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Abstract

Pediatric HIV infection remains a global health crisis with a worldwide infection rate of 2.5

million (WHO, Geneva Switzerland, 2009). Children are much more susceptible to HIV-1

neurological impairments than adults, which is exacerbated by co-infections. A major obstacle in

pediatric HIV research is sample access. The proposed studies take advantage of ongoing pediatric

SIV pathogenesis and vaccine studies to test the hypothesis that pediatric SIV infection diminishes

neuronal populations and neurogenesis in the hippocampus. Newborn rhesus macaques (Macaca

mulatta) that received intravenous inoculation of highly virulent SIVmac251 (n=3) or vehicle

(control n=4) were used in this study. After a 6–18 week survival time, the animals were sacrificed

and the brains prepared for quantitative histopathological analysis. Systematic sections through the

hippocampus were either Nissl stained or immunostained for doublecortin (DCX+), a putative

marker of neurogenesis. Using design-based stereology, we report a 42% reduction in the

pyramidal neuron population of the CA1, CA2, and CA3 fields of the hippocampus (p < 0.05) in

SIV-infected infants. The DCX+ neuronal population was also significantly reduced within the

dentate gyrus of the hippocampus. The loss of hippocampal neurons and neurogenic capacity may

contribute to the rapid neurocognitive decline associated with pediatric HIV infection. These data

suggest that pediatric SIV infection, which leads to significant neuronal loss in the hippocampus

within 3 months, closely models a subset of pediatric HIV infections with rapid progression.
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INTRODUCTION

An estimated 1,500 children under the age of 15 years become infected with HIV-1 daily in

resource poor areas, with most being perinatally infected through mother-to-child-

transmission (MTCT) [1]. Though approximately 100 countries have implemented

prevention of mother to child transmission (PMTCT) of HIV, only an estimated 10% of

pregnant women are offered this service worldwide and less than 6% in resource poor areas.

Perinatal transmission rates in developing nations remain high despite the UNAIDS effort to

eliminate new HIV infections among children by 2015 [1]. Within the United States there is

a perinatal infection rate of 1–3% annually despite early identification and triple anti-

retroviral therapy (ART). The developing immune system is more susceptible than the adult

to adverse viral infections [2] with about 25% of HIV-infected infants dying before their

second birthday [3].

Infants are disproportionately affected by HIV-1 related neurological impairments in

comparison to adults [4, 5]with children often displaying neurobehavioural deficits prior to

significant immunosuppression [6]. Imaging studies from HIV-1 positive children have

shown gross brain disturbances resulting in ventrical enlargement, sulcal widening, white

matter lesions, encephalopathy, global cortical atrophy, basal ganglia calcifications, altered

metabolite concentrations in the frontal cortex and hippocampus and potential demylenation

of the corpus callosum [6–8]. Neurobehavioural deficits suggest dysfunction of the frontal

cortex as well as the hippocampus with affected children presenting a range of fine and

gross motor impairments, cognitive delays, verbal deficits, memory deficits,visual

impairment, abnormal muscle tone, and spasticity [4, 6, 7].

Neonatal rodent models of intracranial HIV-1 tat antigen administration further support

clinical evidence that the neurons of the hippocampus, as well as hippocampal neurogenesis,

are particularly susceptible to the neurotoxic cascade of HIV-1 proteins [9]. Scarce

pathology reports from HIV-infected children have provided evidence of apoptosis in the

cerebral cortex associated with perivascular inflammation [10], but have been limited in

addressing HIV induced neuropathogenesis. Due to the persistent rates of HIV-1 infection in

developing nations (2–4), an assessment of the impact of early HIV-1 infection on brain

development is urgently needed. A significant barrier to pediatric HIV-1 neurological

research is sample access [2].

Non-human primates offer a valid alternative due to the fact that infant macaques show

similar neuroanatomical and immune system development to human infants [2].

Furthermore, human immunodeficiency virus and simian immunodeficiency virus infections

share a similar pathophysiology and MTCT is replicable in monkeys [2]. The pathogenic

uncloned SIVmac251 isolate used in the current study closely models a subset of pediatric

HIV-infection with persistently high virus replication and rapid progression; infant

macaques progress to simian AIDS (SAIDS) within 6 months. In light of the clinical

manifestations of pediatric HIV infection and the effects of HIV-related proteins on the

developing rodent brain we tested the hypothesis that SIV infection deleteriously affects the

integrity of the hippocampus by reducing the pyramidal and immature neuronal populations

in a pediatric model of HIV infection.
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METHODS

Newborn rhesus macaques (Macacca mulatta) were hand-reared in the nursery of the

California National Primate Research Center (CNPRC) in accordance with American

Association for Accreditation of Laboratory Animal Care Standards. We strictly adhered to

the “Guide for the Care and Use of Laboratory Animals” prepared by the Committee on

Care and Use of Laboratory Animals of the Institute of Laboratory Resources, National

Resource Council. The experimental protocol was reviewed and approved by the University

of California Davis Institutional Animal Care and Use Committee. A total of 7 neonatal

monkeys were randomly assigned to one of two groups (Group 1-control, n=4; Group 2-

SIV infection, n=3). Within 72 hours after birth, subjects in group 2 received intravenous

inoculation with 100 tissue culture doses 50% (TCID50) of SIVmac251 obtained from the

Analytical and Resource Core at CNPRC [2]. Plasma viral loads were quantified by real-

time RT-PCR [11]. Although the dose of this virus inoculum is still higher than how most

human infants acquire perinatal HIV infection, this moderate dose was selected to obtain a

100% infection rate in a well-established animal model of perinatal infection.[2,].

