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Abstract
Background—Placental malaria causes fetal growth retardation (FGR), which has been linked
epidemiologically to placental monocyte infiltrates. We investigated whether parasite or monocyte
infiltrates were associated with placental hypoxia, as a potential mechanism underlying malarial
FGR.

Methods—We studied the hypoxia markers hypoxia inducible factor (HIF)-1α, vascular endothelial
growth factor (VEGF), placental growth factor, VEGF receptor 1 and its soluble form and VEGF
receptor 2. We used real time PCR (in 59 women) to examine gene transcription,
immunohistochemistry (in 30 women) to describe protein expression and laser capture
microdissection (in 23 women) to examine syncytiotrophoblast-specific changes in gene expression.
We compared gene and protein expression in relation to malaria infection, monocytes infiltrates and
birth weight.

Results—we could not associate any hallmark of placental malaria with a transcription, expression
or tissue distribution profile characteristic of a response to hypoxia but found higher HIF-1α (P=.
0005) and lower VEGF levels (P=.0026) in the syncytiotrophoblast of malaria cases versus
asymptomatic controls.

Conclusion—our data are inconsistent with a role for placental hypoxia in the pathogenesis of
malaria-associated FGR. The laser capture microdissection study was small, but suggests that malaria
affects syncytiotrophoblast gene transcription, and proposes novel potential mechanisms for
placental malaria-associated FGR.
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INTRODUCTION
Placental malaria (PM) is characterised by the presence of malaria-infected erythrocytes in
placental blood and is associated with both fetal and maternal mortality and morbidity [1,2].
In particular, PM is a major preventable cause of low birth weight (LBW) and it is estimated
that 200,000 children die as a result of PM-associated LBW every year [3]. In malaria endemic
areas, LBW is mainly due to fetal growth restriction (FGR) rather than to pre-term delivery
[1,4] but causes of this FGR remain unknown.

Placental hypoxia is an important cause of FGR, as shown by studies of high altitude
pregnancies (in which hypoxia is hypobaric in aetiology [5]) or pre-eclampsia (in which
placental insufficiency causes tissue hypoxia [6]). To date, there is no published study on the
role of placental hypoxia in PM-associated FGR despite clinical, pathological and biological
similarities between PM and pre-eclampsia (reviewed in [7]), and a long-proposed pathogenic
role for placental hypoxia in PM-associated FGR. It has been suggested that some
histopathological characteristics of PM including thickening of basal membranes [8] and
infiltration of monocytes in the intervillous spaces of the placenta (intervillositis) [9–11] could
increase barriers to oxygen transport across the placenta [12]. It also has been postulated that
the intervillous accumulation of inflammatory cells and infected erythrocytes could lead to
placental and fetal hypoxia either by consumption of oxygen by the infiltrated cells or by
decreasing blood perfusion and effective surface area for materno-fetal exchange [13,14]. Such
placental dysfunctions could directly affect fetal development and lead to FGR [15,16].
Increased syncytial knotting, which is considered to be a physiological adaptation to hypoxia
[17], has been reported in malaria-infected placentae [18].

Hypoxia alters cellular gene transcription profiles. A central hypoxia-responsive gene is the
transcription factor Hypoxia Inducible Factor 1 (HIF-1), a heterodimer of inducible HIF-1α
and constitutive HIF-1β, which controls cellular response to hypoxia. Under normoxic
conditions, HIF-1α protein is degraded by O2-dependent ubiquitination and targeting to the
proteasome [19–21]. In hypoxic tissues, HIF-1α protein is stabilised and can bind HIF-1β to
form an active transcription factor that will alter the transcription of growth factor genes
involved in regulation of angiogenesis [22]. In particular, hypoxia is associated with increased
transcription of several molecules in placental tissue or cell lines, including vascular
endothelial growth factor (VEGF) [23], Flt-1 (fems-like tyrosine kinase, or VEGFR1) [24] and
its soluble form sFlt-1 [25], and decreased transcription of placental growth factor (PlGF)
[26]. Expression of the proteins VEGFR2 (or fetal liver kinase-1/kinase insert domain-
containing receptor (Flk-1/KDR)) [24,27] and HIF-1α [28] is also up regulated under hypoxic
conditions in placental tissue.

