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Abstract

As polybrominated diphenyl ethers are phased out, numerous compounds are emerging as 

potential replacement flame retardants for use in consumer and electronic products. Little is 

known, however, about the neurobehavioral toxicity of these replacements. This study evaluated 

the neurobehavioral effects of acute or developmental exposure to t-butylphenyl diphenyl 

phosphate (BPDP), 2-ethylhexyl diphenyl phosphate (EHDP), isodecyl diphenyl phosphate 

(IDDP), isopropylated phenyl phosphate (IPP), tricresyl phosphate (TMPP; also abbreviated TCP), 

triphenyl phosphate (TPHP; also abbreviated TPP), tetrabromobisphenol A (TBBPA), tris (2-

chloroethyl) phosphate (TCEP), tris (1,3-dichloroisopropyl) phosphate (TDCIPP; also abbreviated 

TDCPP), tri-o-cresyl phosphate (TOCP), and 2,2-,4,4′-tetrabromodiphenyl ether (BDE-47) in 

zebrafish (Danio rerio) larvae. Larvae (n ≈ 24 per dose per compound) were exposed to test 

compounds (0.4–120 µM) at sub-teratogenic concentrations either developmentally or acutely, and 

locomotor activity was assessed at 6 days post fertilization. When given developmentally, all 

chemicals except BPDP, IDDP and TBBPA produced behavioral effects. When given acutely, all 

chemicals produced behavioral effects, with TPHP, TBBPA, EHDP, IPP, and BPDP eliciting the 

most effects at the most concentrations. The results indicate that these replacement flame 

retardants may have developmental or pharmacological effects on the vertebrate nervous system.
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1. Introduction

There is widespread human and wildlife exposure to flame retardants, making these 

chemicals a priority for both human and ecological health assessments. As some classes of 

flame retardants (e.g., polybrominated biphenyl ethers PBDEs) are being phased out due to 

bioaccumulation and toxicity, others have been introduced as replacements for use in 

furniture, electronics, textiles, automotive products, and construction materials. A recent 

longitudinal study compared levels of PBDEs and the emerging alternative flame retardants 

in indoor dust and children’s hand wipes; findings suggest that exposure to these alternative 

flame retardants are predicted to be as high as PBDE exposure (Stapleton et al., 2014). 

Despite documented human and wildlife exposure to these newer compounds (Segev et al., 

2009; Dishaw et al., 2014b; Ezechiáš et al., 2014; Wei et al., 2015; Gao et al., 2014), there is 

sparse information on the possible human health or ecological toxicity of many of these 

replacements.

Neurotoxicity is a primary concern associated with emerging alternative flame retardants 

due to their organophosphorus backbone. Structurally related compounds have previously 

been shown to affect brain development (Carr et al., 2013, 2014; Dishaw et al., 2011; 

Slotkin et al., 2006, 2009; Slotkin and Seidler, 2005, 2011). Hence, it is important to deploy 

a test system for rapid assessment of nervous system perturbations. The zebrafish model is 

positioned to address these concerns, as there is a basic understanding of nervous system 

development (reviewed in Blader and Strähle, 2000; Guo, 2009; Young et al., 2011; Guo, 

2004), as well as techniques for rapidly evaluating the effects of chemical exposures on the 

zebrafish nervous system (Bang et al., 2002; Bichara et al., 2014; Ellis and Soanes, 2012; 

Green et al., 2012). Many investigators concentrate on evaluating behavior, because, to a 

large extent, behavior integrates nervous system function, making it an appropriate, 

approachable, and apical endpoint for screening, demonstrating excellent concordance with 

mammalian neurotoxicity (Kokel et al., 2010; Kokel and Peterson, 2011; Levin et al., 2003, 

2004; Sallinen et al., 2009; Selderslaghs et al., 2013, 2010; Anichtchik et al., 2004; 

Fernandes et al., 2014; Fetcho and Liu, 1998; Nishimura et al., 2015). The developmentally 

neurotoxic PBDE flame retardants (Costa and Giordano, 2007; Costa et al., 2014) have been 

phased out and replaced with other halogenated (primarily chlorinated) and 

organophosphorus based chemicals (see Table 1 for chemicals, abbreviations and 

structures). There is some preliminary evidence that member(s) of both the halogenated and 

organophosphorus classes (BDE-47, TBBPA, TDCIPP, and TPHP) perturb the thyroid 

system in developing zebrafish (Chan and Chan, 2012; Kim et al., 2015; Liu et al., 2013). 

There is also evidence that developmental exposure to either TDCIPP or TCEP produces 

developmental neurotoxicity as assessed by changes in locomotor activity at 6 days post-

fertilization (dpf) in larval zebrafish (Dishaw et al., 2014a, 2014b). To a large extent, 

however, our knowledge about the general toxicity and/or developmental neurotoxicity of 

most of the organophosphorus flame retardants is incomplete.

The studies described in this present paper, in conjunction with its companion paper (Behl et 

al., 2015), have been conducted to address this key gap in the flame retardant literature. 

Here, we have assessed the behavioral toxicity of a group of 11 different chemicals: one 
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(BDE-47) is a flame retardant that is being phased out and is known to be developmentally 

neurotoxic; many others (TBBPA,TCEP,TDCIPP BPDP, EHDP, IDDP,IPP,TMPP,TPHP) 

are currently being used, or are emerging, as flame retardants; and one (TOCP) is a 

neurotoxic compound with a structure similar to some of the organophosphorus flame 

retardants (see Table 1 for a list of the 11 chemicals that are the subject of these 

experiments). All chemicals were assessed for lethality and teratogenic endpoints [data 

presented in Behl et al. (2015), as well as developmental neurotoxicity and acute behavioral 

toxicity (data presented herein)].

2. Materials and methods

2.1. Chemicals

Table 1 lists the chemicals used in this study, their CAS #s, abbreviations, and structures and 

the supplier and purity of each chemical are listed in ,Supplemental Table 1. Stock solutions 

of each chemical were prepared in dimethyl sulfoxide (DMSO; obtained from Sigma-

Aldrich, St. Louis, MO). The National Toxicology Program supplied the chemicals, and are 

from the same source as those used in our companion paper (Behl et al., 2015). Subsequent 

serial dilutions for the stock plates, used to dose the experimental plates, were also prepared 

in DMSO (final DMSO concentration was 0.4% (v/v) in all wells, including controls).

