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Abstract
Several mathematical formulations have analyzed the time-dependent behaviour of a tumor mass.
However, most of these propose simplifications that compromise the physical soundness of the
model. Here, multiphase porous media mechanics is extended to model tumor evolution, using
governing equations obtained via the Thermodynamically Constrained Averaging Theory
(TCAT). A tumor mass is treated as a multiphase medium composed of an extracellular matrix
(ECM); tumor cells (TC), which may become necrotic depending on the nutrient concentration
and tumor phase pressure; healthy cells (HC); and an interstitial fluid (IF) for the transport of
nutrients. The equations are solved by a Finite Element method to predict the growth rate of the
tumor mass as a function of the initial tumor-to-healthy cell density ratio, nutrient concentration,
mechanical strain, cell adhesion and geometry. Results are shown for three cases of practical
biological interest such as multicellular tumor spheroids (MTS) and tumor cords. First, the model
is validated by experimental data for time-dependent growth of an MTS in a culture medium. The
tumor growth pattern follows a biphasic behaviour: initially, the rapidly growing tumor cells tend
to saturate the volume available without any significant increase in overall tumor size; then, a
classical Gompertzian pattern is observed for the MTS radius variation with time. A core with
necrotic cells appears for tumor sizes larger than 150 μm, surrounded by a shell of viable tumor
cells whose thickness stays almost constant with time. A formula to estimate the size of the
necrotic core is proposed. In the second case, the MTS is confined within a healthy tissue. The
growth rate is reduced, as compared to the first case – mostly due to the relative adhesion of the
tumor and healthy cells to the ECM, and the less favourable transport of nutrients. In particular,
for tumor cells adhering less avidly to the ECM, the healthy tissue is progressively displaced as
the malignant mass grows, whereas tumor cell infiltration is predicted for the opposite condition.
Interestingly, the infiltration potential of the tumor mass is mostly driven by the relative cell
adhesion to the ECM. In the third case, a tumor cord model is analyzed where the malignant cells
grow around microvessels in a 3D geometry. It is shown that tumor cells tend to migrate among
adjacent vessels seeking new oxygen and nutrient. This model can predict and optimize the
efficacy of anticancer therapeutic strategies. It can be further developed to answer questions on
tumor biophysics, related to the effects of ECM stiffness and cell adhesion on tumor cell
proliferation.
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1. Introduction
With the aging world population, a surge in cancer incidence is anticipated in coming years,
with major societal and economic impact. With such a scenario, the development of novel
therapeutic strategies is critical for improving the prognosis, outcome of intervention,
quality of life, and minimizing economical impact. In this context, computational models for
tumor growth and its response to different therapeutic regimens play a pivotal role. Over the
past two decades, multiple models have been developed to tackle this problem. As discussed
in the comprehensive works of Roose et al. (2007), Lowengrub et al. (2010), and Deisboeck
et al. (2011), three major classes of models have been proposed: discrete, continuum, and
hybrid models. Discrete models follow the fate of a single cell, or a small cohort of cells,
over time. As such, they cannot capture tissue mechanics aspects, nor are the modelled
subdomains representative of the whole tumor. However, they explain cell-to-cell cross
signalling and cell response to therapeutic molecules (Perfahl et al. 2011). On the other
hand, continuum models describe cancerous tissues as domains composed of multiple
homogeneous fluid and solid phases interacting one with the other. Differential equations
describe the spatiotemporal evolution of the system, but no direct information is provided at
the single cell level (Roose et al. 2007). Finally, hybrid models incorporate different aspects
of discrete and continuum models, depending on the problem of interest. For instance they
represent cells individually and extracellular water as a continuum (Anderson, 2005,
Chaplain, 2000, Bearer et al. 2009).

At very early stages, solid tumors are composed of a few abnormal cells growing within an
otherwise healthy tissue. The vasculature is generally absent, and the tumor cells take all
their nutrients by diffusion from the surrounding tissue. This is defined as the avascular
phase for a solid tumor. As the mass of tumor cells increases, the extracellular matrix
undergoes extensive rearrangements with increased deposition of collagen fibers, making
the resulting tissue thicker and more difficult to trespass (Jain, 1999,[; Jain and
Stylianopoulos, 2010).Also, since the tumor cells divide much faster than normal cells, the
growing tumor mass exerts mechanical stresses on the surrounding healthy tissue, leading to
the localized constriction and, at times, collapse of blood and lymphatic vessels. At this
point, the tumor cells are already in millions and the malignant tissue has reached a
characteristic size of hundreds of microns. A necrotic zone appears deep inside, far from the
pre-existing vasculature, and the interstitial fluid pressure (IFP) builds up against the
vascular hydrostatic pressure mainly due to the compression of the healthy tissue,
obstruction of the lymphatic vessels and hyper-permeability of the new blood vessels. Using
proper biochemical stimuli, the tumor cells recruit new blood vessels (angiogenesis) to
support a continuous transport of nutrients and oxygen. This is defined the vascular phase of
a solid tumor. Over time, these new blood vessels become also a preferential route for the
malignant mass to shed into circulation millions of abnormal cells that, transported by the
blood flow, would reach distant sites and lead eventually to the develop secondary tumors.
This is the metastatic phase, typically occurring for a few solid tumors. This briefly
describes multiple phases and stages that characterize the evolution of tumors which cannot
be accurately captured in a single, comprehensive computational model. Here, the focus will
be on tumor initiation, and on a novel continuum model for the evolution of avascular
tumors.
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Most continuum models for avascular tumors describe the malignant mass as a
homogeneous, viscous fluid and employ reaction-diffusion-advection equations for
predicting the distribution and transport of nutrients and cells (Roose et al. 2007). Cell
diffusion, convection and chemotactic motion are included, and cell proliferation is
governed by mass and momentum balance equations. The first model was by Casciari et al.
(1992). More advanced models also included intracellular mechanical interactions (pressure,
shear, adhesion) and interaction of cells with the interstitial fluid pervading the extracellular
matrix. In these cases, momentum balance equations and constitutive relations are also
required for describing the stress-strain response of each individual phase. One of the earlier
models (Byrne and Chaplain, 1996) treated the tumor cells as a viscous liquid and
introduced, quite artificially, a hydrostatic pressure within the tumor domain representing
the IFP. More sophisticated models since treated solid and fluid phases independently. For
instance, Roose et al. (2003) modelled the tissue matrix as a linear poroelastic solid, whilst
the interstitial fluid was prescribed to obey Darcy's law. Cell growth was incorporated in the
stress-strain relationship, still imposing small displacements. See also Sarntinoranont et al.
(2003).