In order to test the hypothesis that placental hypoxia has a role in the pathogenesis of PM-
associated FGR, we investigated whether placental malaria infection, intervillositis and LBW
were associated with an expression profile characteristic of a response to hypoxia in
normotensive pregnant women.

MATERIALS AND METHODS
1. Participant recruitment

This study was approved by the College of Medicine Research Committee at the University
of Malawi. From November 2001 until April 2005, placental tissue samples were collected
from women who delivered at Queen Elizabeth Central Hospital in Blantyre, Malawi, and who
were participating in a study of interactions between HIV and PM. [29]. For the present study,
samples were selected from HIV uninfected participants on the basis of normal Apgar scores
at 1 and 5 minutes and the absence of maternal complications (other than placental malaria)
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such as hypertension, pre-eclampsia, chorioamnionitis or maternal anaemia. Placental
histology was examined to classify eligible women into four groups: past malaria (malaria
pigment deposits but no parasites; these women were not included in the present study), malaria
uninfected, malaria parasites without pigment containing monocytes, and malaria parasites
with pigment containing monocytes. A sample size of 60 was selected based on a previous
study [30] in which highly significant differences in placental chemokine mRNA were found
between groups stratified by malaria and monocyte densities. Within groups, women with the
highest parasite or monocyte densities were selected from those with available samples.

2. Tissue sampling and handling
Placental tissue samples were taken near the centre of the placenta within 20 minutes post-
delivery. One set of samples was snap-frozen in liquid nitrogen for RNA extraction, another
set was embedded in OCT medium before being frozen at −80°C for laser capture
microdissection and a last set was fixed in buffered formalin for immunohistochemistry and
malaria infection grading.

3. Laboratory and pathology testing
Peripheral blood malaria infection was assessed on thick blood films stained with Field’s stain.
Formalin-fixed placental biopsies were examined and presence and density of malaria
parasitemia and presence of malaria pigment (hemozoin) were noted. In women with malaria,
the density of intervillous space monocyte infiltrates was recorded, as described [9]. Biopsies
were examined for chorioamnionitis as described [31]. Maternal hemoglobin concentration
was determined by HemoCue hemoglobinometer (HemoCue, Ängelholm, Sweden). LBW was
defined as a birth weight lower than 2500g.

4. Real time RT-PCR
Snap-frozen placental tissue was thawed in RNAlater-ICE (Ambion) according to supplier’s
recommendations before being homogenized in Trizol RNA extraction reagent (Invitrogen)
using a tissue homogeniser (Polytron). RNA extraction was conducted following supplier’s
recommendations. The total cellular RNA obtained was resuspended in RNase-free water
(Ambion) and kept at −80°C until use. RNA was reverse transcribed using Superscript III
enzyme mix (InVitrogen) in a 20μL reaction volume following supplier’s recommendations.
The cDNA was diluted 1 in 4 in DNase-free water and kept at −20°C.

Primers were either found in the literature or designed using Primer Express software and all
were validated for use with SYBR Green chemistry on an ABI 7900HT real time PCR machine
(all from Applied Biosystems). Data were analysed as previously described [32]. Briefly, RNA
standards were synthesised for each gene and added to a pool of cellular RNA to be used as
external standards. Up to three housekeeping genes validated for their use in placental
comparative expression studies [33] were used as internal standards. They include the TATA
box binding protein (TBP), the succinate dehydrogenase complex, subunit A (SDHA) and the
tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, zeta polypeptide
(YWHAZ). Target gene signals were normalised to the geometric mean of the three
housekeeping genes for accuracy and reliability as recommended by various authors [33,34].