2.2. Experimental animals

All studies were carried out in accordance with the guidelines of, and approved by, the 

Institutional Animal Care and Use Committee at the U.S. EPA National Health and 

Environmental Effects Research Laboratory.

Wild type adult zebrafish (Danio rerio), undefined, outbred stock originally obtained from 

Aquatic Research Organisms, Hampton, NH, 03842 and EkkWill Waterlife Resources, 

Ruskin, FL 33575 were housed in an AAALAC-approved animal facility with a 14:10 h 

light:dark cycle (lights on at 08:30 h). Adult fish were kept in flow-through colony tanks 

(Aquaneering Inc., San Diego, CA) with a water temperature of 28 °C. For egg collection, 

adults were placed in a 15 L (static) breeding tank the afternoon before egg collection. Eggs 

were collected the next morning approximately 1 h after the lights came on (08:30 h).

2.3. General embryo rearing

All embryos were gathered from the breeder tank and placed in a 26 °C water bath until 

washing. Embryos were washed (Westerfield, 2000) twice with 0.06% bleach (v/v) in 10% 

Hanks’ Balanced Salt Solution (13.7 mM NaCl, 0.54 mM KCl, 25 µM Na2HPO4, 44 µM 

KH2PO4, 130 µM CaCl2, 100 µm MgSO4 and 420 µm NaHCO3; all salts obtained from 

Sigma-Aldrich, St. Louis, MO) (hereafter referred to as “10% Hanks’”) for 5 min each 

wash, and rinsed in 10% Hanks’ between washes.

2.4. Chemical exposure during development

After washing, fertilized eggs were placed, one embryo per well, into 10% Hanks’ solution 

in the upper insert of a 96-well mesh microtiter plate (Multiscreen™ catalog 

#MANMN4050, Millipore Corp., Bedford, MA). After all embryos were plated, the upper 
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mesh insert was moved to a new 96-well plate lower insert that contained the chemical 

dilutions. To dilute the chemicals, 1 µl from the stock plate was added to each well in the 

lower insert. Then 150 µl of 10% Hanks’ was added to each well. The upper mesh insert 

containing the embryos was blotted on filter paper (Whatman GF/B paper (fired), Brandel, 

Gaithersburg, MD), and placed in the lower insert. Finally, an additional 100 µl of 10% 

Hanks’ was added to the upper insert. Each plate was then sealed with a non-adhesive 

material (Type A, BioRad, Hercules, CA), covered with the lid, and wrapped in Parafilm™ 

to minimize evaporation. The fish were then placed in an incubator, maintained on a 14:10 

light:dark cycle at 26 ± 0.1 °C, where they were reared for 6 days.

The embryos were dosed on day 0 (initial plating) and day 1 post fertilization (see Fig. 1 for 

Experimental Design). The day after plating (day 1 post fertilization; 1 dpf) the 250 µL of 

10% Hanks’ solution with the appropriate chemical concentration in each well was 

completely renewed. The fish then remained undisturbed in the incubator for three days. On 

day 5 they were transferred to 10% Hanks’ only (without chemical). The 10% Hanks’ was 

also renewed on day 6, prior to behavioral testing and assessments (see Fig. 1). Therefore 

the animals had been rinsed in 10% Hanks’ twice to remove any residual chemical before 

they were tested on day 6.

The overall experimental design was to first assess the overt toxicity of each chemical (i.e., 

Range Finding) followed by a more detailed assessment of the developmental neurotoxicity 

of the chemical at non-overtly toxic concentrations (Developmental Behavioral 

Assessment). The design of both studies is depicted in Fig. 1. The Range Finding study did 

not include any behavioral assessment and was only used to determine the concentrations 

used in the Developmental Behavioral Assessment neurotoxicity study. The same 

concentrations of chemical were also used for an Acute Behavioral Assessment on day 6 pf 

(described below).

2.5. Range finding

For behavioral testing, the fish needed to be alive, hatched and not malformed. Therefore, in 

order to select appropriate concentrations for each chemical, we conducted a range finding 

study to assess each chemical for overt toxicity (i.e., death, malformations, or non-hatching). 

Zebrafish embryos were dosed, as described above, with 8 different concentrations (semi-

log spacing, n ≥ 4 per concentration), with a maximum possible concentration of 120 µM. 

The Developmental Behavioral Assessment was conducted so that the highest concentration 

used for behavioral testing was at or just below the overtly toxic concentrations, determined 

from the Range Finding Study. If the Range Finding Study did not elicit any overt toxicity, 

the highest nominal concentration for the behavioral assessments was 120 µM.

2.6. Developmental behavioral assessment

In order to dose the fish for behavioral testing, a stock plate for each chemical was made 

(see “Chemicals” section). The location of each chemical concentration was randomized on 

the stock plate (96 well glass plate which mirrored the dosing on the experimental plate 

containing the embryos/larvae), and therefore the dose groups on the experimental plate 

were also randomized. All concentrations of each chemical accompanied by vehicle controls 
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were included on every stock plate and experimental plate. In addition, a positive technical 

control was included on each plate: either chlorpyrifos (procured from Battelle, Columbus, 

OH; CAS # 2921–88–2; final nominal concentration was 11.5 µM) or heptachlor (procured 

from Chem Service, Inc., West Chester, PA; CAS# 76–44–8; final nominal concentration 

was 2 µM), as our preliminary data indicated that either chemical would produce a 

behavioral effect when given to zebrafish larvae either in a developmental or acute dosing 

scenario. Moreover, both chemicals have been shown to produce developmental 

neurotoxicity in mammals (Moser et al., 2001; Richardson et al., 2008; Slotkin et al., 2006; 

Slotkin and Seidler, 2005). All testing was performed on 6 dpf larvae in the same 96-well 

plate in which they had been dosed and reared. Recording fish behavior was essentially as 

described by MacPhail and coworkers (MacPhail et al., 2009). The 2 h testing paradigm 

consisted of two periods of light/dark/light separated by a 40 min dark phase. The luminance 

of the first light/dark/light portion of the testing paradigm was 0.09 lx in both light phases 

and the luminance of the second light/dark/light period was 5.0 lx in both light phases. 

Luminance was taken at the level of the recording platform using a photometer (model 

Dr.-2250–1, 2B silicon detector, TC 284 photometric filter, Gamma Scientific, San Diego, 

CA).