The SIV-infected infants were euthanized between 7 and 10 weeks of age (Table 1) when

they met the established clinical criteria for euthanasia of retrovirus-infected animals

(including symptoms like lethargy, weight loss, dehydration, diarrhea and opportunistic

infections unresponsive to standard treatments). The brains were extracted, post-fixed in

10% formalin, blocked into 1-cm slabs in the coronal plane, cryoprotected in 30% buffered

sucrose, and frozen at −80°C until further processing. Ten parallel series of coronal sections

(50μm) were obtained from each animal with the first series being Nissl stained with cresyl-

violet for design-based stereology. The remaining series were placed in antigen preserve

(50% ethylene glycol, phosphate buffer pH=7.4, and 1% polyvinal pyrrolodone) and stored

at −20°C for future immunohistochemical analysis.

Design-Based Stereology

Total estimation of the pyradimal neuronal population of the hippocampus cornu ammonis

fields (CA1-3) was achieved using the optical fractionator method. Sampling parameters are

similar to previously described methods of design-based stereology in the primate

hippocampus [13]. Briefly, sections topography and superimposed counting frames

(disectors) were generated through the MicroBrightField StereoInvestigator program

(Williston, Vermont, USA) attached to a Nikon Eclipse microscope under 4x (topography)

and 60x (counting objective: Plan Fluor oil-immersion, N.A.=1.4) objectives. For the

stereological parameters in this study every 20th section was selected with a random starting

point within 500μm of the beginning of the CA fields and continued to the CA fields were

no longer visible. Sampling in the absence of a visible dentate gyus granular layer of the

most anterior and posterior regions ensured an estimation of the entire CA hippocampal

neuronal population. The total estimation of pyramidal neuronal numbers (N) was calculated

by the following equation:
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Where ssf is section-sampling fraction, asf is area-sampling fraction, tsf is thickness-

sampling fraction (where the measured thickness of the tissue is divided by the dissector

height), and ΣQ− is total number of objects of interest counted. For this study, a neuron was

defined as having a visible centrally located nucleolus and defined cytoplasm. The average

coefficient of error (CE) for total number of neurons was determined to assess reliability of

measurements.

Immunohistochemistry

A complete series of sections spanning the entire hippocampus area was taken from the

developmental brain bank to undergo doublecortin staining (DCX), a putative marker of

immature neurons [14]. Standard batch immunohistochemical techniques were followed for

the DCX immunohistochemistry. Briefly, free floating sections were rinsed in PBS 3 times,

incubated for 1 hour in a pretreatment (3% hydrogen peroxide, 20% methanol in PBS),

blocked for 1 hour in 3% normal horse serum and then incubated overnight in goat anti-

DCX (1:400 Santa Cruz #sc-8066) at room temperature. The next day, sections were washed

in PBS and incubated in horse anti-goat secondary antibody (1:200, Vector) for 1.5 hours,

followed by 1.5 hours in ABC (Vector) and visualized with DAB (Sigma). Next, sections

were wet-mounted on gelatinized slides and air dried overnight. The following day, sections

were dehydrated in graded ethanol (50–100%), cleared in xylene and coverslipped with

DPX mounting media (VWR Int. Poole, UK).

Statistical analysis

Statistical differences were determined using the Mann-Whitney U test of significance on

the GraphPad InStat3 program (La Jolla, California, USA). The coefficient of variation (CV

= SD/mean), presented in parenthesis was calculated for neuronal numbers and volume

estimation. The CE for the different measurements was calculated as .

Results

One section of every 20th section (SSF) was selected from the entire rostral-caudal extent of

the hippocampus. The first sections were taken from the CA1 subfield, which produced a set

sample of 13–16 sections throughout the rostral-caudal region. Standard scan grid sizes of

500μm × 500μm, 250μm × 250μm, and 350μm × 350μm were used for CA1, CA2, and CA3

respectively. For each disector site a standard 40μm × 40μm × 10μm counting frame was

employed. Section thickness was measured at each counting site with an average measured

thickness of 17.87μm, which provided an average guard height of 3.93μm(Table 2).

Perinatal SIV infection resulted in an overall average of 42% reduction (Figure 1) in the

total number pyramidal neuronal population (p = 0.0286). There were significant neuronal

reductions in the CA1 region (1.106 × 106, CV = 0.05 SIV+ vs 1.996 × 106, CV = 0.145

control), CA2(0.240 × 106, CV = 0.173 SIV+ vs 0.434 × 106, CV = 0.057 control), and

CA3(0.730 × 106, CV = 0.189 SIV+ vs1.182 × 106, CV = 0.174control) in SIV+ versus

control subjects (p = 0.0286 for each group; Figure 1). The estimation of neurons produced a

ratio BCV2/CV2 of greater than 0.85 for both groups indicating low sampling error and a

precise estimate of hippocampal neuronal population.
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Immunostaining of the hippocampus for DCX indicated an observable reduction in

immature neurons of the dentate gyrus. The reduced pattern of DCX+ neurons was apparent

in each SIV+ subject whereas in the control subjects, the density of immature neurons

occluded visible identification of individual neurons (Figure 2).

