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Abstract

Quantitative estimates of cerebral metabolic rate of oxygen utilization using magnetic resonance

imaging can have profound implications for the understanding of brain metabolic activity as well

as the investigation of cerebrovascular disease. In this study, five normal volunteers were studied.

All images were acquired on a Siemens 1.5 T scanner (Siemens Medical Systems Inc, Erlangen,

Germany). Cerebral blood flow (CBF) was obtained in vivo with a dynamic imaging approach and

the acquired images were post-processed with the singular value decomposition method (SVD). In

addition, a multi-echo gradient echo/spin echo sequence was employed to provide MR estimates

of oxygen extraction fraction (MR_OEF) in vivo. Subsequently, an absolute measure of MR

cerebral metabolic rate of oxygen utilization (MR_CMRO2) was obtained in all subjects by taking

the product of CBF and MR_OEF. A mean MR_CMRO2 of 28.94 ± 3.26 ml/min/100 g and 12.57

± 3.11 ml/min/100 g was obtained for gray matter and white matter, respectively, suggesting that

the gray matter utilizes more oxygen than white matter under normal physiological conditions.

These results yield a gray matter to white matter CMRO2 ratio of 2.37 ± 0.37, which is

comparable to the reported values in the literature. More studies are needed to further improve on

the accuracy as well as shortening the required data acquisition time so that the proposed

approaches can be utilized in a routine clinical setting.
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INTRODUCTION

When brain tissue is under an ischemic insult resulting from a reduction of cerebral blood

flow (CBF), an increase in oxygen extraction fraction (OEF) normally occurs to maintain

normal neuronal function. Despite the compromised CBF, the ischemic tissues can
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potentially remain viable for a long period of time as long as OEF does not reach its

maximum available level. Conversely, when the maximum OEF is reached, the inability to

maintain normal neuronal function can trigger a cascade of cellular events, which could

eventually lead to cell death. Therefore, while CBF is a good indicator for oxygen delivery,

CBF by itself does not precisely determine tissue viability. It has been suggested that the

balance between oxygen delivery and oxygen demand can more accurately depict tissue

viability under ischemic insults.1 Therefore, the ability to obtain quantitative estimates of

cerebral metabolic rate of oxygen utilization (CMRO2), which is usually defined as the

product of cerebral blood flow, oxygen extraction fraction and arterial oxygen content, can

be of critical importance for the investigation of cerebrovascular disorders.

To date, positron emission tomography (PET) has been the method of choice for obtaining

in vivo measurements of CMRO2. With a quantitative estimate of CBF and OEF, an absolute

measure of CMRO2 can be obtained in vivo.2 However, PET requires radioactive isotopes, is

invasive, is physician-intensive, and has certain risks. Furthermore, the required onsite

cyclotron for obtaining quantitative measures of CMRO2 has limited its accessibility to

major medical centers. Therefore, there is an increasing need to develop a non-invasive

imaging method that is able to provide similar physiological parameters as those available

via PET in a ubiquitous imaging modality such as magnetic resonance (MR) imaging.

In light of recent advances in MR imaging, it is now possible to not only obtain anatomical

information but also to provide physiological parameters with MRI. Specifically, many

investigators have demonstrated that changes of blood oxygen saturation cause alterations of

T2* and/or T2 in tissue and thus MR signal intensity.3,4 This phenomenon, blood oxygen

level dependent (BOLD) contrast, has been widely utilized for the investigation of brain

activation during an external sensory and/or cognitive input.5,6 Intriguing results have been

reported, demonstrating its ability to reveal how the brain works. Nevertheless, the extent of

signal changes in BOLD contrast is multi-factorial and affected by many physiological

parameters such as CBF, cerebral blood volume (CBV), hematocrit, etc. Therefore,

approaches to provide a quantitative estimate of blood oxygen saturation in vivo are highly

desirable. With a signal model proposed by Yablonskiy and Haacke7 characterizing signal

dephasing induced by the presence of deoxyhemoglobin, we have recently demonstrated that

quantitative estimates of cerebral blood oxygen saturation can be obtained in vivo,8 which in

turn can provide a measure of OEF with MRI (MR_OEF). However, an absolute measure of

CMRO2 using MR is still lacking. In this paper, we will demonstrate that CBF and OEF

measurements can be obtained with a dynamic approach and through the BOLD effects,

respectively, which in turn yield an absolute measurement of CMRO2 (MR_CMRO2) in

normal volunteers.