The morning of testing (day 6), the rearing solution was renewed, then plates were moved to 

the darkened behavioral testing room in which the ambient temperature was the same as the 

rearing incubator (26 °C). For all experiments, testing occurred between 4 and 8 h after light 

initiation for the zebrafish larvae, in order to encompass the most stable behavioral period 

for the fish (MacPhail et al., 2009). For testing, the plate was transferred to a light box that 

provided both infrared and visible light, and the movement of each fish was monitored using 

a behavior-recording system [Noldus Information Technology, Leesburg, VA 

(www.noldus.com)]. The testing paradigm consisted of a 20 min acclimation phase in the 

dark (Basal phase; data not presented nor analyzed), followed by 10 min of light (0.09 lx), 

10 min of darkness, 10 min of light (0.09 lx), 40 min of darkness, 10 min of light (5.0 lx), 10 

min of darkness, and 10 min of light (5.0 lx). Prior research in this laboratory (Irons et al., 

2010; MacPhail et al., 2009; Padilla et al., 2011), and in several others (Burgess and 

Granato, 2007; Emran et al., 2007; Prober et al., 2006; Fernandes et al., 2012), has 

demonstrated that 1) exposure of zebrafish larvae to light has a characteristic effect of 

increasing locomotor activity when darkness is reinstated, and 2) the level of light during the 

light phase determines the level of increase in activity during the subsequent dark phase. 

Thus, the basal phase was included to minimize any behavioral disruption due to transfer of 

a plate to the recording platform. Data were collected during this acclimation phase but were 

not analyzed further because of uncertainties, and therefore lack of specification and 

stimulus control, regarding the variables that could influence the activity.

2.7. Analysis of fish movement

Fish movement (locomotion) was tracked from videos using Ethovision XT (Noldus 

Information Technology) software Version 8.5. Tracking rate was 5 samples/s (i.e., an 

image was captured every 200 ms). A dynamic subtraction method was used to detect 

objects that were darker than the background, with a minimum object size of 10 pixels. 

Tracks were analyzed for total distance moved (cm). An input filter of 0.135 cm (minimum 
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distance moved) was used to remove system noise. All locomotion data is expressed as 

distance moved (cm) per 2 min segment of testing.

2.8. Lethality and malformation assessment

We have demonstrated that malformed 6 dpf zebrafish larvae do not behave normally in our 

behavioral paradigm(Padilla et al., 2011),there-fore all malformed larvae were eliminated 

from any behavioral analysis. All animals that were dead, not hatched or displayed overt 

toxicity (e.g., edema, curved spine, small eyes, small head, abnormal position in the water 

column) were excluded based on post-testing assessments (Fig. 1); only animals that 

appeared normal were used for the behavioral analysis. Assessments were made by visual 

inspection of the larvae under a dissection scope (Olympus SZH10 Research Stereo) at 6 dpf 

immediately after behavioral testing.

2.9. Acute challenge and behavioral assessment

After washing, fertilized eggs were plated as described above (see “Chemical Exposure 

During Development” section). The test chemical, however, was not added at this stage of 

the procedure (day 0 – initial plating); only 250 µL of 10% Hanks’ solution was used. The 

unexposed, plated embryos were then placed in an incubator, maintained on a 14:10 

light:dark cycle at 26 ± 0.1 °C, and remained undisturbed for 4 days. On day 5 pf, each well 

was completely renewed with fresh 10% Hanks’, and the plate was returned to the incubator. 

On day 6 pf, the plate was removed from the incubator and dosed with the same stock plate 

that was used for the developmental behavioral assessment (see “Developmental Behavioral 

Assessment” section). Immediately after dosing, the plate of larvae was transferred to the 

darkroom, with an ambient temperature of 26 °C, and remained undisturbed for 30 min in 

the dark to allow the larvae to re-adjust after disruption from movement and light due to 

dosing. Next, the larvae were exposed to three identical, sequential 26 min testing periods: 6 

min of darkness, 10 min of light (5.0 lx), 10 min of darkness. The three tests occurred at the 

following times: 1) 0.5 h after dosing, 2) 1.5 h after dosing, and 3) 2.5 h after dosing. Larval 

locomotor activity was analyzed as described above (see “Developmental Behavioral 

Assessment” section). After all three periods of testing were completed, fish were assessed 

for hatching, death, and malformations, and only normal animals were included in the acute 

behavioral exposure analyses.

2.10. Statistical analyses

All data were analyzed using Statview© (SAS Institute, Inc., Cary, NC; version 5.0.1). The 

data were first assessed using a repeated-measures analysis of variance (ANOVA) with time 

and dose as the independent variables and locomotor activity (distance moved/time) as the 

dependent variable. All of the results of this repeated-measures ANOVA for both the 

developmental and acute (time of peak effect) assessments are presented in Supplemental 

Table 2. Significance was set at p ≤ 0.05. In the case of a significant time by dose interaction 

(time x dose interaction), step-down ANOVAs were performed to assess lower order effects. 

This involved first assessing that there was a significant effect of dose at each two minute 

behavioral interval, and if so, Fisher’s PLSD comparisons were conducted to compare 

between dosage groups. All data are presented as mean ± standard error of the mean (SEM). 

The number of independent observations are given in the figure legends. Underneath each 
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behavioral graph is a detailed grid showing each dose level of the chemical and whether a 

significant increase or decrease in activity was noted at each 2 min interval and at which 

dose(s). Only statistically significant results are discussed throughout the paper, and if there 

were fewer than 14 normal larvae in a dosage group, that group was not included in the 

analysis.

3. Results

3.1. Developmental exposure effects

3.1.1. Positive controls (Fig. 2)—Both developmental exposure to heptachlor (2 µM 

final concentration) or chlorpyrifos (11.5 µM final concentration) produced changes in 

locomotor activity when the animals were tested on day 6 pf. Developmental exposure to 

either chemical decreased activity primarily in the dark phases of testing, although 

heptachlor also produced an exaggerated hyperactivity during the initial 2 to 4 min after the 

light to dark transition and decreased activity in the final light phase. Developmental 

exposure to either chemical produced extended hypoactivity during the 40 min dark phase.

3.1.2. Test chemicals (Fig. 3 and ,Supplemental Table 3)—Developmental 

exposure to three of the test chemicals did not produce any effects on locomotor activity: 

TBBPA, BPDP, and IDDP. One chemical, EHDP, only produced very weak effects. We 

considered these effects weak because they did not occur at adjacent doses, nor at adjacent 2 

min time segments, and only occurred in 2 out of the 50 possible time segments. 