5. Laser capture microdissection
The syncytiotrophoblast layer of uninfected placentae (n=6) and P. falciparum-infected
placentae with (n=10) or without (n=7) intervillositis was isolated using laser capture
microdissection. These cases were selected on the basis of availability of additional placental
samples, from within our group of 59 women studied at the whole tissue level. All available
samples were used. Five to 7μm-thick tissue cryosections were immobilised on SuperFrost
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PLUS slides (Fisher) and air-dried for 10 min. before 10 min. of acetone treatment to fix the
tissue. After re-hydration in DEPC-treated water, sections were lightly stained with methyl
green (Sigma-Aldrich), and then dehydrated in ethanol and cleared in xylene. Slides were kept
in a desiccator until capture. Capture was done by LMPC (Laser Microdissection and Pressure
Catapulting) using a MicroBeam microscope (P.A.L.M. Microlaser Technologies). Captured
material was catapulted directly into RNA extraction buffer (RLT buffer with β-
mercaptoethanol, Qiagen) and RNA extraction was conducted using the RNeasy Micro Kit
(Qiagen) according to the supplier recommendations. Purified RNA was eluted in RNase-free
water (Ambion) and kept at −80°C until use.

6. Immunohistochemistry
Immunohistochemistry was conducted on 5μm-thick paraffin-embedded tissue sections
immobilised on silanized slides. Depending on the target, epitope retrieval was achieved using
either 10mM citrate buffer for KDR and VEGF or Target Retrieval Solution (Dako) for PlGF,
HIF-1α and Flt-1. After quenching the endogenous peroxidase by 20 min. incubation in 0.5%
H2O2 in water, sections were incubated for one hour with primary antibodies. Mouse
monoclonal anti-HIF-1α (clone ESEE122 at 1/8000; Novus Biologicals), rabbit polyclonal
anti-PlGF (CPP500 at 1/50; Cell Sciences), rabbit polyclonal anti-VEGF (sc-152 at 1/200),
mouse monoclonal anti-KDR (sc-6251 at 1/100) or rabbit polyclonal anti-Flt-1 (sc-316 at
1/500), all from Santa Cruz were diluted in antibody diluent (S0809, Dako). After washing in
PBS, biotinylated secondary antibodies were added for 30 minutes: polyclonal rabbit-anti-
mouse (E0354 at 1/300 for KDR), polyclonal swine anti-goat, mouse, rabbit (E0453 at 1/300
for VEGF and PlGF) or polyclonal goat-anti-rabbit (E0432 at 1/300 for Flt-1), all from Dako.
Biotinylated secondary (E0354 at 1/600) and tertiary (polyclonal swine anti-goat, mouse,
rabbit; E0453 at 1/200) antibodies were used for HIF-1α detection. For different cell types,
intensity and consistency of the staining was scored by two independent microscopists blinded
for the clinical presentation (PB and CR) and averaged on 20 microscopic fields. Intensity
scores ranged from 0 (no staining) to 3 (very intense staining) and consistency was scored from
0 (no cell stained) to 3 (more than 2/3 of the cells stained) [35].

7. Statistical tests
Numerical values were compared between two groups using Mann-Whitney’s test and between
three groups using Kruskal-Wallis’ test. Immunohistochemistry scores (detailed above) were
compared across groups using Mann-Whitney’s test. All analysis was done on Stata 8.0
software. P values of less than 0.05 were considered as significant.

RESULTS
1. Participants’ characteristics

The characteristics of the participants whose samples were used in the RT-PCR analysis are
summarised in table 1A. Thirty-five women with active placental malaria and 24 uninfected
controls were included. Of women with placental malaria, 22/35 (63%) had intervillositis, and
8/35 (23%) had LBW babies. None of the uninfected women had intervillositis and only one
delivered a LBW baby (figure 1A). Despite statistical differences in gestational age, these were
ignored since all deliveries were within the normal range for term deliveries.