MATERIALS AND METHODS

Imaging protocols

Five normal healthy subjects were recruited for this study and written informed consent was

obtained from all subjects. All images were acquired on a 1.5 T Vision whole body scanner

(Siemens Medical Inc., Erlangen, Germany) with a maximum gradient strength of 25 mT/m

and a ramp time of 0.6 ms. A standard circularly polarized head coil was used as the
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transmit/receive coil. A system shimming was carefully employed prior to the imaging

experiments. A two-dimensional multi-echo gradient echo/spin echo sequence (Fig. 1) was

used to acquire images, which were subsequently used to extract R2, R2′, cerebral venous

blood volume (λ) and MR_OEF.8 In total, 21 echoes with TEs ranging from 62.6 to 161.8

ms were acquired. All acquired echoes were odd echoes so that signal from flowing spins

such as blood could be minimized. The echo spacing between two adjacent echoes was 4.96

ms. The spin echo occurred at the eleventh echo with TE = 112.2 ms and 10 gradient echoes

were acquired symmetrically on each side of the spin echo. The imaging parameters were as

follows: TR = 1 s; field-of-view (FOV) = 160 × 256 mm2; a matrix size of 80 × 128

resulting in an inplane resolution of 2 × 2 mm2; slice thickness (TH) = 8 mm; three slices

with a gap of 4 mm; and eight acquisitions to improve the signal-to-noise ratio. The total

data acquisition time was 10 min and 40 s. In addition, a two-dimensional single-shot

gradient echo echo-planar imaging (EPI) sequence was used to obtain CBF and CBV maps.

The imaging parameters were as follows: TR = 2 s; TE = 54 ms; TH = 6 mm; in-plane

resolution = 1.8 × 1.1 mm2; and FA = 60°. This sequence was repeated 40 times while the

subjects were lying still inside the MR scanner. Contrast agent (0.1 mmol/kg, Gd-DTPA)

was administered intravenously at the completion of the fifth scan.

MR_OEF estimates

In order to obtain quantitative estimates of MR_OEF, images acquired by the multi-echo

gradient echo/spin echo sequence were employed. The images were first collapsed to a

matrix size of 64 × 64 prior to any data processing in order to improve signal-to-noise.

Detailed descriptions as to how an absolute measure of cerebral venous blood oxygen

saturation can be obtained have been given elsewhere.8 Only a short description is given

below.

With the theoretical model proposed by Yablonskiy and Haacke7 to characterize MR signal

dephasing phenomena in the static dephasing regime, a relationship between R2′ and

fractional cerebral venous blood oxygen saturation (CBOS) is given as follows:7

(1)

where γ is the gyromagnetic ratio, which is equal to 2.68 × 108 rad/s/T; Hct is the fractional

hematocrit; B0 is the static magnetic field strength; and Δχ0 is the susceptibility difference

between fully oxygenated and fully deoxygenated blood which has been measured to be

0.18 ppm per unit Hct.9 In addition, R2′ ( , where  and R2 = 1/T2) is the

relaxation rate, which is commonly employed to characterize the effects of local

susceptibilities and λ is the venous blood volume fraction. Both R2′ and λ can be estimated

from the images acquired by the multi-echo gradient echo/spin echo sequence (please see

Ref. 8 for details). In order to obtain cerebral blood oxygen saturation, Hct in eqn (1) was

replaced by cerebral Hct (cHct). This was done by assuming that the ratio between small

vessel to large vessel Hct is 0.85. Finally, assuming the arterial blood is fully oxygenated,

the cerebral oxygen extraction fraction (MR_OEF) can then be calculated as
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(2)

Measurements of cerebral hemodynamics and correction of large vessel effects

The images acquired by the two-dimensional single-shot EPI sequence were first converted

to the ΔR2* maps. Subsequently, an arterial input function was chosen from the M1 section

of the middle cerebral artery for each subject. A least squares exponential fitting was

employed to minimize the secondary circulation. Finally, singular value decomposition

(SVD) deconvolution as proposed by Ostergaard et al.10,11 was employed to obtain

estimates of cerebral hemodynamics including CBF, CBV, and mean transit time.