Developmental exposure to either TOCP or IPP produced hyperactivity in animals when 

tested on day 6 pf, and those effects were primarily noted in the dark phases. Larvae that 

were devel-opmentally exposed to BDE-47, TCEP or TMPP showed primarily hypoactivity 

when tested on day 6 pf, and those effects were also mainly noted in the dark phases, 

although both BDE-47 and TCEP also showed decreased activity in the second (0.09 lx) 

light phase. Animals treated with TDCIPP during development showed a mixed behavioral 

response dependent on dose, with the lower doses showing increased activity and the higher 

doses showing decreased activity; both effects were seen in the dark phases. Animals treated 

with TCEP during development also showed a mixed behavioral response that appeared to 

be dependent on brightness of the light during the light phases: increased activity during the 

lower light phase (0.09 lx), but decreased activity during the brighter phase (5.0 lx).

3.2. Acute exposure effects

3.2.1. Positive controls (Fig. 2)—Acute exposure to chlorpyrifos (11.5 µM final 

concentration) produced dramatic changes in locomotor activity: chlorpyrifos-treated larvae 

were hyperactive during all time segments and were generally unresponsive to changes in 

lighting conditions. Larvae acutely exposed to heptachlor (2 µM final concentration) were 

hyperactive during the light phase and hypoactive during the dark phase, most apparent in 

the final two testing periods (1.5 or 2.5 h after dosing).

3.2.2. Time of peak effect—We assessed three different periods after acute dosing 

because we had no prior knowledge about the time of peak effect for these chemicals. The 

time of peak effect was defined as the test period that had the most 2 min time segments 
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with significant changes in locomotor activity. In practice, this was determined by summing 

the number of 2 min time segments that showed significant changes within each test period. 

In some instances, there were only very minor differences between sums at adjacent test 

periods. The time of peak effect for each chemical is circled in each graph in Fig. 4 and also 

noted in ,Supplemental Table 4. No chemical showed a time of peak effect at 0.5 h; all of the 

chemicals showed a time of peak effect at either 1.5 or 2.5 h. The time of peak effect for 

TPHP, IPP, EHDP, TCEP, and TOCP occurred during the second testing period (1.5 h after 

chemical treatment). By contrast, the time of peak effect for TBBPA, IDDP, TMPP, BPDP, 

TDCIPP, and BDE-47 occurred during the third testing period (2.5 h after chemical 

treatment). It is possible that some chemicals may exhibit times of peak effect beyond 2.5 h, 

but this experiment did not evaluate effects at later times.

3.2.3. Test chemicals (Fig. 4 and ,Supplemental Table 4)—All chemicals produced 

changes in locomotor activity. In general, acute exposure to the test chemicals decreased 

activity during the dark phases and increased activity in the light phases. Exceptions to this 

pattern were BPDP, EHDP and TOCP: these compounds elicited hyperactivity in the basal 

dark phases. In addition, TOCP and TCEP did not cause hypoactivity in the non-basal dark 

phases. Overall, when considering the number of significant changes across doses at the 

time of peak effect, BDE-47, TCEP and IDDP produced the fewest acute behavioral effects, 

while TPHP, TBBPA, EHDP, IPP and BPDP produced the most behavioral effects after 

acute exposure.

3.2.4. Comparison of the developmental and acute effects—Table 2 compares the 

pattern of effects at the time of peak effect for the acute testing paradigm to the 

corresponding dark/5.0 lx/dark period of the developmental testing paradigm. This portion 

of the developmental testing schedule was chosen because it was exactly the same schedule 

and light level as the acute testing schedule. In general, the pattern of behavioral changes 

was different after acute exposure as compared to developmental exposure, supporting the 

idea that the developmental effects are not due to residual chemical present at the time of 

testing. Interestingly, BDE-47 was the only chemical that showed more extensive (i.e., many 

time segments were affected at many doses) behavioral effects after developmental exposure 

than after acute exposure: acute exposure to BDE-47 elicited only a few effects at a couple 

of time segments in the last dark phase, while developmental exposure produced extensive 

hypoactivity in both dark phases. In contrast, EHDP elicited extensive acute effects with 

hyperactivity in the basal phase and the light phase and hypoactivity in the dark phase as 

compared to only minimal (i.e., few time segments affected at few doses) hypoactivity in the 

second dark phase after developmental exposure. IPP, likewise, only produced minimal 

developmental effects, but extensive acute effects. TMPP produced extensive hypoactivity 

in the second dark phase after acute and developmental exposure, but the hyperactivity in 

the light phase appeared only after acute exposure. TPHP also produced extensive 

hypoactivity in the second dark phase after both acute and developmental exposure, but the 

hypoactivity in the first dark phase and the light phase were only present after acute 

exposure. Developmental exposure to TCEP produced hypoactivity in the light phase, while 

acute exposure to the same chemical did not cause abnormal activity during the light phase 

but did elicit hypoactivity in the first dark phase. Unlike any of the other chemicals, 
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developmental exposure to TDCIPP produced hyperactivity at low doses, and just two 

instances of hypoactivity during the final dark phase. Acutely, however, TDCIPP showed 

significant hypoactivity at the highest doses during the final dark phase and also 

hyperactivity at the high doses during the light phase. TOCP exposure did not produce any 

hypoactivity, but rather increased activity in the first dark phase and the light phase, with 

many more effects seen at the lower doses after the acute exposure as compared to the 

developmental exposure.

4. Discussion

Every flame retardant tested perturbed the behavior of 6 day old zebrafish larvae. When 

tested acutely, all of the chemicals produced behavioral effects, while developmental 

exposure to most, but not all, of the chemicals affected behavior. With the exception of 

TOCP, chemicals that produced behavioral effects after developmental exposure did so at 

exposure concentrations 4 to 10 times lower than the concentration that produced overt 

(lethality and malformations) toxicity, with the majority of the lowest effective levels below 

10 µM (Table 3). Acute exposure to every chemical tested produced behavioral effects at 

concentrations 2 to 12 times lower than the developmentally toxic concentrations, with the 

majority of the lowest effect levels in the very low micromolar range. In many cases, a no-

effect level was not achieved, meaning that the actual lowest effect level may be below that 

shown in Table 3. Because of the concordance between zebrafish and mammalian 

developmental pathways, the zebrafish model is used to understand developmental disorders 

in humans (e.g., The Deciphering Developmental Disorders Study, 2015) and is also 

employed extensively in ecotoxicological studies as a surrogate for other fish species 

(Belanger et al., 2013; Braunbeck et al., 2005; Knöbel et al., 2012; Lammer et al., 2009). 