When malaria cases were separated on the basis of the presence/absence of intervillositis,
babies from uninfected women and infected women without intervillositis had similar birth
weights (P=.86) but the patients with intervillositis delivered significantly lighter babies than
infected women without intervillositis (P=.027) and than uninfected women (P=.007).
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2. Transcription profiles are not characteristic of a response to hypoxia
Quantitative real time RT-PCR was conducted to look for an increase in HIF-1α, VEGF, Flt-1
and sFlt-1 and a decrease in PlGF transcripts levels in malaria-infected samples, which would
be a signature of tissue hypoxia. First, the quality of the extracted RNA was assessed by
automated electrophoresis on RNA LabChipR (Bio-Rad). All the samples included in the study
had a ribosomal RNA 28s/18s ratio higher than 1 (data not shown).

No difference was found in transcripts levels for any of the markers when comparing controls
with malaria cases or between malaria cases with or without intervillositis (figure 2A). Samples
were then classified according to other clinical or biological features of PM: intervillositis
(regardless of malaria infection – data not shown) and LBW (figure 2B). Again, there was no
difference in transcription profiles between groups for any classification criteria.

These results suggest that none of the clinical or biological features of PM is specifically
associated with placental hypoxia.

3. Laser capture microdissection reveals differences in transcription profiles
Since monocytes can produce some of the markers quantified [36,37], the presence of
intervillositis in only a portion of the samples is a potential bias when comparing groups. Using
laser capture microdissection, we specifically addressed the transcription profile of the
syncytiotrophoblast layer (figure 3A).

When controls were compared to malaria cases (regardless of the presence or absence of
intervillositis), lower VEGF (P=.0026) and higher HIF-1α (P=.0005) transcripts levels in the
SCT of infected placentae compared to control placentae were the only statistical differences
noted. Differences in VEGF SCT levels did not reach significance (P=.49) when malaria cases
were split according to the presence/absence of intervillositis (figure 3B). HIF-1α SCT levels
were similar between malaria cases with or without intervillositis (P=.70) but higher than
control placentae (P=.0001 and P=.0027 respectively). Classification of the samples on the
basis of the presence/absence of intervillositis (regardless of malaria infection – data not
shown) or birth weight (figure 3C) did not yield any statistical differences. Taken together,
these data suggest that SCT transcription profile is not typical of a response to hypoxia but do
indicate differences which were not detected when addressing placental tissue as a whole.
Moreover, these differences appear to be associated with presence of malaria infection, and
not specifically with intervillositis, as they were present whether monocytes infiltrates were
detected or not.

4. Protein expression and tissue distribution is not characteristic of a response to hypoxia
To further validate these findings and look for a potential difference in protein expression and
tissue distribution of the different hypoxia markers, we determined the protein expression
profiles of the different samples using immunohistochemistry (IHC). Characteristics of the
patients included in the IHC experiments are summarised in table 1B. Only 2 patients delivered
LBW babies (figure 1B). All groups are comparable for every criterion (except the ones used
for classification such as birth weight), whatever the classification used (P≥.057).

a. Both microscopists found similar patterns—We determined VEGF, Flt-1, KDR,
PlGF and HIF-1α expression and tissue distribution for each placental tissue sample (figure
4). Both microscopists found the same expression and distribution profiles for each marker
(data not shown). Results are provided in supplementary table 2.

b. Protein expression and tissue distribution patterns do not correspond to
those reported for hypoxic tissue—When samples were classified into controls and
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malaria cases, no difference in consistency or intensity of staining was found for any of the
markers in any cell type. No difference was found when malaria cases were split according to
the presence/absence of intervillositis, or when samples were classified according to birth
weight. However, when samples were classified according to the presence/absence of
intervillositis, a more intense (P=.037) and consistent (P=.041) VEGF staining in the villous
stroma was found in samples with intervillositis. However, these differences were not
statistically significant after Bonferroni adjustment (P>.01). Staining patterns did not differ
between these two groups for any other marker.

Taken together, transcription and expression profiles suggest that PM is not associated with
placental hypoxia, and neither are LBW or intervillositis.

