: %0 %

21 I

0
0

r %

.2 : -%
CP
0:
2: %
0

Nucleic Acids Research

virus (21) on the horizontal axis. The polyoma sequence was

complemented relative to the published sequence to put it in the
same orientation as the SV40 sequence. On the dotplot on the

left, each line segment represents a match of at least forty

identical bases within a region seventy bases in length. The

dotplot on the right differs only in that it displays regions of

fourteen matching bases within segments twenty bases in length.

Several dotplots were produced using each window size, but with

different stringencies (data not shown). The results pictured
(Figure 1) were judged to be the best stringencies for each

window size. Clearly the larger window size has given less

background, and gaps have not yet become a serious problem.
Also, although the search time for any window size is the same,

the plotting time increases proportionally to the number of

finds. In other words, the overall execution time actually goes

down for larger windows.

We also asked if large window sizes were beneficial for

matching noncoding sequences where the ratio of gaps to base

changes is higher (Figure 2). The nucleic acids shown are from

the second intervening sequence (IVS 2) of delta-like beta-globin
genes of three mammalian species (14,16,22,23). IVS 2 between

human and lemur exhibits about 75% homology, while only 63% of

the residues are the same for this region between humans and

mice. These percent homologies were calculated from the aligned

sequences ignoring gap positions. Again the larger search

windows are able to detect either level of homology with nearly

complete suppression of noise. Again, the best stringency for a

given window size was determined empirically.

A number of useful features about dotplots are illustrated

by the IVS 2 comparisons (Figure 2). In each case the

significance of the major finds can be judged intuitively

relative to the random noise elsewhere on the plot. Since all

possible alignments are represented somewhere on the plot, the

possibility of alternate good alignments can be discerned. For

example, the shift of the major string of finds near the bottom

right of each of the plots in Figure 2 represents the fact that

the lemur and mouse genes each are missing sequences present in

human delta at this site. Particularly in the shorter window

757

Nucleic Acids Research

searches, it can be seen that there are multiple alternative

alignments in this region. Inspection of the sequences revealed

that the length change could best be described as expansion or

contraction of a simple internally repetitive sequence near the

3' end of delta-like IVS 2's (16). The more dense box of

background matches in the upper left of each plot is because the

sequences are very pyrimidine rich in that region. The

statistics for chance matching are altered in regions of

unbalanced base composition. The appearance of dense blocks or

bands of background matches on the dotplot warns the investigator
that the alignment through that region is necessarily of lower

confidence. Although we find the cleaner results with large
windows useful for many purposes, examination with smaller

windows and less than optimal stringencies are often valuable for

discovering features of the kind illustrated above.

Description of the Diagonal-Traverse Algorithm.
The Order of Homology Discoveries. A feature of the

diagonal-traverse search algorithm is that homologous segments

are discovered and ordered by diagonals rather than by horizontal
position. This order is exploited both to radically compact the

information flow out of this step, and to simplify most kinds of

downstream analysis including the plotting. Each diagonal line

segment is reported as a position, length, and strength of match,

rather than as a string of individually defined dots.

With respect to their arrangement on a dotplot (Figure 3,

Top), the search is performed along each 5' to 3' diagonal
(directed at -45 degrees), taken in order from the short diagonal
in the upper right corner of the plot to the one in the lower

left. The segments in Figure 3 are numbered with respect to this

order of discovery. This differs from all other programs we have

seen in the literature, in that they progress in horizontal rows

from left to right, ordered from top to bottom.

The middle portion of Figure 3 represents a snap-shot of the

state of the search in progression along the diagonal including
segments 8 and 9. All segments found along any such diagonal
have in common the same global alignment of the two sequences.

The portion of each sequence which includes this region is

displayed, demonstrating the alignment in effect for this

758

Nucleic Acids Research

5'

,8h3

3' _

BLOWUP OF
SEGMENTS 8 and 9

3'
IVS 1
HUMAN 8
GLOB IN

vs
MOUSE 8h3
7/9

8] 9
Il _

LEFT EDGE OF WINDOW

Figure 3. Demonstration of the diagonal-traverse search
algorithm. The finds are numbered on the dotplot at the top in
the order they were encountered by the search routine. The
bracket and arrow show the position of the search window at the
instant illustrated below. Segments 8 and 9 are shown reoriented
horizontally below the dotplot and aligned with the sequence
being searched. During the next search cycle the window will
step forward one base on both sequences and recalculate the
enclosed homology by dropping one basepair and adding one
basepair. Because the homology will still be over the threshold,
the extra length will be appended to the output record
corresponding to segment 9. The graph at the bottom shows the
number of matches found at each position as this particular
diagonal was traversed. An output record was generated each time
the number of matches climbed over the threshold and then fell
back below it. Segments 8 and 9 are both actually composed of 2
overlapping segments. The sequences are IVS 1 from human
beta-globin (24) and mouse beta h3 (25).

diagonal.
The search window, at the moment captured by the snap-shot,

is denoted by the brackets covering a portion of segment 9.