Byrne et al. (2003) has proposed a new class of models derived in the multi-phase
framework of mixture theory. Mixture theory consists in a macroscopic description (level of
observation) of the system where conservation laws are introduced in analogy with the
balance laws of single bodies. Additional terms are introduced to account for the interaction
among phases. The disadvantage of this approach is that no connection is made with the
microscopic reality. Interfacial properties are absent from both conservation laws and
constitutive equations - a serious deficiency when applied to porous media (Gray and Miller,
2005). Within this approach the cellular phase (for both tumor and healthy tissues) is
modelled as a viscous fluid and the interstitial fluid as inviscid. Although, the mixture theory
formalism is potent and flexible, major challenges lie in the treatment of the interfaces
arising the different phases. Traditionally, two classes have been proposed: the sharp
interface method, considering the interface as a sharp discontinuity; and the diffuse interface
method, considering the interface as a diffuse zone. The sharp interface approach – difficult
to implement for interfaces separating pure media (interstitial fluid) and mixtures (tumor
cells and healthy tissue) – has been followed by Preziosi and Tosin (2009), and Preziosi and
Vitale (2011). However, necrotic cells are not distinguished from live tumor cells: tumors
are modelled as if necrotic cells are no longer part of the tumor. They are hinted at in the
source/sink term but the related balance equations are missing. Their inclusion would
require accounting for an additional interface between living and dead cells, which is not
sharp in nature. On the other hand, the diffuse interface approach introduces an artificial
mixture at the interface, and the challenge here is to derive physically, mathematically, and
numerically consistent thermodynamic laws for these interfaces. Wise et al. (2008), Cristini
et al. (2009); Oden et al. (2010) and Hawkis Daarud et al. (2012) have all followed this
approach. However, they include only one interface, separating the tumor cells from the
healthy tissue. Strictly, this is insufficient in the mixture theory formalism where each
interface should be accounted for throughout the whole computational domain. The models
lack some rigour because the designation of phases as distinct from chemical constituents
comprising a phase is unclear. Consequently some of the balance equations contain terms
that cannot be justified on a theoretical basis. These simplified approaches lead to fourth-
order-in-space parabolic partial differential equations, of Cahn-Hilliard type. This entails
some difficulties for three-dimensional solutions with finite element methods because higher
order basis functions are needed than in the realm of second order spatial operators (Gomez
et al. 2008). Further, considering more than two or three phases becomes cumbersome,
especially if a solid phase is included.
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There is a need for tumor growth models for the dynamics of multiple phases and interfaces
in a physically and numerically sound way. Recently the thermodynamically constrained
averaging theory (TCAT) framework has been established (Gray and Miller (2005); Gray et
al. (2012)) for continuum, porous media models that are thermodynamically consistent
across scales. Here, the TCAT formalism will be used for predicting the growth of tumors
under different physiologically relevant conditions. We show that second-order differential
equations can accommodate more phases than most of the existing models. The interface
behaviour is modelled through surface tension (Dunlop et al. 2011, Ambrosi et al. 2012) and
adhesion (Baumgartner et al., 2000).

This paper is organized as follows: Sec.2 briefly introduces the TCAT framework. Sec.3
describes the general mathematical formulation together with the constitutive equations.
Sec. 4 briefly explains the computational model, and its numerical solution. Three examples
of biological relevance are presented in Sec.5, and Conclusions follow in Sec.6.

2. An overview of the thermodynamically constrained averaging theory
(TCAT)

The TCAT framework provides a rigorous yet flexible method for developing multiphase,
continuum models at any scale of interest. An important feature of the procedure is that it
explicitly defines larger scale variables in terms of smaller scale variables. When modelling
transport in multiphase systems, the length scale of the model impacts the form and
parameterization of the governing equations. At the microscale - smallest scale at which the
continuum hypothesis holds - a single (continuum) point contains a large number of
molecules such that properties such as density, temperature, and pressure of a phase can all
be defined. At the microscale, classical “point” conservation equations and thermodynamic
expressions are written. However, the domains of many problems of interest are too large,
and the phase distributions are too complex to be modelled at the microscale only. The level
of detail required to account for geometric structure and the variability of variables at the
microscale allows simulation of only very small domains. To overcome this challenge, many
porous media models are formulated at a larger scale, called the macroscale, -adequate for
describing system behaviour while filtering out the high frequency spatial variability. The
standard continuum mechanics approach to formulating these models is a direct approach
wherein the conservation equations are written at the larger scale and a rational
thermodynamic approach is employed to obtain closure relations. Although this approach
can be mathematically consistent, the use of rational thermodynamics fails to retain a
connection between larger scale variables and their microscale precursors (Maugin 1999,
Jou et al. 2001). Thus mathematical elegance is achieved typically at the price of
inconsistent variable definitions and an inability to relate quantities at one scale to those at
another scale. By averaging conservation and thermodynamic equations, TCAT avoids both
of these pitfalls and leads to equations that are both thermodynamically and physically
consistent.

The macroscale depends on the concept of the representative elementary volume (REV), an
averaging volume that can be centred at each point in the system and which is large enough
to include all phases present such that averages are independent of the REV size. The
volume must also be sufficiently small so that quantities such as gradients are meaningful.
TCAT consistently transforms microscale conservation and thermodynamic equations to the
macroscale and converts averages of microscale derivatives into derivatives of macroscale
average quantities. The description of a multiphase system must include dynamic
conservation and thermodynamic equations for all phases, interfaces (where two phases
meet), common curves (where three interfaces meet), and common points (where four
common curves meet). Averaging theorems transform equations describing processes in
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these entities from the microscale to the macroscale (Gray et al., 1993). Thus a physically
complete system description is obtained that differs from one obtained by only considering
dynamic equations for phases with jump conditions at interfaces.

To close the conservation equations - which contain additional terms due to averaging - new
model parameters and constitutive relations must be specified. While most methods use
simplifications and the inclusion of approximate supplementary relations, TCAT employs
averaged thermodynamic relations to guide closure of the system of equations. The
microscale formalism chosen for averaging is the classical irreversible thermodynamics.
This is adequate for the present model, but more complex formalisms can be employed
(Gray and Miller, 2005). The results are required to be consistent with the averaged entropy
inequality that is also consistent with its microscale formulation.

The benefits of using a TCAT approach are as follows. First, the model derivation proceeds
systematically from known microscale relations to mathematically and physically consistent
larger scale relations. This is accomplished by use of averaging theorems. Second, the
thermodynamic analysis is consistent between scales, in the definitions of variables at
different scales, and in satisfying the entropy inequality. The interscale consistency and
explicit definition of variables are not achieved using a rational thermodynamic approach.
Third, relations may be obtained for the evolution of the spaces occupied by phases and of
the interfacial area density. These relations are based on the averaging theorems. Although
TCAT has heretofore been employed primarily in hydrology, it can impact tumor modelling
in that the underlying physics and mathematics needed to describe tumors are related.
Additionally, if hybrid tumor models are to be developed in the future, it is essential that the
relation between the smaller scale variables and continuum variables be known. TCAT
ensures that these relations are known.

3. The multiphase model
The proposed computational model comprises the following phases: i) the tumor cells (TC),
which partition into living cells (LTC) and necrotic cells (NTC); ii) the healthy cells (HC);
iii) the extracellular matrix (ECM); and iv) the interstitial fluid (IF).

The ECM and IF pervade the whole computational domain, whereas the TC and HC are
limited only to the subdomains with the tumor mass and the healthy tissue, respectively. The
ECM is modelled as a solid, while all other phases are fluids. The tumor cells become
necrotic upon exposure to low nutrient concentrations or excessive mechanical pressure. The
interstitial fluid, transporting nutrients, is a mixture of water and biomolecules, as nutrients,
oxygen and waste products. In the following mass and momentum conservation equations, α
denotes an arbitrary phase, t the tumor cells (TC), h the healthy cells (HC), s the extra
cellular matrix (ECM), and l the interstitial fluid (IF).

3.1. The governing equations
The governing equations are derived by averaging from the microscale to the macroscale
and then using closure techniques to parameterize the resultant equations. The derivation is
mathematically intensive such that providing it here in detail would distract from the main
thrust of this paper. The techniques have been employed for transport and for multiphase
systems elsewhere (Gray and Miller 2009, Jackson et al. 2009) and the procedure is the
same for the current system, although the number of phases is different. An important
feature of the approach is that the interphase contacts are explicitly accounted for.

The ECM is treated as a porous solid and porosity is denoted by ε, so that the volume
fraction occupied by the ECM is εs=1- ε. The rest of the volume is occupied by the tumor
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cells (εt); the healthy cells (εh); and the interstitial fluid (εl). Indeed, the sum of the volume
fractions for all phases has to be unit

(1)

The saturation degree of the phases is: Sα=εα/ε. Indeed, based on the definition of porosity ε
and volume fraction εα in eqn (1) it follows that

(2)

The mass balance equation for an arbitrary phase α based on application of the averaging
theorems is written as

(3)

where εα is the volume fraction; ρα is the density, vᾱ is the local velocity vector,  are the
mass exchange terms accounting for transport of mass at the interface between the phases κ

and α, and  is the summation over all the phases exchanging mass at the interfaces with
the phase α. However, if the interface is treated as massless, the transfer is to the adjacent
phases, designated as κ. An arbitrary species i dispersed within the phase α has to satisfy
mass conservation too, and therefore the following equation is derived by averaging

(4)

Where  identifies the mass fraction of the species i dispersed with the phase α, εαriα is a
reaction term that allows to take into account the reactions between the species i and the

other chemical species dispersed in the phase α, and  is the diffusive velocity of the
species i.