In our study, a gradient echo EPI sequence was utilized to obtain quantitative estimates of

CBF. The increased sensitivity to large vessels with a gradient echo EPI sequence may lead

to an overestimation of CBF when compared to a spin echo EPI sequence.12,13 Therefore, it

is of critical importance to minimize the effects of large vessels in MR-measured CBF prior

to the final calculation of MR_CMRO2. A simple thresholding method utilizing CBV maps

was employed to minimize the effects of large vessels in the CBF maps. A normalized CBV

histogram was first obtained from all five volunteers. As shown in Fig. 2, the majority of

CBV is less than 10%. Thus, a Gaussian curve fit was applied to the histogram within this

range. A CBV threshold of 6.8% was then chosen based on the full width half maximum

(FWHM). Subsequently, for pixels that had CBV values greater than the experimentally

derived CBV threshold, the corresponding pixels in the CBF maps were set to zero. A

closing operation, in which only nonzero neighboring pixels were averaged to yield the

replacing value, was carried out to remove the holes caused by the thresholding processes.

In addition, a low-pass filter was employed for CBF maps to achieve the same spatial

resolution as that in MR_OEF maps. Finally, a co-registration process between MR_OEF

and CBF was performed and MR_CMRO2 maps were then obtained as:

(3)

A region-of-interest (ROI) analysis was performed to obtain regional measurements of

MR_CMRO2. Four ROIs, one in the cortical gray matter and one in the subcortical white

matter regions of each hemisphere, were defined.

RESULTS

Plate 1 demonstrates the effects of large vessels in both CBV and CBF maps. Prominent

CBV (>7%) is observed at the cortical sulci, which coincides with the elevated CBF prior to

the application of CBV threshold. In contrast, substantial reductions in both CBV as well as

CBF are observed, particularly at the cortical sulci when the experimentally defined CBV

threshold is employed, minimizing the effects of large vessels on both the CBF and CBV

maps. Quantitative estimates of CBF for all subjects are summarized in Table 1. The group

mean and inter-subject variability of CBF are 67.51 ± 10.53 ml/min/100 g and 33.89 ± 5.11

ml/min/100 g for the gray matter and white matter, respectively, in good agreement with

those reported in the literature.14
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Representative examples of MR estimated CBF, MR_OEF, and MR_CMRO2 are shown in

Plate 2. A rather uniform OEF, on the order of 40%, across both hemispheres is observed,

suggesting that the brain extracts a similar amount of oxygen in both gray and white matter.

In contrast, a clear demarcation between gray and white matter in the MR_CMRO2 map is

observed, with gray matter exhibiting higher CMRO2 values than those in white matter.

Finally, regional measurements of MR_OEF and MR_CMRO2 are summarized in Tables 2

and 3 for all subjects, respectively. The group mean and inter-subject variability of

MR_OEF is 39.9 ± 2.7% for the whole brain. ROI GML and ROI GMR represent

MR_CMRO2 measurements obtained from ROIs defined in the gray matter while ROI

WML and ROI WMR summarize MR_CMRO2 measurements of the white matter in both

the left and right hemispheres, respectively. Notice the MR_CMRO2 is symmetric for both

hemispheres in all subjects. The group mean and inter-subject variability of MR_CMRO2

are 28.9 ± 3.3 ml/min/100 g and 12.6 ± 3.1 ml/min/100 g for gray matter and white matter,

respectively, yielding a gray matter to white matter CMRO2 ratio (GMcmro2/WMcmro2) of

2.37 ± 0.37. The group mean and inter-subject variability of MR_CMRO2 for the whole

brain is 20.8 ± 3.2 ml/min/100 g.

DISCUSSION

In order to obtain quantitative estimates of CMRO2, two physiological parameters, namely

CBF and OEF, are required. With a dynamic imaging approach and post-processed using the

SVD method as proposed by Ostergaard et al., quantitative estimates of CBF are obtained in

normal volunteers. The group mean and inter-subject variability of CBF are 67.5 ± 10.5

ml/min/100 g and 33.9 ± 5.1 ml/min/100 g in the gray matter and white matter, respectively,

in excellent agreement with the reported values in the literature.14 In addition, a multi-echo

gradient echo/spin echo sequence is employed to obtain absolute measures of MR_OEF.