Therefore, to build on the initial zebrafish screening tests presented here, these 

organophosphorus flame retardants should be examined for developmental neurotoxicity in 

mammals and for additional relevant effects across ecosystems.

In order to put our results in context with previously published data, we discuss each 

chemical individually below. Unfortunately, the toxicity of many of these compounds in 

either mammals or fish is largely unexamined in the literature. One recently published paper 

(Noyes et al., 2015), however, examined the overt and behavioral toxicity of many of these 

chemicals allowing us to make some comparisons, though differences in procedures are 

noted. One of the most drastic differences was that Noyes and coworkers reported a LEL 

(lowest effect level) when gauging overt toxicity (lethality and dysmorphology). Because, in 

some cases, their pattern of overt toxicity was not dose-dependent, we have elected not to 

use those data for comparison with our Point of Departure calculation (based on dose 

dependency) for overt toxicity.

BDE-47 is developmentally neurotoxic to mammals, likely through disturbing the function 

of the thyroid axis during development (reviewed in Costa and Giordano, 2007; Gee and 

Moser, 2008; Talsness et al., 2008). Studies in zebrafish have also shown behavioral (Chen 

et al., 2012; Noyes et al., 2015) and potential thyroid effects (Chan and Chan, 2012). Our 

results on the behavior of zebrafish devel-opmentally exposed to BDE-47 are almost 

superimposable with the behavioral profile reported by Chen and coworkers (Chen et al., 
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2012), likely because of our similar experimental designs, including rinsing out the BDE-47 

at least 24 h before testing. Both laboratories found that the primary effect was decreased 

activity in the dark, and the lowest dose affected was in the low micromolar range (around 

4–5 µM). These results differ from that of Noyes et al. (2015) who reported decreased 

activity under both light and dark conditions in larval zebrafish treated with BDE-47; these 

differences are likely due to the fact that those investigators did not remove the larvae from 

the chemical before testing,so the behavioral measures may be confounded by concomitant 

acute exposure.

BPDP failed to produce any behavioral effects following developmental exposure, though 

we did note behavioral changes when the larvae were dosed acutely (increased activity in 

the light accompanied by decreased activity in the dark). Our results closely resemble the 

behavioral changes noted by the only other behavioral study (Noyes et al., 2015), and further 

reinforce the idea that their behavioral results at 5 days may be a combination of both 

developmental and acute exposure.

We found extensive behavioral changes after acute exposure to EHDP, but only marginal 

behavioral changes after developmental exposure, in agreement with the marginal 

behavioral changes noted by Noyes and co-workers (Noyes et al., 2015).

We found that IDDP did not affect zebrafish development (maximum concentration 120 µM 

(Table 3). No behavioral differences were noted after developmental exposure in our study, 

and acute exposure decreased activity in the dark at the higher doses. Marginal to no 

behavioral changes were also noted by Noyes and coworkers (Noyes et al., 2015). There is 

one report (McGee et al., 2013) showing no developmental toxicity in zebrafish due to IPP 

(tri-ITP) exposure, but their highest exposure concentration was 10 µM; our Point of 

Departure (POD) for overt toxicity was around 5 µM (Table 3). The behavioral changes 

noted by Noyes et al. (2015) closely resemble behavioral changes precipitated by acute IPP 

dosing in our study: increased activity in the light and decreased activity in the dark, a 

pattern which contrasts with the dark hyperactivity pattern seen after developmental 

exposure in the present study.

TMPP (also known as tricresyl phosphate TCP) is a mixture of para, meta, and ortho 

isomers of tricresyl phosphate, as well as some other related chemicals. It has been studied 

in relation to organophosphate-induced delayed neuropathy (OPIDN), but with few studies 

relating to developmental toxicity or developmental neurotoxicity. Noyes and co-workers 

(Noyes et al., 2015) reported decreased activity in both the light and dark phases at 6.4 and 

64 µM, where as we found decreased activity in the dark only when the fish were dosed 

developmentally, while acute exposure elicited increased light activity and decreased dark 

activity. Even though TOCP is a component of TMPP, the developmental and acute 

behavioral effects of TMPP are distinct from those of TOCP in the present study 

(,Supplemental Tables 3 and 4), indicating that the TOCP toxicity is not the major influence 

in the spectrum of toxicity produced by TMPP.

There is a growing body of literature on TPHP (also abbreviated as TPP), a component of 

FM550 (Firemaster 550). Numerous groups have shown that TPHP affects thyroid 
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development and function in zebrafish: Kim and coworkers (Kim et al., 2015) noted gene 

expression changes precipitated in the sub-micromolar range (0.6 to 1.5 µM) accompanied 

by increased T3 and T4 levels also at very low concentrations (40 µg/L = 0.123 µM), and 

Liu and coworkers (Liu et al., 2013) also found gene expression changes in larval zebrafish 

indicative of thyroid receptor perturbations at micromolar exposure concentrations. A range 

of potencies for overt toxicity (i.e., lethality and malformations) has been reported by 

various groups: the highest was an LC50 of 29.6 mg/L (90.7 µM) (Liu et al., 2013). Other 

estimates clustered with our POD for overt toxicity of 2 µM: TPHP-induced malformations 

and lethality were reported at 2 µM (McGee et al., 2013) or 0.5 µM (500 µg/L) (Kim et al., 

2015). Whereas Noyes and coworkers (Noyes et al., 2015) reported decreased activity in 

both light and dark at the higher (64 and 6.4 µM) TPHP concentrations, the larvae that were 

treated develop-mentally with TPHP in our study showed behavioral changes at much lower 

concentrations. After acute dosing, TPHP produced decreased activity in the dark phases.