In particular, the mass conservation equation of the nutrient species i in the IF (phase l)
reads

(5)

where it is assumed that no chemical reaction occurs within the phase and that the exchange
of mass in the liquid is only with the tumor phase. Summing eqn (5) over all species gives

(6)

Where
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(7)

Note that the mass exchange from the liquid to the tumor is actually to the living cell (LTC)
portion of the tumor phase. The necrotic portion of the tumor is inert and does not exchange
any nutrient with the IF. Also there is no need to make a distinction between the solvent part
of the liquid phase and any of the dissolved species. All species are in the liquid phase.
However, due to the relatively low concentrations of chemicals, the solvent phase is the
dominant species and hence the global physical properties of the IF, such as density,
intrinsic permeability and dynamic viscosity are essentially those of the solvent.

The tumor phase t comprises a necrotic portion with mass fraction ωNt̄ and a growing phase
with living cells whose mass fraction is 1 − ωNt̄. Thus the conservation equation for each
fraction would be similar to eqn (5). Assuming that there is no diffusion of either necrotic or
living cells, and that there is no exchange of the necrotic cells with other phases the mass
conservation equation for the necrotic portion reads as

(8)

where εtrNt is the rate of death of tumor cells, or in other words the rate of generation of
necrotic cells.

Differently than a mass exchange term between phases (  in eqn (6) for instance), the
reaction term εtrNt is an intra-phase exchange term. The mass balance equation for the living
tumor cells is given as

(9)

Where  includes the exchange of nutrients and solvent from the IF to the tumor.
Summation of these two equations yields an overall mass conservation equation for the
tumor phase as

(10)

We can expand eqn (8) by use of the product rule and substitute in eqn (10) to obtain an
alternative form of the necrotic species equation as

(11)

For the ECM and HC, the mass conservation equation becomes respectively
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(12)

(13)

For the ECM and the HC phases no mass exchange is expected with any other phase

The momentum equation for the arbitrary phase α, including multiple species i, is

(14)

Where gᾱ is the body force,  represents the momentum exchange from the κ to the

α phase due to mass exchange of species i,  is the stress tensor and  is the interaction
force between phase α and the adjacent interfaces. When the interface properties are
negligible, this last term is simply the force interaction between adjacent phases. Given the
characteristic times scales (hours and days) of the problem and the small difference in
density between cells and aqueous solutions, inertial forces as well as the force due to mass
exchange are neglected so that the momentum equation simplifies to

(15)

From TCAT, see Appendix A, it can be shown that the stress tensor for a fluid phase is of

the form , with pα being the averaged fluid pressure and 1 the unit tensor, and
that the momentum balance equation can be simplified to

(16)

where Rα is the resistance tensor.

3.2. The constitutive equations
No special assumption has been made yet for the constitutive behaviour of the different
phases, except for the fluid phases described by eqn (16). In this paragraph, constitutive
relations are explicitly presented for describing i) the tumor cell growth and ii) the tumor
cell death, as a function of the nutrients' mass fraction and local mechanical stresses, for eqn
(6) and eqn (8), respectively; iii) the rate of nutrient consumption from the IF, in particular,
to the living tumor cells, for eqn (5); iv) the diffusion of nutrients within the porous ECM,
for eqn (5); v) the interaction force among the phases, for eqn (15); vi) the mechanical
behaviour of the ECM; and vii) the differential pressure between the fluid phases.

The formulation presented in the above paragraph can be further simplified by assuming that
the densities of the phases are constant and equal
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(17)

3.2.1. Tumor cell growth—This is regulated by a variety of nutrient species and
intracellular signalling. However, without losing generality, in the present model one single
nutrient is considered: oxygen. The case of multiple species can be easily obtained as a
straightforward extension of the current formulation. Tumor cell growth is related to the
exchange of nutrients between the IF and the living portion of the tumor. Therefore the mass
exchange term in eqn (6) represents tumor growth and, similarly to a part of the relevant
equation in Preziosi and Vitale (2011), takes the form

(18)

where the coefficient  accounts for the nutrient uptake and the consumption of water

needed for cell growth from the IF;  is the local mass fraction of the nutrient, a

fundamental variable in the problem;  is a constant critical value below which cell

growth is inhibited; and the constant  is the environmental mass fraction of the nutrient.

Also, pt denotes the tumor cell pressure and its critical value  above which growth is
inhibited. The Macaulay brackets 〈 〉+ indicate the positive value of its argument. Note that,

since the local nutrient mass fraction  within the tumor domain can be equal or smaller

than , it derives that the argument of the Macaulay brackets varies between 

and . Consequently the growth rate for the viable tumor cells could at most be

equal to . Also in eqn (18), H is the Heaviside function which is zero for  and

is unity for . Note that  is the mass fraction of tumor cells that are
necrotic and hence (1 – ωNt ¯)εSt is the volume fraction of viable tumor cells.

3.2.2. Tumor cell death—The rate of tumor cell death in eqn (8) can be described by the
relation

(19)

Where  is the rate of cell death. All the other terms are similar to those presented in
eqn (18). However, the negative part of the argument of the Macaulay brackets 〈 〉− is

considered. Also,  is the pressure above which the tumor stress has effect on the cell
death rate, and δa is the additional necrosis induced by a pressure excess. Note that the
mathematical form of eqn (19) is very similar to eqn (18) in that cell death is assumed to be
solely regulated by insufficient concentration of nutrients (oxygen) and excessive
mechanical pressure. No drugs or other pro-apoptotic molecules are used in the present
model, but eqn (19) can be readily modified to include also this contribution.
Mathematically, a therapeutic agent or drug would be treated just as a ‘nutrient’. Effects of
cells membrane rupture and consequent transfer of liquid from the tumor cell phase to the
interstitial fluid has been not yet included in the model. These aspects will certainly be
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included in future extensions of the current computational model. This will be also
connected with the release of chemo-attractants and subsequent infiltration of macrophages.
As such, these aspects can influence the local interstitial fluid pressure.

3.2.3. The rate of nutrient consumption—As tumor grows, nutrients are taken up
from the IF so that the sink term in eqn (5) takes the following form

(20)

Nutrient consumption from IF is due to two contribution namely i) the growth of the tumor
cells, as given by the first term within the square brackets in eqn (20); ii) the normal

metabolism of the healthy cells, as presented in the second term. Indeed,  is related to

the tumor growth, as discussed above; whereas the coefficient  relates to the normal cell

metabolism. Being the nutrient mass fraction  in the tumor extracellular spaces always

equal to or smaller than , the argument of the sine function varies between π/2 and 0.
The part of consumption of oxygen related to the cells metabolism depends on the oxygen
availability and becomes zero when the mass fraction of oxygen is zero; this allows having
always positive values of the local mass fraction of oxygen since negative values have not
physical meaning.

3.2.4. The diffusion of nutrients through the ECM—To approximate the diffusive

flux in eqn (5), Fick's law is used . The effective diffusion
coefficient of nutrients in the extracellular spaces is given as

(21)

where  is the diffusion coefficient in the unbound interstitial fluid and δ is a constant
coefficient greater than one which takes into account the tortuosity of the porous network.
Actually the effective diffusion coefficient of oxygen has not a linear dependence on the
volume fraction of the IF, because it depends on the connectivity grade of the extra cellular
spaces. δ is a parameter that has to be calibrated experimentally.

3.2.5. The interaction force among the phases—Rα of eqn (16) is the resistance
tensor that accounts for the frictional interactions between phases. For example, porous
medium flow of a single fluid encounters resistance to flow due to interaction of the fluid
with the solid. If one has to model the flow at the microscale, a viscous stress tensor within
the fluid phase would be employed. At the macroscale, the effects of the viscous interaction
are accounted for as being related to the difference in velocities of the phases. The
coefficient of proportionality is the resistance tensor. In multiphase flow, resistance tensors
must be developed that account for the velocity differences between each pair of phases.