Assuming that the arterial blood is fully saturated, a reasonable assumption for the normal

healthy subjects or patients without pulmonary diseases, our results suggest that cerebral

venous blood oxygen saturation is on the order of 60%. This finding is in excellent

agreement with our previously reported results8 in normal volunteers, demonstrating the

consistency of the proposed approach for obtaining MR_OEF. After obtaining both

physiological parameters independently, an absolute measure of MR_CMRO2 can be

obtained by multiplying the CBF with MR_OEF.

As shown in Plate 2, the MR_CMRO2 map reveals a clear contrast between gray matter and

white matter with gray matter having a higher CMRO2 value than that of white matter. A

GMcmro2/WMcmro2 ratio of 2.37 ± 0.37 is obtained from our study. With PET and an

oxygen-15 steady-state inhalation technique, Lammertsma et al.14 measured CMRO2 and

OEF in normal subjects and brain tumour and stroke patients. They reported a GMcmro2/

WMcmro2 ratio of 1.97 in normal subjects, which is slightly lower than that obtained from

our studies. When examining their results closely, our results exhibit a higher CBF,

particularly in the gray matter (67.5 ± 10.5 ml/min/100 g in our study vs 59 ± 8 ml/min/100

g in Lammertsma et al.’s PET study), leading to a higher CMRO2 in gray matter and hence

the elevated GMcmro2/WMcmro2 ratio. The observed higher CBF based on MR studies is

perhaps not surprising. With the improved spatial resolution, the partial volume effects are
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likely to be minimized in MR images. Therefore, a higher CBF value is commonly seen with

MR approaches when compared to that obtained using PET. Nevertheless, the GMcmro2/

WMcmro2 ratio obtained from our studies still compares favorably with that reported in the

literature.

Since a quantitative estimate of MR_CMRO2 is obtained with the proposed approach, it is

necessary to assess the accuracy of the MR measured CMRO2 with that reported in the

literature. One of the major discrepancies between MR measured CMRO2 and that obtained

via PET is the effects of arterial oxygen content. MR_CRMO2 is computed by simply taking

the product of CBF and OEF vs the product of CBF, OEF and arterial oxygen content

(CaO2) as normally been done in PET. Therefore, in order to compare our experimental

results to those obtained from other modalities, such as PET, CaO2 is needed. Under normal

physiological conditions, CaO2 ranges between 16 and 20 ml O2/100 ml blood. Therefore,

the MR measured CMRO2 ranges between 4.4 and 5.5 ml/100 g/min for gray matter and

2.16–2.70 for white matter with the normal CaO2, respectively. With PET and normal

volunteers, Ishii et al. demonstrated that the normal regional CMRO2 ranged between 3.40

and 4.36 ml/100 g/min at different cortical areas.15 In addition, with a global assessment of

CMRO2 using PET, Leblanc reported that the whole brain CMRO2 ranged between 3.29–

3.45 ml/100 g/min,16 vs our whole brain CMRO2 range, 3.29–4.12 ml/100 g/min. Clearly,

our estimates of CMRO2 are slightly higher than that obtained by PET. There are two

potential explanations for the observed higher MR_CMRO2. First, as mentioned previously,

the MR measured CBF appears to be higher than that obtained via PET, presumably due to

the improved spatial resolution and thus minimizing partial volume effects. As a result, a

higher CMRO2 is anticipated with the MR approach. Second, while a threshold approach

based on a CBV histogram is employed to minimize the effects of large vessels in the

estimates of CBF, some residual large vessel effects may still be present. Under normal

physiological conditions, CBV is known to be within 3–5% and 2–3% for gray and white

matter, respectively. However, the partial volume effect from large vessels causes an

elevated CBV in some cortical areas, seen as the tail on the right side of CBV histogram in

Fig. 2. The CBV distribution in gray matter and white matter can each be represented by a

Gaussian curve. Ideally, by excluding the CBV in the region which has large vessel effect,

the distribution of CBV for the whole brain can be approximated by the sum of two

Gaussian curves from gray and white matter. Since the mean of CBV from gray and white

matter are comparable and partial volume effect exists between the two tissues, a single

Gaussian curve can be utilized to approximate the CBV distribution for the whole brain.