Since seven of the nine positions compared in this window are

759

I

\ Nk28 5 4

>\ 16

Nucleic Acids Research

equivalent, the homology criterion is satisfied at this point.
The next window to be evaluated is that which is one to the right
of the current one, and therefore requires no realignment of the
sequences. Its match total can be computed from the current

total by subtracting the contribution of the left-most position
and adding the contribution of the first position to the right of

the current window. Since the other positions inside the window

are not reevaluated, the speed of the search is independent of

window size and stringency.
The graph in Figure 3 plots the match total of each window

in the neighborhood versus the sequence position corresponding to

its left end. Where the total first exceeds the threshold line
marked on the graph, the sequence within that window, by

definition, satisfies the homology criterion. A matching segment
will be reported with the coordinates of this initial matching
window and a length accounting for the number of successive

adjacent windows that also exceed the threshold. This is the

basis for the information compaction previously mentioned. As a

further complication, it may be noted that the line segments

marked 8 and 9 (Figure 3) are each actually composed of two

overlapping segments.

Organization of the Program System.

We considered the job of producing dotplots sufficiently

complex to merit breaking the task into smaller pieces.

Important advantages are gained in the design of such a

programming task by its conceptualization as an interrelated set

of smaller tasks. To the extent that these smaller tasks really

do different things, they may be developed independently from one

another and deserve the attribute of being called mutually

"orthogonal". The smaller tasks are easier to write and debug;

they are easier to modify and recombine with other tasks for

future uses; they are easier to understand and document; and
their use of machine resources is easier to define and optimize.

Division into orthogonal tasks is considered good programming
practice in any system, and it proved to be particularly useful

for making maximum use of our microcomputer's resources.

Our dotplotting system includes 3 free-standing programs

(Figure 4). The diagonal-traverse search program has the

760

Nucleic Acids Research

DIAGONAL-TRAV
SEARCH PROGRAMJ

/SEA V
fis

SUMMARY V "/' OTHER'"
(REPORT) PLOT ANALYSIS I

PROGRAM / t PROGRAM J PROGRAMS,

A_K- -B

Figure 4. Organization of the diagonal-traverse dotplotting
system.

responsibility of loading the sequences to be searched into

memory, performing the search, and saving the results on the mass

storage device. Alternatively, the intermediate file of search

finds may be replaced by a pipe where multi-programming is

available. The display and analysis programs are not resident in

memory during the search, thus increasing the amount of sequence

that can be handled by the microcomputer. This division of labor

also means that the printing device need not be present during

the most time consuming part of the analysis. This is an

important benefit in an environment such as ours where a single

printer must service a number of instruments. The intermediate

file of search finds can then be utilized for several kinds of

subsequent analyses. In our system, a tabular listing can be

made for the purpose of extracting the exact coordinates of

matches; and, of course, the plotting program itself can be

used. The dashed portion of Figure 4 represents other possible

uses of the intermediate file that we can envision. It might be

subjected to a different kind of noise filter, analyzed by

statistical routines, or used to guide an automated alignment

routine.

761

Nucleic Acids Research

The Intermediate Data Structure.

The data structure labeled "SEARCH FINDS" in Figure 4 is a
critical feature of our design. In traditional dotplot searches
this construct can become very large. Partly as a result of
this, other implementations have avoided producing this structure
as a distinct file. Instead they have incorporated both the

search and plotting functions into one program. Our intermediate
files tend to be short for two reasons. One is that the

individual records have a naturally compact structure. The other
is that because we are getting such good noise suppression with

the larger windows, we seldom make plots containing large numbers
of finds.

Another feature of this structure is that matching segments
along the same diagonal (those found under the same global
alignment) are reported one after the other, and those on nearby
diagonals are found just before or afterwards. This order is

well suited for most kinds of further analysis, and may be

exploited, as explained later, in the production of dotplots. The

order of this structure is a reflection of the order in which the
homology search is performed, and thus requires no intermediate

sorting step.

Analysis of the Intermediate Data Structure.