Eqn (14) contains the interaction vector  that arises between each pair of phases. In the
full implementation of the TCAT analysis, the simplest result is that this vector is
proportional to the velocity difference between the two indicated phases with the resistance
tensor being the coefficient of proportionality. In the present version of the model, the

interaction force  between the fluid phase α and the solid phase s (the ECM) is explicitly
taken into account while the macroscopic effect of the interaction forces between the fluid
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phases ,  and  is taken care of through the relative permeability . The form of
(Rα)−1 is here assumed following the modelling of multiphase flow in porous media (Lewis
and Schrefler, 1998), that is to say

(22)

where kαs and μα are the intrinsic permeability tensor and the dynamic viscosity,
respectively. Since there is no information available about this relative permeability which is
a nonlinear function of the saturation and varies between 0 and 1, the following form is
assumed

(23)

Eqn (23) respects the constraint  and gives realistic results in agreement with
the classical models present in the literature on porous media mechanics (Brooks and Corey
(1964), Corey et al. (1956), Van Genuchten.(1980)). A more accurate determination of 
should derive from specific experiments or by the application of Lattice-Boltzmann
modelling or analysis of micro-models. By introducing (22) in (16), the relative velocity of
the phase α is derived as

(24)

The intrinsic permeability tensor kls of the interstitial fluid phase is constant and isotropic.

Experimental evidence confirms that cells would stay in contact with the ECM if the
mechanical pressure gradients exerted over the cell phase are smaller than a critical value
(Baumgartner et al. 2000). For this reason, for the healthy and tumor cells the intrinsic
permeability tensors (i.e. khs and kts) are isotropic but not constant, and are computed using
the following equation

(25)

This represents in mathematical terms the fact that if cells adhere firmly to the ECM, the
phase permeability within the ECM is reduced. The minimum value of the permeability (set
equal to K̄αs/100) eliminates the indeterminacy in the case , contained in the
approach of Preziosi and Tosin (2009). This is an analogue in fluid dynamics to the stick-
slip behaviour in contact mechanics (Zavarise et al, 1992).

3.2.6. The mechanical behaviour of the ECM—The closure relation for the stress
tensor acting on the ECM (sole solid phase) is

(26)

with  the effective stress tensor in the sense of porous media mechanics and the solid
pressure ps given as (Gray and Schrefler, 2007)
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(27)

where χα is the solid surface fraction in contact with the respective fluid phase, known as the
Bishop parameter. This parameter is a function of the degree of saturation and is taken here
equal to this last one (i.e. χα = Sα). The Biot coefficient ᾱ is equal to 1 because of the
incompressibility of the ECM. Indeed, this does not mean that the ECM cannot deform. The
constitutive behaviour of the solid phase is that of an elasto-visco-plastic solid in large
deformation regime. (Zienkiewicz and Taylor, 2000).

3.2.7. The differential pressure between the three fluid phases—The differential
pressure between the fluid phases is a different concept from the interaction forces dealt
with in section 3.2.5. In brief, the interaction forces are in play when there is flow. The
different velocities of the different phases set up resistance forces between the phases. These
are the interaction forces discussed above. Differential pressure, on the other hand, can exist
even at equilibrium. It is not related to flow processes but is a statement that the pressures in
adjacent phases can be different. In multiple fluid flow in porous media, this difference in
pressures can be attributed to the curvature of the interface between fluid phases and to the
surface tension. In the tumor system, the interfaces between phases are also capable of
sustaining a jump in pressure between phases. In fact cells have surface tension which
influences their growth and adhesion behaviour (Dunlop et al. 2011, Bidan et al. 2012,
Ambrosi et al. 2012). At the microscale, the pressure difference between the cell phases and
the fluid phases is equal to the interfacial tension, σc, multiplied by the interfacial curvature.
After transformation to the macroscale, a macroscale measure is needed as a surrogate for
the interfacial curvature. In porous media analyses, a surrogate for the pressure difference
between fluid phases is proposed heuristically as a function of the fluid saturations (e.g.,
Brooks and Corey 1966, van Genuchten 1990). The cell pressure becomes very large when
the available pore space is occupied by the cells, i.e. when Sl tends to zero. This behaviour is
depicted in figure 2. The following equation is proposed as a model for the pressure
difference between the interstitial fluid phase pressure pl and those of the cell phases pt and
ph

(28)

where σc and b are constants. The use of eqn (28) to account at the macroscale for the
curvature of the interface between the phases is an approximation that assumes the
distribution of the cells within the pore space does not impact the pressure difference
between the phases. This expression can be refined subsequently in light of experimental
analysis.

3.3. Final form of the governing equations
The primary variables of the model are: the tumor saturation −St, the healthy cell saturation

−Sh, the IF pressure − pl, and the nutrient mass fraction , together with the
displacement of the solid phase (ECM) us. The time derivative of the latter is the ECM
velocity vs. After substituting for the explicit form of the constitutive equations, the final
form of the governing equations is obtained. The mass balance equations of the ECM, TC,
HC and IF are, respectively:
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(29)

(30)

(31)

(32)

Summing equations (30-32), using the constraint equations on porosity and saturation, gives

(33)

The mass fraction of the necrotic cells is obtained from eqn (11) as

(34)

The mass balance equation of the nutrient, using the Fick' Law to approximate the diffusive

velocity  and assuming (17) is:

(35)

Expanding eqn (35) by use of the product rule and substituting eqn (6) gives an alternative
form of the advection-diffusion equation of the nutrient species:

(36)

The linear momentum balance of the solid phase in a rate form (Schrefler, 2002) is

(37)

where the interaction between the solid and fluids, inclusive of the cell populations, has been
accounted for through the effective stress principle, i.e., equations (26) and (27).
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Finally for the solid phase the constitutive relationship between the effective stresses 
and the elastic strains , which is the difference between total strains es and visco-plastic

strains , reads as

(38)

where Ds is the tangent matrix containing the mechanical properties of the solid skeleton.
An extensive description of the elasto-visco-plastic model and of the mechanical aspects
will be presented in a successive paper.

4. Numerical solution and computational procedure
The weak form of equations (30), (31), (33), (36) and (37) is obtained by means of the
standard Galerkin procedure and is then discretized in space by means of the finite element
method (Lewis and Schrefler, 1998). Integration in the time domain is carried out with the
generalized mid-point rule where an implicit procedure is used. Within each time step the
equations are linearized by means of the Newton-Raphson method. For the FE discretization
the primary variables are expressed in terms of their nodal values as

(39)

where , , , ,  are vectors of nodal values of the primary variables at
time instant t, and Nn, Nt, Nh, Nl, and Nu are vectors of shape functions related to these
variables.

For the solution of the resulting governing equations, a staggered scheme is adopted with
iterations within each time step to preserve the coupled nature of the system. The
convergence properties of such staggered schemes have been investigated by Turska et al.,
(1994). In particular, for the iteration convergence within each time step a lower limit of Δt/
h2 has to be observed. Such a limit has also been found by Murthy et al, (1989) for Poisson
equations and by Rank et al. (1983) invoking the discrete maximum principle. The existence
of this limit means that we cannot diminish at will the time step below a certain threshold
without also decreasing the element size.

Three computational units are used in the staggered scheme: the first is for the nutrient mass
fraction, the second to compute St , Sh and pl , and the third is used to obtain the
displacement vector us. Within each coupling iteration, eqn (36) is solved for the mass

fraction of the nutrient . Then the group of eqs (30, 31, 33) is solved in a fully coupled
way for St, Sh, pl. In this second computational unit, at each iteration i the approximate

solution , ,  is used to update the mass fraction of the necrotic tumor cells , eqn
(34), the mass exchange term, eqn (18), and the reaction term, eqn (19). Once convergence
is achieved for the second computational unit, the pressure in the cells phases (given by eqn
(28)) is used to compute the solid pressure, eq (27). The solid pressure is needed to solve the
momentum balance equation (37). Once convergence is achieved within a time step the
procedure can march forward.

Taking into account the chosen staggered scheme, the final system of equations can be
expressed in a matrix form as follows, where some of the coupling terms have been placed
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in the source terms and are updated at each iteration to preserve the coupled nature of the
problem.