Developmental exposure to TBBPA in zebrafish produces myriad effects: the compound 

changes the rate of yoke absorption (Kalasekar et al., 2014), acts as an obesogen and PPAR-

γ agonist (Riu et al., 2014), and at high concentrations, alters gene expression of 

hypothalamic-pituitary-thyroid axis (Chan and Chan, 2012). There are conflicting reports on 

whether TBBPA has estrogenic activity in larval zebrafish with one group (Chow et al., 

2013) reporting increased vitellogenin (an estrogenic biomarker in zebrafish) expression at 

high TBBPA concentrations, but another group reporting no estrogenic activity (Song et al., 

2014). Many different laboratories (Kalasekar et al., 2014; McCormick et al., 2010; Noyes 

et al., 2015; Song et al., 2014; Yang et al., 2014) have reported that TBBPA produces 

malformations and lethality in developing zebrafish in the low micromolar ranges in 

agreement with our reported POD of 4.6 µM (Table 3). We did not observe changes in 

behavior after developmental exposure, but we did note marked changes in behavior after 

acute exposure, which correlates with what has been reported in mammals: TBBPA is, at 

most, a weak developmental neurotoxicant in mammals (Cope et al., 2015; Eriksson et al., 

2001; Lilienthal et al., 2008), but it does appear to produce extensive behavioral changes 

after an acute exposure in mice (Nakajima et al., 2009).

Previously published work indicates that TCEP may not be as toxic to developing zebrafish 

as many of the other organophosphorus flame retardants (Dishaw et al., 2014a; McGee et 

al., 2012) even at concentrations over 100 µM; our data aligns with existing literature, as we 

saw no developmental overt toxicity even when the animals were exposed to 120 µM TCEP 

(Table 3). Two laboratories have behaviorally tested zebrafish larvae exposure to TCEP 

during development and found decreased activity in the dark at 31.4 and 100 µM (Dishaw et 

al., 2014a) or decreased activity in the dark and light at 64 µM (Noyes et al., 2015). Our 

results extend those observations by reporting changes in behavior after exposures to that 

level of TCEP and also to concentrations as low as 12 µM. Acute exposure to TCEP 

produced transient changes in behavior that abated by 2.5 h after dosing.

There is extensive use of and exposure to TDCIPP (also abbreviated TDCPP; reviewed in 

(Dishaw et al., 2014b), and there have been numerous studies of this compound in zebrafish. 

Our overt toxicity POD of 8.9 µM (Table 3) is very similar to the overt toxicity threshold of 

10 µM reported by Dishaw and coworkers (Dishaw et al., 2014a), and the LC50 of 16.25 µM 
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(7.0 mg/L) reported by Liu and coworkers (Liu et al., 2013). Two studies (Dishaw et al., 

2014a; Noyes et al., 2015) reported decreased dark activity in zebrafish larvae treated with 

TDCIPP during development, a pattern that we noted, but we also detected increased dark 

activity at even lower doses. When larvae were exposed to TDCIPP acutely, activity 

increased during the light phases and decreased during the dark phase. Chronically dosing 

zebrafish for the first 6 months of life at sub-micromolar levels, Wang and coworkers (Wang 

et al., 2015) did not note any cholinesterase inhibition or locomotor effects after 7 days of 

exposure, but did report that after 6 months of exposure, there were many nervous system 

changes (i.e., dopamine, serotonin, myelin basic protein and α1-tubulin was decreased), 

providing evidence for the neurotoxic nature of this chemical, possibly due to thyroid 

disrupting activity during development at sub-micromolar concentrations (Liu et al., 2013).

Two of the positive controls chosen for this study, BDE-47 and TOCP, provoked opposite 

behaviors in zebrafish, though the observed patterns are aligned with what would be 

expected from a developmentally neurotoxic chemical (BDE-47) and a chemical that is 

primarily toxic to the adult (TOCP). One would expect a chemical that is developmentally 

neurotoxic to have effects on behavior when administered develop-mentally: BDE-47 

produced such effects down into the low micromolar levels. In contrast, TOCP, which is not 

regarded as a developmentally neurotoxic chemical (Funk et al., 1994; Harp et al., 1997; 

Moretto et al., 1991; Pope et al., 1992), only produced developmental behavioral effects at 

doses very close to teratogenic/lethal doses. Conversely, BDE-47 produced only very weak 

acute effects, while TOCP (weak cholinesterase inhibitor; (reviewed in Weiner and Jortner, 

1999) produced more marked acute effects—a hyperactive profile very similar to the 

hyperactive acute profile precipitated by chlorpyrifos (another cholinesterase inhibitor) 

which was used as one of our technical positive controls. Another relevant comparison is 

between BDE-47 and TBBPA. It is interesting to note that in the one study (Eriksson et al., 

2001) that compared the neurodevelopmental toxicity of BDE-47 and TBBPA side by side 

in developing mice, BDE-47 was positive and TBBPA tested negative, which aligns with the 

results of our zebrafish developmental neurotoxicity tests. This concordance supports the 

position suggested by many other studies (Kokel et al., 2010; Kokel and Peterson, 2011; 

Parker et al., 2013; Selderslaghs et al., 2013): that the zebrafish is a good model for 

developmental neurotoxicity screening and prioritization.

The acute data reported on these chemicals are novel, because to our knowledge, there have 

been only sporadic reports of acute pharmacological testing in vertebrates with these 

chemicals. The observed effects in the low micromolar dosing range suggest that these 

chemicals are neuropharmacologically active. It is also possible, however, that the acutely 

exposed larvae are behaving differently for reasons not related directly to the nervous 

system, such as simple dermal irritation or olfactory cues. Regardless of the cause, abnormal 

behavior in fish has the potential to perturb the population and community through altered 

preycapture or predator-avoidance relationships (Weis et al., 2001; Renick et al., 2015). To 

extrapolate the acute effects of these chemicals in zebrafish to human health, it would be 

very informative to conduct studies to elucidate the underlying mechanism(s) of the altered 

behavior. Few investigators have considered the possibility that exposure to these chemicals 

in furniture, toys, cars, or electronics may cause rapid (as opposed to developmental) 

behavioral changes in humans or wildlife.
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As a class, the organophosphorus flame retardants maybe as toxic as the chemicals they are 

replacing. To rank the chemicals in an objective manner, we calculated a potency score 

 for the 

developmental and acute behavioral effects of each chemical (Supplemental Table 5); a 

higher score signifies both a higher proportion of 2 min intervals with behavioral changes 

and lower doses at which effects were observed. When exposed developmentally, two of the 

organophosphorus flame retardants ranked higher than BDE-47: TPHP > IPP > BDE-47 > 

TMPP > TDCIPP > EHDP > TCEP. After acute exposure, TPHP was still the highest 

ranked chemical, and IPP was in the top three: TPHP > EHDP = TBBPA > IPP = BPDP > 

TMPP > TDCIPP > IDDP= TCEP = BDE-47. Based on both their relatively high acute and 

developmental potencies, TPHP and/or IPP would be excellent candidates for developmental 

neurotoxicological testing in mammalian models.