The intermediate file of search finds can be directly
examined to extract the exact coordinates of a particular
matching segment for further study. Table I shows the contents

of the intermediate file generated during the construction of
Figure 3. The coordinates X and Y, the length of the find, and
the number of bases matching are reported directly as produced by
the search routine. The diagonal number is equal to X-Y and

uniquely identifies the diagonal on the plot on which the segment
was found. Relative phase is simply the the diagonal number of
the previous find minus the diagonal number of the current find.
Because of the order of the finds in the file, matches that can
be put together into a single alignment will be grouped
together. They will appear as a cluster of finds with relative
phase equal to 0 or small numbers. Our listing program can limit
the printout, if necessary, to finds with a particular range of

coordinates or lengths.

762

Nucleic Acids Research

Table I: Intermediate file of search finds for Figure 3.

X Y Length Matches Diagonal # Rel. Phase

79 1 9 7 78 -
68 23 9 7 45 33

114 75 10 7 39 6
68 31 9 7 37 2
60 26 9 7 34 3

116 82 9 7 34 0
80 62 9 7 18 16
85 67 12 9 18 0
90 72 13 11 18 0
96 78 12 9 18 0
39 29 9 7 11 7
42 31 9 7 11 0
52 41 9 7 11 0
54 43 18 14 11 0
74 74 9 7 0 11
40 67 10 7 -27 27

Plotting Techniques.

Rotating the Plot Display. A key feature of the program

which performs the plotting function is that the picture is
rotated forty-five degrees counter-clockwise from the traditional
perspective. While this may look a little strange as it is being
generated, there are several justifications for doing it this
way. Most basically, this is the order in which the homologous

segment finds are reported out of the search program. We have
been using as a plotting device a printer which can only reliably

roll the page forward. This being the case, generating the plot

without the rotation would require an intermediate step to

reorder the data.
The rotation greatly improves the ability to minimize the

motion (and hence time) required to produce the plot on many

devices (including ours.) This will be the case for all plotting
devices where line segments can not be drawn down a diagonal on

the page as easily as those drawn horizontally. This is

significant to the extent that the plot contains sets of

homologous segments nearly in global alignment with one another.

Such segments are, after rotation, displayed one after the other

across the page or screen.

Another advantage of rotating the plot is seen on all

discrete plotting devices, i.e., those that generate the image

763

Nucleic Acids Research

Figure 5. A dotplot produced by a non-graphics printer.
Sequence A is polyoma virus; Sequence B is SV40. The stringency
is 40/70. The plot is oriented as it was during printing. The
position and length of lines are calculated as follows. S is a
scaling factor such that S(length(A)+length(B)) = the available
width of the plotting area. Horizontal position (h) = S(X+Y).
Vertical position (v) = S(length(A)-X+Y). Plotted line length =
2S times the reported line length.

from a set of dots. For this class of plotting device, line

segments represented diagonally on the plot often appear as a

jagged line. This is undesirable since because gaps in the

sequence alignment produce the same effect. Our routine

eliminates this problem by lining up the diagonals with the

horizontal axis of the printer.

Displaying Entire Segments. Line segments are drawn on our

plots to represent the entire length of the homologous segments,

not just their central element. We feel this representation is

more accurate and yields more easily recognized homology

features. These segments are produced as a continuous line (to

the maximum horizontal resolution) independently of the number of

positions within the corresponding sequence segments. Our

ability to generate these segments is made much easier (again, on

most devices) due to the rotational transformation.
Scaling. The size of the plot may be varied independently

of the length of the sequences represented or the size of the

764

Nucleic Acids Research

physical plotting surface. Very large plots may be generated in

strips. For those plots intended for publication we have found

that by scaling the dimensions down to the approximate final

size, we avoid the problem of reducing line widths below that

easily seen within figures. Tic marks are generated around the

boundary to give a frame of reference sufficient to locate the

coordinates of the interior segments.

Plotting on Non-graphics Equipment. Most of the dotplots in

this paper were generated on a printer with 1/120th inch

horizontal and 1/60th inch vertical resolution. Figure 5 shows

the same polyoma/SV40 comparison as in Figure 1 printed at 1/10

inch horizontal and 1/6 inch vertical resolution, totally without

the use of graphics capabilities. The plot is shown oriented as

it was during printing. Even though the resolution is

considerably less, the same major features are readily apparent.

Implementation.