(40)

with

(41)

where  The non linear coefficient matrices Cij (x), Kij (x) and fi (x)
are given in the Appendix B.

The modular computational structure allows to take into account more than one chemical
species, simply adding a computational unit (equivalent to the first one used for the nutrient)
for each of the additional chemical species considered.

The procedure has been implemented in the code CAST3M (http://www-cast3m.cea.fr) of
the French Atomic Energy Commission taking advantage of previous work done on
modelling concrete at early age (Gawin et al., 2006). There is a striking analogy between the
two physical problems (concrete hydration and tumor growth) as far as the balance
equations are concerned. In both we have one solid phase and immiscible fluid phases
together with reactions and mass exchanges.

5. Results
The computational framework above has been applied to solve three cases of practical
interest: i) growth of a multicellular tumor spheroid (MTS) in vitro; ii) growth of a
multicellular tumor spheroid (MTS) in vivo; and iii) growth of a tumor along micro-vessels
(tumor cord model). For all cases, the growth of the tumor mass, including the necrotic mass
and living tumor cells; and the consumption of nutrient (oxygen) are analyzed over time. A
direct comparison with experimental data is presented for case i). The extracellular matrix
(ECM) is assumed rigid for all three cases. This assumption will be relaxed in future studies.
Results are presented in terms of volume fractions, εt, εh and εl, pressures, pc and pl, and

mass fraction of oxygen .

5.1. Growth of a multicellular tumor spheroid (MTS) in vitro
MTS can be efficiently used to study the in vitro growth of tumors in the avascular stage.
The tumor size can be easily measured experimentally using microscopy techniques and can
be predicted quite accurately by analytical and computational methods. Here, the time
evolution of a MTS is considered, assuming that the cellular mass is floating in a quiescent,
cell culture medium. The geometry and boundary conditions of the problem are described in
figure 3. Modelled as a half sphere imposing cylindrical symmetry the MTS comprises three
phases: i) the living and necrotic tumor cells (LTC and NTC); ii) the extracellular matrix
(ECM); and iii) the interstitial fluid (IF). At time t = 0 h, these phases coexist in the red area
shown in figure 3, having a radius of 50 μm. Within this region, the initial volume fraction
of the tumor cells (TC) is set to 0.01; whereas the volume fraction of the ECM is set to 0.05
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throughout the computational domain. Note that, assuming a characteristic cell diameter of
10 μm, the initial number of tumor cells in the red area would be ∼ 10.

The blue shell in figure 3 - the cell culture medium surrounding the MTS - is the rest of the
computational domain up to 1,000 μm. These initial conditions are summarized in table 1.

At the outer boundary (B1), the primary variables St ,  and pl are fixed with time
(Dirichlet boundary conditions). At the symmetry boundaries B2, zero flux (Neumann
boundary conditions) is imposed for all the phases. The atmospheric pressure is taken as the
reference pressure. In this example, oxygen is the sole nutrient species, and its mass fraction

is fixed to be  at B1 and throughout the computational domain at t = 0 h. The
non-apoptotic cell death rate is calculated by eqn (19), where the critical value of the oxygen

mass fraction is given by , and the cell pressure above which the cell death

rate increases is  Pa. The necrotic regions are those where the mass fraction of

necrotic cells  exceeds 0.5. All other governing parameters are listed in table 2.

The volume fractions of the tumor cells εt (TC – solid line) and of the living tumor cells
(LTC – dashed line) with time is presented in figure 4a. The radius for which the volume
fraction εt is zero gives the actual radius rsph of the MTS. With time, the TC front moves
outward and rsph grows. The difference between the solid and dashed lines (TC – LTC)
identifies the volume fraction of the necrotic tumor cells. The LTC lines present a peak that
moves outward with time, implying a continuous growth of the necrotic area within the
MTS. Figure 4a clearly shows that rsph grows from 50 μm (t = 0h) to ∼ 400 μm at 360h.

The early evolution of the tumor mass is shown with more details in figure 4b. Starting from
a 50 μm radius with St = 0.01, the tumor does not grow significantly in size within the first
50h. The tumor cells are rapidly dividing, increasing the volume fraction but not the size of
the tumor mass. Thence, the tumor enlarges with a monotonic growth of rsph. The tumor
radius (rsph(t)) is presented in figure 4c (solid line) along with experimental data (open
symbols). Notably, our prediction agrees well with three different MTS datasets (Yuhas et
al. 1977; Chignola et al. 1995; Chignola et al. 2000). The growth rate of tumor is lower for
the first 80h. The numerical results are interpolated in figure 4d using the Gompertzian
growth function

(42)

where r∞ = 600 μm is the tumor radius rsph at sufficiently large times (nominally t → ∞), a
and β are two constants derived from numerical data (a = 7.5 and β = 0.00545 h-1). The time
t in eqn (42) is measured in hours. For the necrotic core, a similar functional relationship is
here proposed as

(43)

where δliving is a constant, penalty term related to the thickness of the outer shell comprising
mostly viable cells (LTC) which are still well nourished and oxygenated. The shell thickness
depends on the cell line and nutrients availability (Mueller-Klieser et al., 1986), but it is well
accepted that at distances larger than 100 – 200 μm, nutrient diffusion is impaired. From our
simulation, the shell thickness is 150 μm. Figure 4d also shows the necrotic core and the
viable shell at three different times: necrotic cells are in the darker zone.
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Note that the measured (apparent) volume  of the MTS could be very different from the

effective volume . Figure 5a shows these along with the effective volume of the living

tumor cells ; these are defined as

(44)

Where , H is the Heaviside function which is zero for  and unity for ,
and Ω is the computational domain. The apparent volume contains also the IF while the

effective volume comprises tumor cells alone. Figure 5a shows that for small times, 

and  are equal as necrosis is initially negligible.

The evolution of the oxygen mass fraction, the sole nutrient species considered here for cell
proliferation and metabolism, is shown in figure 5b. As the spheroid increases in size,
gradients of oxygen concentration develop from the periphery, where the oxygen mass

fraction is fixed to , to the center of the spheroid. Once the nutrient

concentration in the center goes below an imposed critical value , cell
necrosis commences. Note that at the boundary between the tumor and the surrounding cell
culture medium, a significant change in the gradient of the mass fraction of oxygen is
observed as a kink in the curves (see figure 5b) - due to the lower effective diffusivity in the
tumor. After a certain time, in the necrotic core the mass fraction of oxygen reaches a

minimum value of about 1.5×10−6, lower than the threshold critical value .
The oxygen concentration continues to fall below the threshold value until all cells are dead
since in the necrotic region (here defined as the region where at least 50% of the cells are
dead) the still living cells consume oxygen and slowly die. From figure 5b the necrotic core
could be also identified as the portion of the MTS with a relatively homogeneous mass
fraction of oxygen. The reasons: i) necrotic cells do not consume oxygen, hence no nutrient
gradient in the core; ii) the local consumption of oxygen (regulated by eqn (20)) decreases
substantially and tends to zero with the reduction of the oxygen availability.