Discussion

Using a perinatal MTCT non-human primate model to study the neuropathogenesis of SIV

infection, we provide evidence of loss of pyramidal neurons of the CA1-3 fields along with

a dramatic reduction in immature neurons within the first three months of infection. While

much of the clinical research focuses on global cortical changes and the basal ganglia [6–8],

there is increasing evidence of HIV-1 related toxicity in the hippocampus [9, 15–18]. Neural

atrophy of the hippocampus is also reported in young adult monkeys following SIV

infection [19]. Intracranial injections of the HIV-1 associated proteins gp120 and Tat in

neonatal rats have been found to significantly reduce neuronal populations of the CA2 and

CA3 fields of the hippocampus [9, 20] and suppress long-term potentiation of CA1 neurons

[20] which was correlated to declines in spatial memory [9]. Additionally, HIV-1 gene

sequences have been detected in the hippocampus of post-mortem brains [17]

The paucity of hippocampal neurons following neonatal SIV infection provides anatomical

evidence for memory impairments in HIV infected children. Under normal developmental

conditions the pyramidal neuronal population remains stable during the first two years of

life, while neurogenesis in the dentate gyrus peaks during the first three months [13]. Thus

any damage of the hippocampus structure/function will likely result in long-term

neurological consequences as reported in HIV positive children [18]. HIV-1 has been

reported in neural progenitors of archival pediatric brain tissue providing clinical evidence

of an interaction between HIV-1 and neural progenitors [16]. In vitro, both gp120 and Tat

proteins have been found to attenuate proliferation of human neural progenitor cells

(hNPCs) [18]without affecting the viability of pre-existing hNPCs [18]. A novel finding in

this study is the apparent reduction in DCX+ neurons in the dentate gyrus. Whether this

reflects a neurotoxic effect on established immature neurons, an acceleration of the

maturation process as a repair mechanism, or an attenuation of neural progenitor

proliferation remains to be determined.

Neuroinflammation and breakdown of the blood brain barrier (BBB) have been implicated

as mechanisms contributing to HIV-1 related neurological disorders [21–24]. Once the virus

transverses the BBB, its ability to infect cells depends on the presence of CCR5 and

CXCR4, which increases in expression from birth to 9 months of age in the primate

hippocampus [25]. Expression of CD4 receptors and the chemokine co-receptors CCR5 and

CXCR4 play an important role in the pathogenesis of HIV [25] and signaling through these

receptors results in a balance between survival/pro-inflammatory neuronal death [26]. These

receptors are expressed on neural progenitor cells and have been proposed to play a role in

HIV induced reductions in neurogenesis [24, 27]
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CONCLUSION

The extent of HIV-1 infection of specific cell types, neuronal loss, and its mechanism of

action in infants is currently unknown [6], severely limiting the ability to develop and

evaluate therapeutic paradigms to minimize the neurological impairments as a result of

HIV-1 infection. Proliferating NPCs in the dentate gyrus can be upregulated with the

serotonin specific re-uptake inhibitor paroxetine even in the presence of HIV Tat protein

[18]. Neurobehavioural and cognitive dysfunction remains prevalent in perinatally infected

children even if they receive combination ART [4, 6, 8]. Although ART suppresses

peripheral viral replication, it has a relatively low bioavailability in the central nervous

system thereby allowing the brain to be a viral reservoir and potentially exacerbating

neuropathogenesis of pediatric HIV infection [6]. In order to take advantage of

developmental plasticity in future potential therapeutic interventions aimed at minimizing

neurological impairment by pediatric HIV infection as well as co-infections (e.g.

tuberculosis and malaria), it is necessary to define the response to HIV-1 infection during

the early developmental period.
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Figure 1. Hippocampal Pyramidal Neuronal Population
Neuonal populations were reduced in CA1-3 fields with an reduction in CA1 volume (p<

0.05). SIV infected infants (A–C) displayed gross morphological differences such as

enlarged ventricles and thinned pryamidal layers compared to control subjects (D–F).

Magnifications of 1.25× (A & D), 20× (B & E) and 100× (C & F) are displayed above; scale

bars = 5mm, 200μm, and 50μm respectively.

Curtis et al. Page 8

Neuroreport. Author manuscript; available in PMC 2015 September 10.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 2. DCX+ Immature Neurons
There is an apparent lack of DCX+ neurons observed in the dentate gyrus of SIV+ subjects

(A–C) as compared to control subjects (D–F). Magnifications of 1.25× (A & D), 20× (B &

E) and 100× (C & F) are displayed above; scale bars = 5mm, 200μm, and 50μm

respectively.
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