It has been our intention to define the algorithms so as to

make it easy for programmers to rewrite them for use in systems

much different than ours. Our own programs will be made

available upon request, probably through the Unix network. (Unix
is a trademark of Bell Laboratories.) They are applicable to a

Z-80 based CP/M system. (CP/M is a trademark of Digital

Research.) The sequence files are generated with a sequence

editor written in Pascal/Z, named SED. The search program, named

DIAGSRCH, was written in Microsoft Fortran and has the search

routine itself written in assembly language. The listing

program, DIAGLIST, is written in Fortran. The plotter program,

DIAGPLOT, is written in the language C to drive a DIABLO 1620

printer in graphics mode. The plot in Figure 5 was made with a

small demonstration program written in BASIC, called CRUDEPLOT.

ACKNOWLEDGEMENTS

This research was supported by Public Health Service Grants

AI08998 and GM21313 from the National Institutes of Health.

S.C.H was supported by an NIH fellowship.

REFERENCES
1. Gibbs, A.J. and McIntyre, G.A. (1970) Eur. J. Biochem. 16,

1-11.
2. McLachlan, A.D. (1971) J. Mol. Biol. 61, 409-424.

765-

Nucleic Acids Research

3. Maizel, J.V. Jr. and Lenk, R.P. (1981) Proc. Nat. Acad. Sci.
USA 78, 7665-7669.

4. Steinmetz, M., Frelinger, J.G., Fisher, D., Hunkapiller, T.,
Pereira, D., Weissman, S.M., Uehara, H., Nathenson, S. and
Hood, L. (1981) Cell 24, 125-134.

5. Fristensky, B., Lis, J. and Wu, R. (1982) Nucl. Acids Res.
10, 6451-6463.

6. Harr, R., Hagblom, P., and Gustafsson (1982) Nucl. Acids
Res. 10, 365-374.

7. Jagadeeswaran, P. and McGuire, P.M. Jr. (1982) Nucl. Acids
Res. 10, 433-447.

8. Novotny, J. (1982) Nucl. Acids Res. 10, 127-131.
9. Pustell, J. and Kafatos, F.C. (1982). Nucl. Acids Res. 10,

4765-4782.
10. Staden, R. (1982) Nucl. Acids Res. 10, 2951-2961.
11. Konkel, D.A., Maizel, J.V. Jr. and Leder, P. (1979) Cell 18,

865-873.
12. Edgell, M.H., Weaver, S., Jahn, C.L., Padgett, R.W.,

Phillips, S.J., Voliva, C.F., Comer, M.B., Hardies, S.C.,
Haigwood, N.L., Langley, C.H., Racine, R.R. and Hutchison,
C.A. III (1981) in Organization and Expression of Globin
Genes, Stamatoyannopoulos, G. and Nienhius, A.W. Eds.,
pp.69-88, Alan R. Liss, Inc., New York.

13. Max, E.E., Maizel, J.V. Jr. and Leder, P. (1981). J. Biol.
Chem. 256, 5116-5120.

14. Jeffreys, A.J., Barrie, P.A., Harris, S., Fawcett, D.H.,
Nugent, Z.J. and Boyd, A.C. (1982) J. Mol. Biol. 156,
487-503.

15. Moschonas, N., de Boer, E. and Flavell, R.A. (1982) Nucl.
Acids Res. 10, 2109-2120.

16. Hardies, S.C., Edgell, M.H., and Hutchison, C.A. III (1983)
submitted for publication.

17. Fitch, W.M. (1969) Biochemical Genetics 3, 99-108.
18. Needlemann, S.B. and Wunsch, C.D. (1970) J. Mol. Biol. 48,

443-4 53.
19. Fitch, W.M. and Smith, T.F. (1983) Proc. Nat. Acad. Sci. USA

80, 1382-1386.
20. Reddy, V.B., Thimmappaya, B., Dhar, R., Subramanian, K.N.,

Zain, B.S., Pan , J., Ghosh, P.K., Celma, M.L. and Weissman,
S.M. (1978) Science 200, 494-502.

21. Soeda, E., Arrand, J.R., Smolar, N., Walsh, J.E. and
Griffin, B.E. (1980) Nature 283, 445-453.

22. Spritz, R.A., DeRiel, J.K., Forget, B.G. and Weissman, S.M.
(1980) Cell 21, 639-646

23. Phillips, S.J., Hardies, S.C., Jahn, C.L., Edgell, M.H. and
Hutchison, C.A. III (1983) submitted for publication.

24. Lawn, R.M., Efstratiadis, A., O'Connell, C. and Maniatis, T.
(1980) Cell 21, 647-651.

25. Hutchison, C.A. III, manuscript in preparation.

766