The pressure of the tumor cells within the computational domain (computed using eqn (28))
is plotted in figure 5c. The maximum pressure of about 6.0 mmHg (∼ 800 Pa) in the core of

the MTS is lower than the critical pressure for cell death . Thus oxygen
deficiency is the sole cause of cell necrosis in the current example. Note that for relatively
low saturations, the relationship between pressure and volume fraction is almost linear (see
figure 2). Hence, the trends shown in the figures 4a and figure 5c are similar. However with
increasing saturation level of the tumor cells, the relationship with the pressure becomes
nonlinear and so the peak pressure in figure 5c is more pronounced than the peak volume
fraction εt (εt = St/ε) in figure 4a. The interstitial fluid pressure (pl) is plotted in figure 5d.
Within the first 50h, the tumor cells grow locally, whilst the overall external radius of the
tumor mass stays constant at its original value (50 μm). As the IF is consumed by the tumor
cells, and the assumption (17) allows satisfying the volume balance locally the IF pressure
gradient remains unaltered. Figure 5d shows that until 50h the IF pressure gradient is zero so
that no additional interstitial fluid from the environment is needed (oxygen moves only by
diffusion). After 50h, the spheroid increases its radius; hence with tumor growth the
interstitial fluid must flow inward, per constraint eqn (2). Therefore the IF pressure in the
MTS core decreases. The intrinsic permeability of the interstitial fluid phase is relatively
high compared to that of the tumor cells phase (see table 2). For this reason, the variations in
pressure (figure 5d) are minimal but significant to explain that IF flows into the viable tumor
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shell during growth. Indeed, the interstitial fluid pressure computed is slightly lower than in
the surrounding tissue. This has to be ascribed to the lack of vasculature networks and
lymphatic systems in the current model. The high interstitial fluid pressure measured in
tumors is mostly associated to the higher permeability of the fenestrated tumor endothelium
and lack, or reduction, in lymphatic flow. Therefore the plasma permeating the tumor from
the vascular compartment cannot be drained out efficiently through the dysfunctional
lymphatic systems leading the progressive liquid accumulation in the extracellular space and
consequent pressure built up (Jain and Stylianopoulos, 2010). All this will be included in
future extensions of the model incorporating also the vascular compartment and the
lymphatic system. It should also be noted that, in the present computational model, the IFP
depends among others strongly on the pressure difference-saturation relationship of section
3.2.7 and possibly also on the deformation of the ECM. This aspect is currently under
investigation.

5.2. Multicellular tumor spheroid (MTS) in vivo
In this second example, the tumor is growing within the healthy tissue, which substitutes the
cell culture medium in the previous case. Therefore, the initial configuration of the system
comprises four phases: i) the living and necrotic tumor cells (LTC and NTC); ii) the host
cells of the healthy tissue surrounding the tumor mass (HC); iii) the extracellular matrix
(ECM); and iv) the interstitial fluid (IF). The ECM and IF are distributed throughout the
computational domain. The growing MTS pushes on the healthy cells as its radius increases.

Also, it is anticipated that the diffusion of nutrients towards the tumor mass would be
reduced by the presence of the healthy tissue. As the tumor, the thin healthy tissue corona is
assumed here to be not vascularised.

The geometry and boundary conditions of the problem are described in figure 6. The MTS is
modelled considering a half sphere and imposing cylindrical symmetry. The red region
contain the tumor cells (TC) with an initial radius of 30 μm (t = 0 h) and an initial volume
fraction set to 0.45. The orange region is the healthy tissue extending till the outer boundary
B1 of the computational domain of 150 μm. The volume fraction of the host cells in the
healthy zone is initially homogeneous and set to 0.45 (t = 0 h). At B1, the primary variables

St, Sh,  and pl are prescribed and constant (Dirichlet boundary condition). At the
boundaries B2, zero flux (Neumann boundary condition) is imposed for all phases and
nutrients due to the radial symmetry. The atmospheric pressure is the reference pressure. As
in the previous example, oxygen is the sole nutrient and its mass fraction is fixed at

 on B1 and throughout the computational domain at t = 0h. The chosen mass
fraction of oxygen corresponds to the average of the dissolved oxygen in the plasma of a
healthy individual. Although in this case the vasculature is not explicitly considered, the
radius of the computational domain (here 150 μm) can be taken as an indicator of the
vascularisation grade of the host tissue: higher radii correspond to smaller vascularisation

and vice versa. Due to the lower reference environmental mass fraction of oxygen , the

parameters  and , that govern growth and necrosis respectively, and one

coefficient of the oxygen sink term function ( , see eqn 20) are different from the first
example (see table 4). The initial conditions are listed in table 3 while the parameters of the
healthy phase are given in table 4. All the other parameters are the same as in table 1.

The adhesions of the cells to the ECM (at and ah) has a more significant effect than in the
first case, since there were no healthy cells surrounding the tumor mass. This example
shows clearly that the relative cell adhesion plays a major role in affecting the overall tumor
growth. The panels in figure 7a and figure 7b show the variation of the tumor cell volume
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fractions over time for two different adhesion conditions, namely ah = at (left column, figure
7a) and ah = 1.5 at (right column, figure 7b). The times for the 3 panels are 1h, 180h and
360h. As for the first example, the variation of the volume fraction for the tumor cells (TC)
is presented as a solid line, the living portion of the tumor cells (LTC) by a dashed line; the
difference between the two gives the fraction of necrotic cells (NTC). As expected, the
overall tumor mass expands with time and a necrotic area appears in the core. Interestingly,
the panels reveal a significant difference in the evolution of the volume fractions depending
on the adhesion conditions. When ah = at (figure 7a), the growing tumor mass displaces
completely the healthy cells; whereas for ah > at (figure 7b), the tumor spheroid during its
growth pushes on the healthy cells and partially invades their domain. Interestingly, tumor
invasion of the surrounding healthy tissue is controlled by the relative adhesion properties of
the cell populations. Diffuse interface models and fourth order differential equations as used
by Hawkins-Daarud et al. (2012) are not needed to capture the invasive behaviour.

Surprisingly, cell adhesion does not affect the overall volume size as clearly seen in figure
7c where the effective volumes of the tumor and the living tumor cells are plotted for the
two adhesive conditions defined above. On the other hand, by comparing figures 7c and
figure 5a, the growth patterns of an MTS in a medium and an MTS in tissue appear quite
dissimilar. This is mostly due to the presence of the adhesive host cells phase that contrasts
the tumor growth and reduces the nutrient supply. In addition to the difference in growth
pattern, a one to two orders of magnitude difference in effective tumor volume can also be
observed. Hence the experimental results obtained in vitro are not indicative of the in vivo
cases since the growth environments are very different.

The radius of the computational domain can be taken as an indicator of the vascularisation
grade of the host tissue, because at the boundary B1 the mass fraction is fixed to be

 (mass fraction of dissolved oxygen in the plasma of a healthy individual).
We have solved the case with ah = 1.5at for rext= 200 μm, rext= 250 μm and rext= 300 μm,
(values of the initial thickness of host cells respectively of 170 μm, 220 μm and 270 μm) to
evaluate the influence of the vascularisation grade on the growth of tumor. The ratio
between the effective tumor volume at 360h and at t = 0h has been plotted in figure 7d for
the different considered spherical domains: after 360 hours the volume of the tumor is 18
times the initial volume for rext= 150 μm, and 13 times the initial volume for rext= 200 μm,
hence if we increase rext the growth rate decreases.

5.3 Tumor growth along microvessels (tumor cord model)
In this last case, tumor cells grow in proximity of two otherwise healthy blood vessels that
are the only source of oxygen. The presence of capillary vessels has an important impact on
the tumor development and on its spatial configuration (Astanin and Preziosi (2009)); this is
confirmed in our application case where the progressive migration of tumor cells among
adjacent vessels is also shown.

The system comprises four phases: i) the living and necrotic tumor cells (TLC and NTC); ii)
the healthy tissue surrounding the tumor mass; iii) the extracellular matrix (ECM); and iv)
the interstitial fluid (IF). The ECM and IF are distributed throughout the computational
domain. The geometry and the boundary conditions of the problem are described in figure
8b. We consider two straight blood vessels of 8 μm diameter. The tumor cells are initially
located around one vessel only (see figure 8a). Two different separation distances between
the vessels are considered: in the first simulation (S1) the distance is 80 μm; in the second
(S2) the distance is 100 μm. Note that in these cases, a full three dimensional (3D)
computational solution is required. The geometry has two planes of symmetry (i.e. the
median horizontal plane and that passing through the two vessels, figure 8b); hence only a
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quarter of the complete geometry is discretized. The FE mesh here is more complex than
that of the previous cases. The parameters used are those of the second case, as treated in the
paragraph 4.2, with the exception of the volume fraction of the ECM, here set to 0.1. The

mass fraction of the oxygen,  is imposed as a boundary condition on the
cylindrical surface of the two blood vessels. At the remaining bounding surfaces the flux of
oxygen is zero. The fluxes of all the phases (l, h, t) are zero at the two symmetry planes and
at the cylindrical surface of the two capillary vessels. For the remaining boundary the
imposed conditions are shown in figure 8b. The initial conditions are summarized in figure
8a.