DISCUSSION
It has been long suggested that placental hypoxia could play a role in PM-associated FGR but
direct evidence for such a role has been lacking. We tested this hypothesis by looking for
molecular evidence of placental hypoxia in PM.

Cellular response to hypoxia is orchestrated by the transcription factor HIF-1, which modifies
the expression of several genes, in particular angiogenic factors. Using a very reliable and
sensitive quantitative real time RT-PCR approach, we could not associate any clinical or
biological features of PM with a transcription profile characteristic of a molecular response to
hypoxia when addressing the whole placental tissue.

The absence of transcriptional evidence for placental hypoxia in PM was further substantiated
by the lack of association between the clinical and biological features of PM and expression
patterns of hypoxia-specific markers as evidenced by immunohistochemistry. The staining
patterns obtained were similar to those previously described [27,28,38,39]. When we used a
previously validated scoring process [35] to quantify the expression of these markers, we found
no evidence for a hypoxia-specific expression pattern in any of the groups. Because only 2
samples were classified as LBW, we also used an alternative definition of LBW as a birth
weight lower than the 5th centile of a normal foetal growth curve [40] to compare appropriate
(n=32) and small (n=7) for gestational age infants and showed that they had similar IHC profiles
(data not shown).

Taken together, these results strongly argue against a role for placental hypoxia in PM
pathogenesis.

In contrast to a recent study that showed that PM was associated with an increase in sFlt-1
mRNA levels in normotensive primigravidae and in malaria-infected placentae with
intervillositis compared with control placentae [41], we did not find any difference in sFlt-1
RNA levels between the different groups when addressing either the whole tissue or
specifically the SCT. Differences in the recruitment criteria (we focused on normotensive
women, and included all gravidities, rather than just primigravidae) and in the technical
approaches used (the Flt-1 antibody we used only recognizes the membrane-bound form, unlike
the ones the authors used which binds both membrane-bound and soluble forms) could explain
these conflicting results. Moreover, each study was relatively small (around 60 women), and
suffers from some limitations in power. Further investigation of the interactions between
malaria and hypertension and pre-eclampsia in first pregnancies may be warranted.

Since all the samples in our cohort presented similar transcription and expression profiles, it
was possible that they could all be hypoxic as a consequence of labour or tissue handling.
However, since we included only placentae from children with a normal Apgar score, labour-
induced acute hypoxia is unlikely. Moreover, since HIF-1α transcript levels have been shown
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to change very rapidly after the onset of cellular hypoxia, if all samples had suffered from
hypoxia as a consequence of labour or tissue handling, all would have expressed similar levels
of HIF-1α transcript. But we did find a difference in HIF-1α SCT transcript levels between
malaria-infected placentae and controls, which further rules out the possibility of a general
labour-induced hypoxia.

The increased HIF-1α transcript levels in the SCT of malaria-infected placentae could reflect
local inflammation [42]. Indeed, hypoxia-induced HIF-1α up-regulation is thought to occur at
the level of protein stability (post-transcriptional). Thus, higher HIF-1α transcript levels in the
syncytium of malaria-infected placentae are likely to be a consequence of local inflammation
that could be both the underlying cause of the molecular and protein changes noted, and the
driving force behind malaria-associated LBW. Because similar HIF-1α transcripts levels were
found in malaria cases in the presence or absence of monocyte infiltrates, which are markers
of chronic inflammation, the increase in HIF-1α transcript levels might be due to a more acute
inflammation or to the presence of infected erythrocytes. Testing of this hypothesis requires
further study.

We could not associate any of the biological or clinical features of PM with a transcription or
expression profile characteristic of a response to hypoxia. This argues against a role for
placental hypoxia in PM-associated FGR pathogenesis. Although the role of placental hypoxia
in the pathogenesis of FGR has been well described, particularly in animal models [43], it is
not universally implicated in FGR. For example, in several studies there was no difference in
the expression of VEGF between normal and FGR-affected placentae [44–46].