This Gaussian curve is expected to have a mean roughly at 3.3% and a standard deviation of

1.5–2.0% based on the normal physiological range of CBV. Therefore, the upper limit of

CBV without large vessel effect for the whole brain can be roughly calculated as mean +3

standard deviations, which yields a range of 8–10%. In this study, a Gaussian curve fit was

performed on the CBV histogram ranging from 0 to 10% in an attempt to minimize the

effects of large vessels. The mean and standard deviation of the fitted Gaussian curve are

3.28 and 3.01%, respectively. Therefore, a CBV threshold of 6.8% is then determined based

on the FWHM of the fitted Gaussian curve. As shown in Plate 1, the application of the CBV

threshold successfully removes some of the large vessels in different cortical areas.

Nevertheless, similar to other thresholding based approaches in general, the predefined CBV
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threshold can work to some extent but might not be able to remove all the large vessel

effects, causing a potential elevation in the measures of CBF. Alternatively, a SE EPI

sequence, which has been suggested as having minimal effects from large vessels,12,13 can

be employed to obtain estimates of CBF. However, the compromised signal-to-noise ratio in

the estimates of CBF with SE EPI sequences has prevented us from utilizing this approach.

Although more studies will be needed to further investigate the effects of large vessels in the

estimates of MR_CMRO2, our preliminary results demonstrate that quantitative measures of

MR_CMRO2 can be obtained in vivo and results are within the physiological range as

reported via PET.

The approach for obtaining quantitative estimates of MR_OEF using a multi-echo gradient

echo/spin echo deserves further discussion. We have previously demonstrated that a

quantitative estimate of cerebral blood oxygen saturation can be obtained with this

approach.8 In eight healthy volunteers, a mean cerebral blood oxygen saturation of 58.7 ±

1.8% was obtained, indicating a MR_OEF of 41.3%. Consistent with our previously

reported results, a mean MR_OEF of 39.9 ± 2.7% was obtained from all subjects. While

these results are in good agreement with the results reported using different modalities such

as PET, several potential confounding factors inherent in the estimates of MR_OEF can

impose errors on the estimates of MR_CMRO2. Discussions as to how different

confounding factors might affect the accuracy of MR_OEF estimates have been addressed in

great detail in Ref. 8, only a brief discussion is given below for each potential confounding

factor. First, the signal model proposed by Yablonskiy and Haacke assumes that there are no

diffusion effects as well as no signal contributions from the blood.7 Given the normal ranges

of CBV as well as the field strength employed in our study, these two assumptions are likely

to be reasonable and should not impose substantial errors in the estimates of in vivo

MR_CMRO2.

Second, in order to quantify cerebral blood oxygen saturation, a prior knowledge of Hct is

required when both R2′ and λ are known [eqn (1)]. However, a direct measurement of Hct

from each volunteer is not done owing to the fact that the Hct has been known to be stable in

humans. Hct in large vessel ranges between 0.4 and 0.45 depending on the genders.17

Therefore, a constant Hct of 0.42 is assumed in this study for all volunteers. However, in

order to estimate cerebral blood oxygen saturation via eqn (1), large vessel Hct needs to be

converted to the small vessel Hct. A wide range of the ratio of small vessel ‘cerebral Hct’

(cHct) to large vessel Hct (cHct/Hct = 0.62–0.92) has been reported by different

investigators in various species including humans.18–22 Despite the discrepancies in the

reported cHct/Hct ratios, PET has employed a general consensus of cHct/Hct = 0.85.23 In

our study, we adapted this cHct/Hct ratio from PET study in the estimate of CBOS/OEF.

Since a constant Hct is used in our study, errors may have occurred due to the potential

variation in Hct between subjects as well as the uncertainty in cHct/Hct ratio. However, the

errors induced by the former case can be easily overcome with a direct measurement of Hct

from each subject. On the other hand, the errors induced by the latter factor are likely to be

small under normal physiological conditions. How to obtain cHct/Hct accurately is beyond

the scope of this study.
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Third, we have previously demonstrated that the accuracy of MR_OEF is on the order of 9%

based on the imaging parameters, the field strength, and the postprocessing schemes

employed. The sources of error are likely to play a similar role in the estimates of

MR_CMRO2. Nevertheless, with recently available high field scanners such as 3 T systems,

the improved signal-to-noise ratio as well as sensitivity in detecting deoxyhemglobin

induced signal alterations should further improve the accuracy of the proposed methods.