The volume fractions at 7 and 15 days of the healthy cell phase HC, and of the living tumor
cells phase TCL are shown in figure 8c for case S1. The healthy cells are almost completely
replaced by the tumor cells and after 15 days necrosis occurs in parts of the tumor which are
more distant from the left blood vessel. Figure 8c shows also the oxygen mass fraction at 7
days and 15 days for the same simulation. The strong decrease in the oxygen mass fraction,
caused by the presence of the tumor, can be readily observed by comparing the areas
populated by the abnormal and healthy cells.

In the second numerical simulation (S2), the distance between the two vessels is higher than
in case S1. The progressive expansion of the tumor mass from the left to the right vessel is
therefore less. The results for the oxygen mass fraction are qualitatively similar to that of S1.
Figure 9a shows the mass fraction of oxygen along a line passing through the two vessels, at
different days. The effects of consumption of oxygen coming from the vessels are evident.
Oxygen is here replenished only through the two blood vessels (two peaks). Figure 9b shows
the tumor and the local mass fraction of oxygen (in the computational grid) at 15 days;
clearly the higher values of the oxygen mass fraction are close to the two capillary vessels

. In S2, the tumor has not yet completely reached the right vessel after 15
days. In figure 9c, the volume of the tumor after 20 days is represented for S2, and the
necrotic area is clearly visible (only the finite elements in which the volume fraction of the
tumor phase is higher than 0.01 are shown). In figure 9d, the time evolution of the tumor
volume is plotted for the two cases, S1 and S2. The plotted volume is that of the finite
elements with a volume fraction of the tumor cells higher than 0.01. Note that initially there
is no difference between the two cases because the growth is mainly influenced by the left
vessel. After 10 days, the growth rate increases for the S1 case due to the additional nutrient
supply coming from the right vessel.

6. Conclusions
A tumor growth model has been developed based on multiphase porous media mechanics.
The governing differential equations have been derived by means of the Thermodynamically
Constrained Averaging Theory. These are mass balance equations for the different phases
with the appropriate linear momentum balance equations. The equations have been
discretized by means of the finite element method and a staggered procedure has been
adopted for their solution. The lower limit of the ratio between time step size and square of
the element size, necessary for a proper numerical behaviour of staggered schemes and
Poisson type equations, has been determined by means of numerical tests.

The computational framework has been applied to three examples of practical interest,
namely a multicellular tumor spheroid (MTS) immersed in a cell culture medium; a tumor
spheroid surrounded by healthy tissue; and a tumor cord. Multiple phases have been
considered in the model including i) the living and necrotic tumor cells (LTC and NTC); ii)
the extracellular matrix (ECM); iii) the interstitial fluid (IF) and iv) the healthy cells (HC).
For all cases, growth of the tumor mass, including the necrotic and living tumor cells areas;
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and the consumption of nutrient (oxygen) are analyzed over time within the whole
computational domain.

For an MTS suspended in its culture medium, a direct comparison with three different
experimental cases in the literature is presented. The agreement between the computational
prediction of the tumor radius and the experimentally measured values is good. Also, the
tumor growth follows the well know Gompertzian growth pattern demonstrating again the
accuracy of the computational model. Interestingly, the early development of the malignant
mass is characterized by a rapid division of the tumor cells accompanied by an equally rapid
increase in tumor cell volume saturation, whilst the overall tumor size stays almost constant.
This was observed up to 50-60h from the beginning. This early phase is then followed by
fast exponential growth (Gompertzian growth pattern). The model allows the volume of
each individual phase to be calculated at each time.

In the second example, the MTS is surrounded by a healthy tissue. The coexistence of two
different cell populations (healthy and tumor) allows quantification of their relative adhesion
to the ECM on tumor growth. In this respect two different conditions are analyzed showing
that when the healthy cells adhere less to the ECM, the tumor advancing front displaces
uniformly the healthy tissue; in the opposite case the tumor cells infiltrate the healthy tissue
at discrete points. Interestingly, this result has been achieved without involving diffuse
interface models and fourth order differential equations. The presence of the healthy tissue
leads to an overall reduction in tumor growth mostly due to the lower nutrient transport and
geometrical confinement.

In the third example, the of tumor cells along microvessels is predicted in a fully 3D
geometry, with a clear delineation of necrotic and living tumor regions. The progressive
migration of tumor cells among adjacent vessels in search of additional sources of nutrients
and oxygen is revealed. Also shown is that a larger distance between adjacent vessels needs
longer time tumor to grow, also demonstrating our model's capability to account for the
vasculature.

The numerical accuracy and physical soundness of the computational model will increase
the level of complexity that we can address in tumor biophysics - such as the contribution of
the ECM stiffness, relative cell adhesion and IF pressure on the infiltration and development
of malignant masses. Also, modelling the transport of therapeutic agents, in the form of
individual drug molecules as well as nanoparticle, and angiogenic vascular growth will be
introduced in future extensions. A direct comparison of the predicted tumor behaviour with
experimental data derived from patients using clinically relevant imaging modalities should
provide a validation of the presented approach. The modular structure of the framework
allows straightforward inclusion of additional phases and nutrient types.

Faced with a continuously aging world population and the surge in cancer incidence, the
approach presented here should engender novel therapeutic strategies and treatment
optimization for improving the prognosis, outcome of intervention and quality of life.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Appendix A. Linear momentum balance equation for a fluid phase
The general conservation of momentum eqn (14) will be denoted for the fluid phase using
the letter f as a qualifier. In the paper the f will be specified as either l, h or t.

(A.

1)

where gf̄ is the body force,  represents the momentum exchange from the κ to the f

phase due to mass exchange of species i,  is the interaction force between phase f and the

adjacent interfaces, and  is the stress tensor. If the inertial terms are considered to be
negligible, as is the case for slow flow in a porous medium, the first two terms in eqn (A.1)

can be neglected. Additionally, the momentum exchange due to mass transfer,  may
also be considered small since this term is of the same order of magnitude as the inertial
terms. Thus the momentum equation simplifies to

(A.2)

The TCAT method of closure involves arranging terms in the entropy inequality into force-
flux pairs. At equilibrium each member of the force-flux pair will be zero. This equilibrium
constraint guides closure of the conservation system for near equilibrium situations. In the
case here where the flows are slow, the near-equilibrium state assumption is appropriate.
Based on the TCAT procedure, the elements of the entropy inequality relating to flow
velocity that arise in the entropy inequality are

(A.

3)

In this equation  is the macroscale temperature of the f phase, ψf̄ is the gravitational
potential, ςf

̄
 is the chemical potential, pf is the fluid pressure, vs̄ is the velocity of the solid

phase and  the rate of strain tensor of the phase . All of these
quantities are macroscale averages.

Consider the variability in volume fraction of the f phase to be small. For this situation, ∇ψf̄

+ g = 0. Additionally, consider an isothermal case such that the Gibbs-Duhem equation
provides ρf∇ςf

̄
 − ∇pf = 0. Application of these two conditions to eqn (A.3) reduces it to

(A.4)
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This equation contains two independent force-flux products. The stipulation that both
elements of each product pair must be zero at equilibrium and the requirement that the
grouping of terms must be non-negative suggests the linear relations

(A.5)

and

(A.6)

In the first relation, Rf is a symmetric, positive, semi-definite tensor accounting for the
resistance to flow. In the second relation, Af is fourth order tensor that accounts for the
dependence of the stress tensor on the rate of strain. At the macroscale for slow flow, this
tensor is taken to be zero such that

(A.7)

is the resulting form of the stress tensor. We note that this does not imply that the fluid is
inviscid. The effects of viscosity are accounted for at the macroscale by the momentum

exchange term .

Substitution of the closure relations eqns (A.5) and (A.7) into Eqn (A.2) provides the
momentum equation in the form

(A.8)

Typically this relation is expressed as

(A.9)

Where Kf = (εf)2 (Rf)−1 is called the hydraulic conductivity.