Although these present studies were not conducted in order to make extrapolations to the 

human condition, general observations may be attempted. Lacking information on the 

internal dose of each chemical to the zebrafish, we are therefore limited to using the nominal 

concentration for exposure estimation purposes. In general, 1 mg/l of each of the chemicals 

is a low µM concentration, which is in the general range of the lowest concentrations tested 

in the present paper. To equate the 1 mg/l to what is reported in the human studies, we can 

consider 1 mg/l equivalent to 1 µg/ml or 1 µg/g. In general, very little is known about human 

exposure to some of these chemicals (e.g.,BPDP, IDDP, IPP), but there have been some 

reports for the others. Body burden (hair, urine, serum) of these chemical is reported in 

approximately the pg to ng/g range (Cooper et al., 2011; Kim and Oh, 2014; Liu et al., 2015; 

Meeker et al., 2013; Reemtsma et al., 2011), which is at least 1000 times lower than the 

lowest exposure concentration used in the present study. In some cases, however, higher 

levels are reported in some humans in the lower µg/g range (Cooper et al., 2011; Liu et al., 

2015; Reemtsma et al., 2011); these body burden concentrations may overlap with some of 

the lower concentrations used in the present study. That is assuming, however, that the 

internal concentration in the zebrafish larva equates with the nominal concentration. 

Because these chemicals are, in general, highly lipophilic (Table 1), it likely that the internal 

concentration of these chemicals in the zebrafish is orders of magnitude higher than the 

nominal concentration (Dishaw et al., 2014a; Padilla, 2013; Petersen and Kristensen, 1998), 

thereby decreasing the applicability to the human condition. Another confounder is that 

exposure to these chemicals in the real world does not occur in isolation; the real world 

exposures are most likely via multiple flame retardants (Stapleton et al., 2009), and no 

information exists on the toxicity of these chemicals using mixture dosing scenarios, 

although the zebrafish model would be an excellent one with which to assess the 

combinatorial toxicology of these chemicals.

The work presented here utilized the zebrafish model to obtain rapid and relevant data 

concerning the developmental and acute neurotoxicity of emerging flame retardant 

replacement compounds. These compounds were intended to replace a class of known 

neurotoxicants, PBDEs, yet this study suggests that the alternatives may also be neurotoxic, 

either acutely and/or developmentally. Given that several of these compounds are already 

being used and have been detected in households and the environment, additional studies 

Jarema et al. Page 13

Neurotoxicol Teratol. Author manuscript; available in PMC 2016 February 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



should be conducted to characterize their toxicities and to understand their potential effects 

on human and ecological health.
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Fig. 1. 
Schematic depicting overall experimental design. Rectangles at the top indicate time post 

fertilization and text below the rectangles describes the treatment at that time. The diamond 

shapes show assessment categories and indicate that behavioral assessments are only 

included for normal fish.
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Fig. 2. 
Control (DMSO) and positive technical control (heptachlor or chlorpyrifos) behavioral 

profiles for acute and developmental exposure. Data points represent average distance 

moved (cm) for each 2 min block. Developmental profiles are shown on the left, and the 

acute profiles are presented on the right. The graphs showing chlorpyrifos (11.5 µM) as a 

positive control are on the top, and graphs showing heptachlor (2 µM) as a positive control 

are on the bottom. The bar at the bottom indicates when behavior occurred in the dark (black 

rectangles) or light (white rectangles). The lux level during the light phase is also indicated 

in the white rectangles. Statistically significant differences are indicated with an asterisk (*). 

Sample sizes: (A) control (n = 215) and chlorpyrifos (n = 83); (B) control (n = 379) and 

heptachlor (n = 179); (C) control (n = 265) and chlorpyrifos (n = 132); (D) control (n = 129) 

and heptachlor (n = 58). Mean ± SEM.
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Fig. 3. 
Developmental Exposure Produces Behavioral Changes. The results for each chemical are 

presented as a line graph with the grid below the line graph indicating the statistical results. 

Boxes with an up arrow (↑) (red box in the on-line version; dark gray box otherwise) denote 

a significant increase from control, while boxes with adown arrow (↓) (blue box in the on-

line version; light gray box otherwise) denote a significant decrease from control. Overall p-

values are located to the right of the grid. Below the graph and above the statistics grid is 

alight/dark bar indicating when behavior occurred in the dark (black rectangles) or light 

(white rectangles). The lux level during the light phase is also indicated in the white 

rectangles. The filled black circles (●) represent the DMSO control data in every graph. The 

key to the left of each grid indicates the symbol for each dose of the treatment chemicals. 

Sample sizes: BDE-47: Control (n = 45), 4.0 µM (n = 21), 7.0 µM (n = 20), 12.6 µM (n = 

23), 22.4 µM (n = 20), 40.0 µM (n = 12; data not shown); BPDP: Control (n = 44), 1.2 µM 

(n = 24), 2.1 µM (n = 22), 3.8 µM (n = 19), 6.7 µM (n = 20), 12.0 µM (n = 12;data not 

shown); EHDP: Control (n = 48), 1.2 µM (n = 24), 2.1 µM (n = 24), 3.8 µM (n = 23), 6.7 

µM (n = 24), 12.0 µM (n = 24); IDDP: Control (n = 47), 12.0 µM (n = 23), 22.1 µM (n = 

22), 37.6 µM (n = 20), 67.2 µM (n = 22), 120.0 µM (n = 20); IPP: Control (n = 45), 1.2 µM 

(n = 20), 2.1 µM (n = 19), 3.8 µM (n = 20), 6.7 µM (n = 11) data not shown, 12.0 µM (n = 4; 

data not shown); TMPP: Control (n = 105), 4.0 µM (n = 48), 7.0 µM (n = 46), 12.6 µM (n = 

47), 22.4 µM (n = 26), 40.0 µM (n = 4; data not shown); TPHP: Control (n = 41), 0.4 µM (n 
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= 20), 0.7 µM (n = 19), 1.2 µM (n = 21), 2.2 µM (n = 15), 4.0 µM (n = 4; data not shown); 

TBBPA: Control (n = 42), 1.2 µM (n = 20), 2.1 µM (n = 20), 3.8 µM (n = 22), 6.7 µM (n = 