Our study does not rule out the possibility of fetal hypoxia, which could decrease fetal growth.
Kingdom and Kaufmann described a situation leading to fetal hypoxia in the absence of
placental hypoxia when the fetoplacental perfusion is inadequate. This is known as post-
placental hypoxia [47]. However, one study did not find evidence of FGR-associated fetal
hypoxia [47]. Thus, assessment of placental and fetal blood flow throughout pregnancy [48]
combined with arterial gas analysis of cord blood appears to be essential to adequately address
the impact of a potential fetal hypoxia on intra-uterine growth during PM.
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Figure 1. Clinical characteristics of the participants
A. Among the individuals recruited in the RT-PCR assays, 7 had a low birth weight (LBW):
5 malaria cases with intervillositis, 1 malaria case without intervillositis and 1 control. B. In
the IHC assays, only 2 participants suffered from LBW (1 control and 1 malaria case). These
individuals showed similar IHC profiles, even when LBW was defined as small for gestational
age (n=7). Numbers refer to the number of samples from each overlapping group.

Boeuf et al. Page 11

J Infect Dis. Author manuscript; available in PMC 2009 October 12.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2. Transcription profiles of the different clinical groups
The transcript levels of the different hypoxia markers were quantified in all participants using
absolute quantitative real time RT-PCR and normalised to the expression of three placental
housekeeping genes. A. The transcription profiles were similar between controls (open bars,
n=24), malaria cases without intervillositis (light grey bars, n=14) and malaria complicated by
intervillositis (dark grey bars, n=21). B. No difference in transcription profiles was found when
comparing participants with normal birth weight (NBW, open bars, n=52) and patients with
LBW (grey bars, n=7). P>.05 Mann-Whitney’s test. Bars represent median, 25th and 75th

percentiles and the whiskers are 5th and 95th percentiles. Flt-1: VEGF receptor 1; HIF: Hypoxia-
inducible factor; PlGF: Placental growth factor; VEGF: Vascular endothelial growth factor;
sFlt-1: soluble Flt-1; Intervill.: intervillositis.
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Figure 3. SCT-specific transcription profile using laser capture microdissection
A. Syncytiotrophoblast was specifically captured from cryosections of placental tissue using
laser capture microdissection and its transcription profile was determined by quantitative real
time RT-PCR normalised to the expression of a placental housekeeping gene. B. Controls (open
bars, n=6), malaria cases without intervillositis (light grey bars, n=7) and cases with monocyte
infiltrates (dark grey bars, n=10) were compared. C. Participants with normal birth weight
(NBW, open bars, n=21) and LBW cases (grey bars, n=2) had similar transcription profiles.
P>.05 Mann-Whitney’s test. Bars represent median, 25th and 75th percentiles and the whiskers
are 5th and 95th percentiles. Flt-1: VEGF receptor 1; HIF: Hypoxia-inducible factor; PlGF:
Placental growth factor; VEGF: Vascular endothelial growth factor; sFlt-1: soluble Flt-1;
Intervill.: intervillositis.
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Figure 4. Examples of immunohistochemistry staining
The expression and tissue distribution of the different hypoxia markers were assessed on fixed
placental tissue sections. A. The specificity of the staining was checked by omitting the primary
antibody. B. PlGF syncytial and endothelial staining of a malaria-infected placenta. C. Flt-1
positive cells are found in the syncytium, villus vessel walls and Hofbauer cells. D. KDR
staining is mainly found in the villus vessels endothelium. In control placentas (E.), VEGF
mainly stained the syncytium but malaria-infected placentas with intervillositis, (F.), showed
significantly more frequent and intense staining of stromal cells. However, no difference was
found for HIF-1α staining when uninfected placentas (G.) were compared with malaria-
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infected ones (H.), both showing syncytial and stromal staining (possibly Hofbauer cells).
Original magnification: 200x. Colour balance, luminosity and contrast have been optimised.
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