The hydraulic conductivity depends on the properties of both the flowing fluid and the solid
porous material. For an isotropic medium, Kf = Kf 1. The morphology and topology of the
solid media are important in determining the hydraulic conductivity of the cellular solid
phases. The conductivity is influenced by the cell size distribution, shape of the cells,
tortuosity of passages, specific surface area, and porosity (the sum of the fluid volume
fractions). It also depends on the density and viscosity of the fluid. Neglecting gravity in eqn
(A.8) yields eqn (16).

Appendix B. Coefficients of the matrices appearing in equation (41)

In the following equations Ks is the Bulk modulus of the solid skeleton and .
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(B.1)

(B.2)

(B.3)

(B.4)

(B.5)

(B.6)

(B.7)

(B.8)

(B.9)

(B.10)

(B.11)

(B.12)

(B.13)
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(B.14)

(B.15)

(B.16)

(B.17)

(B.18)

(B.19)

(B.20)

(B.21)

(B.22)

(B.23)

(B.24)

(B.25)

(B.26)
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Appendix C. Nomenclature
Abbreviation

eqn. equation

eqs equations

REV Representative Elementary Volume

TCAT Thermodynamically Constrained Averaging Theory

Roman letters

Aα fourth order tensor that accounts for the stress-rate of strain relationship

a coefficient for the interpolation of the growth curve

aα adhesion of the phase α

b exponent in the pressure-saturations relationship

Cij non linear coefficient of the discretized capacity matrix

rate of strain tensor

diffusion coefficient for the species i dissolved in the phase l

effective diffusion coefficient for the species i dissolved in the phase l

Ds tangent matrix of the solid skeleton

es total strain tensor

elastic strain tensor

visco-plastic strain tensor

swelling strain tensor

fv discretized source term associated to the primary variable v

H Heaviside step function

Kij non linear coefficient of the discretized conduction matrix

kαs absolute permeability tensor of the phase α

relative permeability of the phase α

Nv vector of shape functions related to the primary variable v

pα pressure in the phase α

tumor pressure above which growth is inhibited

tumor pressure above which stress causes an increase of the death rate

r∞ coefficient for the interpolation of the growth curve: tumor radius at sufficiently large time

rsph radius of the spheroid

rnc radius of the necrotic core

Rα resistance tensor

Sα saturation degree of the phase α

effective stress tensor of the solid phase s
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total stress tensor of the solid phase s

us displacement vector of the solid phase s

x solution vector

Greek letters

ᾱ Biot's coefficient

β coefficient for the interpolation of the growth curve

growth coefficient

necrosis coefficient

nutrient consumption coefficient related to growth

nutrient consumption coefficient not related to growth

macroscale temperature of the phase α

δ exponent in the effective diffusion function for the oxygen

additional necrosis induced by pressure excess

δliving coefficient for the interpolation: thickness of the viable rim of tumor cells

ε porosity

εα volume fraction of the phase α

μα dynamic viscosity of the phase α

ρα density of the phase α

σc coefficient in the pressure-saturations relationship

ςα
¯

chemical potential

Ψα
¯

gravitational potential

χα solid surface fraction in contact with the phase α

mass fraction of necrotic cells in the tumor cells phase

nutrient mass fraction in liquid.

critical nutrient mass fraction in liquid for growth

reference nutrient mass fraction in the environment

TCAT symbols

inter-phase mass transfer

ε α r iα reaction term i.e. intra-phase mass transfer

inter-phase momentum transfer

Subscripts and superscripts

crit critical value for growth

n nutrient

Sciumè et al. Page 27

New J Phys. Author manuscript; available in PMC 2014 February 17.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



h host cell phase

l interstitial fluid

necr critical value for the effect of pressure on the cell death rate

s solid

t tumor cell phase

α phase indicator with α=t,h,l, or s
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Figure 1.
The multiphase system within a representative elementary volume (REV).
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Figure 2.
Pressure difference - saturation relationship.
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Figure 3.
Geometry and boundary conditions for a multicellular tumor spheroid (red) in a medium
(not to scale).
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Figure 4.
(a) Volume fraction of the tumor cells (total and living) during 360h. (b) Volume fraction of
the tumor cells phase over 120h; lines drawn at every 10h of simulations. (c) Numerical
results compared with different in vitro experiments. The symbols are data obtained in the
following in vitro cultures: squares = FSA cells (methylcholantrene-transformed mouse
fibroblasts, Yuhas et al., 1977); diamonds = MCF7 cells (human breast carcinoma, Chignola
et al., 1995); circles = 9L cells (rat glioblastoma, Chignola et al., 2000). (d) Numerical
results (points) for spheroid and necrotic core radii, and their interpolations (solid lines).
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Figure 5.
(a) Apparent volume of the tumor spheroid, effective volume of the tumor cells, and the
effective volume of the living tumor cells, over time. (b) Mass fraction of oxygen over 360h.
(c) Pressure in the tumor cells phase over 360h. (d) Numerical prediction of the interstitial
fluid pressure over 180h; Lines drawn at every 10h of simulations.
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Figure 6.
Geometry and boundary conditions for a multicellular tumor spheroid growing within a
healthy tissue. (not to scale)
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Figure 7.
(a,b)Numerical prediction of the volume fractions of the living tumor cells (LTC), the
necrotic tumor cells (NTC) and the host cells (HC), at different times (from up to down: 1h,
180h, and 360h). The left column (a) is for ah = at, while the right column (b) is for ah =
1.5·at.
(c) Evolution of the effective volume of the tumor cells, and the effective volume of the
living tumor cells. The black lines refer to the case (ah = at), while the grey lines refer to the
case (ah = 1.5at). (d) Scaled effective volume of tumor (normalized by initial value) after
360 hours for different radii of the computational domain.
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Figure 8.
(a) Initial conditions of the third case. Yellow shows the axes of the two capillary vessels.
(b) Geometry and boundary conditions. (c) Volume fractions of the living tumor cells (first
column) of the healthy cells (second column) and mass fraction of oxygen (third column) for
the case S1.
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Figure 9.
(a) Mass fraction of oxygen along the line joining points A and B for S2. (b) Volume
fractions of the LTC and oxygen mass fraction for S2 at 15 days. (c) Volume fractions of the
LTC for S2 at 20 days. “N” indicates the necrotic areas. (d) Volume of the tissue invaded by
the tumor.
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Table 2
Input parameters used to simulate the first case

Parameter Symbol Value Unit

Density of the phases ρ 1000 kg/m3

Diffusion coefficient of oxygen in the interstitial fluid 3.2·10-9 m2/sec

Coefficient δ (eqn (21)) δ 2.00 —

Intrinsic permeability for interstitial fluid phase kls 1.8·10-15 m2

Intrinsic permeability for tumor cell phase kts 5·10-20 m2

Adhesion of tumor cells (to ECM) at 1·106 N/m3

Growth coefficient of tumor cells (eqn (18)) 0.016 —

Critical mass fraction of oxygen (eqs (18,20)) 3·10-6 —

Critical pressure for cell growth (eqs (18,20)) 1330 Pa

Necrosis coefficient (eqn (19)) 0.016 —

Cells pressure above which necrosis occurs (eqn (19)) 930 Pa

Pressure dependent additional necrosis (eqn (19)) 5·10-4 —

Consumption coefficient related to growth in eqn (20) 4·10-4 —

Consumption coefficient related to metabolism in eqn (20) 6·10-4 —

Coefficient σc in eqn (28) σc 532 Pa

Coefficient b in eqn (28) b 1 —
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Table 4

Additional input parameters for the second case.

Parameter Symbol Value Unit

Intrinsic permeability for host cell phase khs 5·10-20 m2

Adhesion of host cellsa (to ECM) ah 1·106 / 1.5·106 N/m3

Growth coefficient of tumor cells (eqn (18)) 0.0096 —

Necrosis coefficient (eqn (19)) 0.0096 —

Consumption coefficient related to growth in eqn (20) 2.4·10-4 —

a
In the second case the effect of cells adhesion is analyzed; then more than one value is used

New J Phys. Author manuscript; available in PMC 2014 February 17.