4; data not shown), 12.0 µM (n = 0; data not shown); TCEP: Control (n = 44), 12.0 µM (n = 

21), 21.1 µM (n = 24), 37.6 µM (n = 22), 67.2 µM (n = 22), 120.0 µM (n = 23); TDCIPP: 

Control (n = 43), 1.2 µM (n = 20), 2.1 µM (n = 21), 3.8 µM (n = 21), 6.7 µM (n = 21), 10.0 

µM (n = 14); TOCP: Control (n = 90), 1.2 µM (n = 21), 2.1 µM (n = 20), 3.9 µM (n = 39), 

6.9 µM (n = 30), 12.0 µM (n = 4; data not shown). Mean ± SEM.
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Fig. 4. 
Acute Exposure Produces Behavioral Changes. The results for each chemical are presented 

as a line graph with the grid below the line graph indicating the statistical results. Boxes 

with an up arrow (↑) (red box in the on-line version; dark gray box otherwise) denote a 

significant increase from control, while boxes with a down arrow (↓) (blue box in the on-line 

version; light gray box otherwise) denote a significant decrease from control. The circled 

time-period on the graph indicates the time of peak of effect. Overall p-values for the entire 

assessment, as well as for each individual testing period are located to the right of the grid. 

Below the graph and above the statistics grid is a light/dark bar indicating when behavior 

occurred in the dark (black rectangles) or light (white rectangles). The lux level during the 

light phase is also indicated in the white rectangles. The filled black circles (●) represent the 

DMSO control data in every graph. The key to the left of each grid indicates the symbol for 

each dose of the treatment chemicals. Sample sizes for the acute data: BDE-47: Control (n = 

39), 4.0 µM (n = 20), 7.0 µM (n = 19), 12.6 µM (n = 18), 22.4 µM (n = 22), 40.0µM (n = 

21); BPDP: Control (n = 45), 1.2 µM (n = 22), 2.1 µM (n = 21), 3.8µM (n = 21), 6.7 µM (n = 

23), 12.0 µM (n= 24); EHDP: Control (n = 46), 1.2µM (n = 24), 2.1 µM (n = 22), 3.8µM (n 

= 23), 6.7 µM (n = 23), 12.0µM (n = 18); IDDP: Control (n = 47), 12.0 µM (n = 22), 22.1µM 
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(n = 21), 37.6µM (n = 23), 67.2µM (n = 22), 120.0 µM (n = 23); IPP: Control (n = 42), 

1.2µM (n = 24),2.1µM (n = 22), 3.8 µM (n = 22), 6.7µM (n = 23), 12.0 µM (n = 19); TMPP: 

Control (n = 50), 4.0µM (n = 20), 7.0µM (n = 22), 12.6 µM (n = 21), 22.4 µM (n = 21); 

TPHP: Control (n = 37), 0.4 µM (n = 22), 0.7 µM (n = 22), 1.2 µM (n = 19), 2.2 µM (n = 

21), 4.0 µM (n = 20); TBBPA: Control (n = 45), 1.2 µM (n = 24), 2.1 µM (n = 23), 3.8 µM 

(n = 22), 6.7 µM (n = 21), 12.0 µM (n = 22); TCEP: Control (n = 44), 12.0 µM (n = 22), 

21.1 µM (n = 22), 37.6 µM (n = 22), 67.2 µM (n = 24), 120.0 µM (n = 24); TDCIPP: 

Control (n = 43), 1.2 µM (n = 20), 2.1 µM (n = 21), 3.8 µM (n = 21), 6.7 µM (n = 23), 10.0 

µM (n = 20); TOCP: Control (n = 44), 1.2 µM (n = 22), 2.1 µM (n = 23), 3.9 µM (n = 22), 

6.9 µM (n = 23), 12.0 µM (n = 22). mean ± SEM.
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Table 1

Physiochemical Characteristics of the Chemicals Tested.

Chemical Name Abbreviation Characteristics Structure

2,2′4,4′-Tetrabromodiphenyl ether BDE-47 CAS# 5436–43–1
MW† = 485.79
Log P†† = 6.77

tert-Butylphenyl diphenyl phosphate BPDP* CAS# 56,803–37–3
MW = 382.39
Log P = 6.61

2-Ethylhexyl diphenyl phosphate EHDP CAS# 1241–94–7
MW = 362.4
Log P = 6.30

Isodecyl diphenyl phosphate IDDP* CAS# 29,761–21–5
MW = 390.45
Log P = 7.28

Phenol, isopropylated, phosphate (3:1) IPP CAS# 68,937–41–7
MW = 390.00
Log P = 9.07

Tricresyl phosphate TMPP* CAS# 1330–78–5
MW = 371.39
Log P = 6.34

Triphenyl phosphate TPHP CAS# 115–86–6
MW = 326.28
Log P = 3.065

3,3′,5,5′-Tetrabromobisphenol A TBBPA CAS# 79–94–7
MW = 543.87
Log P = 7.20
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Chemical Name Abbreviation Characteristics Structure

Tris(2-chloroethyl) phosphate TCEP CAS# 115–96–8
MW = 285.49
Log P = 1.63

Tris(1,3-dichloro-2-propyl)phosphate TDCIPP CAS# 13,674–87–8
MW = 490.9
Log P = 3.65

Tri-o-cresyl phosphate (this is the ortho isomer of TMPP) TOCP CAS# 78–30–8
MW = 368.36
Log P = 6.34

Both molecular weight and LogP were obtained from EPI SuiteTM (http://www.epa.gov/opptintr/exposure/pubs/episuite.htm).

*
Mixture.

†
MW = Molecular Weight.

††
LogP = Octanol/water Partition Coefficient.
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Table 2

Comparison of statistical results for 2 min intervals from both developmental and acute behavioral testing. The 

time of peak effect period was used for the acute data while the 26 min around the first 5.0 lx period 

(including the dark 6 min before and 10 min after) was used for developmental. Boxes with an up arrow (↑) 

(red box in the on-line version; dark gray box otherwise) indicate a significant increase from control, while 

boxes with a down arrow (↓) (blue box in the on-line version; light gray box otherwise) indicate a significant 

decrease from control. A light/dark bar indicates when behavior occurred in the dark (black rectangles) or 

light (white rectangles). The lux level during the light phase is also indicated in the white rectangles.
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