CONCLUSION

Although it has been demonstrated that CMRO2 can be obtained with MR, it requires the

utilization of either 13C or 17O magnetic resonance spectroscopy (MRS).24–27 In addition to

the fact that radioactive isotopes are needed, the inability to provide spatially resolved

information as commonly associated with MRS has hampered the clinical utilities of these

approaches. We have demonstrated that quantitative estimates of CMRO2 can be obtained in

normal subjects based on BOLD contrast. While some confounding factors remain, our

results are in excellent agreement with those reported in the literature via PET. With the

detailed anatomical information available in MRI and the widely accessible MR scanners,

the ability to quantitatively estimate CMRO2 in vivo is likely to shed light on our

understanding of the pathophysiological aspects of cerebrovascular disease.
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Abbreviations used

BOLD blood oxygenation level-dependent

CaO2 arterial oxygen content

CBOS cerebral blood oxygen saturation

CBF cerebral blood flow

CMRO2 cerebral metabolic rate of oxygen

FWHM full width half maximum

MR_OEF MR measured oxygen extraction fraction

MR_CMRO2 MR measured cerebral metabolic rate of oxygen

MRS magnetic resonance spectroscopy

OEF oxygen extraction fraction

PET positron emission tomography

SVD singular value decomposition
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Figure 1.
Sequence diagram of the multi-echo gradient echo/spin echo sequence. GSS, GPE, and GRO

represent the slice select, phase encoding and frequency encoding, respectively. In addition,

ADC indicates where images are acquired
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Figure 2.
The CBV histogram from all five volunteers (solid line), and the fitted Gaussian curve

(dashed line). Note that only CBV ranging from 0 to 20% are shown in this figure. The

frequency of CBV above 20% is negligible
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Plate 1.
Representative CBV [Fig. 2(a)] and CBF [Fig. 2(c)] maps before and after removing the

large vessel effect [Fig. 2(b) and (d)]. The color bars represent absolute CBV in percent and

CBF in ml/100 g/min
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Plate 2.
CBF [Fig. 3(a)], OEF [Fig. 3(b)] and CMRO2 [Fig. 3(c)] maps from one subject are shown.

The color bars represent the CBF in ml/100 g/min in (a), MR_OEF in percent in (b), and

MR_CMRO2 in ml/100 g/min in (c), respectively
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Table 1

ROI analysis of CBF (ml/100 g/min) on five volunteers

ROI GM ROI WM

1 75.9 ± 12.6 37.0 ± 8.6

2 73.0 ± 15.1 38.4 ± 10.9

3 72.4 ± 12.1 34.0 ± 10.4

4 49.7 ± 9.9 25.3 ± 9.4

5 66.7 ± 13.4 33.90 ± 12.2

Mean/SD 67.5 ± 10.5 33.90 ± 5.1
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Table 2

ROI analysis of OEF (%) on five volunteers

Whole brain

1 44.2 ± 5.0

2 40.2 ± 11.6

3 37.2 ± 5.7

4 39.5 ± 11.5

5 38.4 ± 7.6

Mean/SD 39.9 ± 2.7
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Table 3

ROI analysis of CMRO2 on five volunteers

ROI GML ROI GMR ROI WML ROI WMR

1 32.2 ± 5.5 32.1 ± 7.1 16.9 ± 5.9 19.0 ± 3.8

2 30.2 ± 7.7 30.1 ± 9.7 16.3 ± 4.2 17.1 ± 5.4

3 26.1 ± 5.5 27.3 ± 6.1 11.0 ± 4.3 13.4 ± 3.6

4 23.0 ± 7.3 22.0 ± 7.2 8.3 ± 4.1 9.7 ± 3.7

5 27.3 ± 5.6 26.3 ± 5.2 11.5 ± 5.2 11.9 ± 4.3

Mean/SD 27.8 ± 3.6 27.5 ± 3.9 12.8 ± 3.7 14.2 ± 3.8
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