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Abstract
Previous investigations demonstrated that repeated stresses before an ethanol exposure sensitize
ethanol withdrawal-induced anxiety-like behavior (‘anxiety’). In addition to activating the
hypothalamic–pituitary–adrenal axis, acute stress also elevates cytokines in brain. Initially, to test
possible cytokine involvement in this stress/withdrawal protocol, cytokines were increased in
brain with 2 weekly repeated lipopolysaccharide (LPS) administrations (1000 μ/kg) (LPS/
withdrawal protocol) or with twice weekly intracerebroventricular (i.c.v.) administrations of the
cytokines IL-1β, CCL2 (MCP-1) or TNFα (cytokine/withdrawal protocol) before exposure and
withdrawal from a 5-day cycle of chronic ethanol diet. Both protocols sensitized withdrawal-
induced anxiety and confirm cytokine involvement in the sensitized anxiety response. Testing of
various doses of LPS (16–1000 μg/kg) and TNFα (3–100 ng, i.c.v.) demonstrated the dose-related
nature of these protocols to sensitize withdrawal-induced anxiety. The sensitized anxiety was not
produced by a single 5-day ethanol diet cycle or by repeated LPS or cytokine treatments alone.
Likewise, sensitized anxiety in these protocols could not be attributed to differences in ethanol
ingestion. When challenged with a subsequent re-exposure to a 5-day ethanol diet cycle 16 days
after completion of the LPS/withdrawal or cytokine/withdrawal protocols, an increase in
withdrawal-induced anxiety was observed—an indication of induction of an underlying persistent
adaptive change. Finally, just as found previously with the stress/withdrawal protocol,
administration of the benzodiazepine receptor antagonist flumazenil before the LPS or TNF
treatments prevented anxiety sensitization. Together, these findings indicate that increased
cytokine activity induces adaptive change that supports sensitization of ethanol withdrawal-
induced anxiety that may be linked to GABAA-receptor function.
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INTRODUCTION
Based upon the observation that symptoms of withdrawal increase over time in alcoholics
(Ballenger and Post, l978), McCown and Breese (1990) found that repeated withdrawals
from chronic ethanol diet facilitated kindling of seizure activity from the inferior colliculus
—a finding consistent with induction of cumulative adaptation by the repeated ethanol
exposures. Subsequent experiments explored whether emotional symptoms were sensitized
by repeated withdrawals (Overstreet et al, 2002). In these latter investigations, just three
withdrawals from 5-day cycles of chronic ethanol diet sensitized anxiety-like behavior
(‘anxiety’) during the final withdrawal (Overstreet et al, 2002; Breese et al, 2004). Because
this sensitization was not observed after exposure to continuous ethanol diet for the period
the cycled rats experienced ethanol, it was hypothesized that the repeated withdrawals
caused a cumulative adaptation that supported sensitization of this negative emotional
response (Overstreet et al, 2002; Breese et al, 2005a).

Because reports implied that stress increases the risk of relapse in alcoholics (Breese et al,
2005c; Brown et al, 1995; Pohorecky, 1991; Sinha, 2001), the ability of restraint stress
(substituted for the initial withdrawals in the repeated withdrawal protocol) to sensitize
anxiety-like behavior following withdrawal from a single 5-day exposure to ethanol diet
(stress/withdrawal protocol) was tested. Breese et al (2004) reported that this repeated
exposure to restraint stress followed by a limited ethanol diet regimen did sensitize anxiety
upon withdrawal. Importantly, withdrawal from a single 5-day exposure to the 4.5% ethanol
liquid diet itself did not elevate anxiety (Breese et al, 2004). Therefore, since stress alone
was not able to sensitize anxiety, a synergistic interaction between the previous stresses and
the subsequent chronic ethanol exposure was proposed to account for this sensitization.

Based upon evidence that stress and chronic ethanol had common influences on the central
nervous system to influence emotional behavior associated with withdrawal from chronic
ethanol, mechanisms that might explain this common influence were sought. One
overlapping aspect of acute stress (Carrasco and Van de Kar, 2003; Vale et al, 1981; Rivest
and Rivier, 1994) and acute ethanol (Rivier et al, 1984; Rivier, 1996) is an effect on the
hypothalamic–pituitary–adrenal (HPA) axis. Although early studies implicated cytokines in
the release of CRF and HPA axis activation (Berkenbosch et al, 1987; Sapolsky et al, 1987;
Takemura et al, 1997; Turnbull et al, 1997; see review in Turnbull and Rivier, 1995, 1999a,
b), the possibility that cytokines might be involved in the adaptive change responsible for
withdrawal-induced anxiety following the stress/withdrawal protocol had not been
considered. Nonetheless, previous work demonstrated that chronic ethanol exposure
increased cytokines in brain (Kiefer et al, 2002; Emanuele et al, 2005) and affected cytokine
action on the HPA axis (Ogilvie et al, 1998). Therefore, the possibility that cytokines could
be involved in the adaptive change responsible for sensitization of anxiety during
withdrawal was explored with the use of LPS.

Because the stress/withdrawal protocol sensitized anxiety following withdrawal from a
single re-exposure to 5 days of ethanol (Overstreet et al, 2002; Breese et al, 2004),
experiments were conducted to determine if LPS (which is known to increase brain
cytokines—Breder et al, 1994; Buttini et al, 1997; Hagan et al, 1993; Hillhouse and Mosley,
1993; Ilyin et al, 1998; Matalka et al, 2005; Quan et al, 1994; unpublished data)
administered repeatedly before a single ethanol diet exposure would produce a similar effect
as stress to sensitize withdrawal-induced anxiety. In this report, new data demonstrate that
these two systemic administrations of varying LPS doses at weekly intervals before a single
5-day exposure to ethanol diet sensitized withdrawal-induced anxiety. Subsequently, to
address the possibility that a central action of cytokines by the repeated LPS exposure could
be responsible for its sensitization of withdrawalinduced anxiety, experiments were
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conducted to determine whether repeated central administration of IL-1β, CCL2 (MCP-1),
or TNF-α before a single exposure to chronic ethanol would, like LPS, sensitize withdrawal-
induced anxiety. Finally, given that flumazenil administered during the repeated withdrawal
and repeated stress/withdrawal protocols prevented the cumulative adaptation that supported
withdrawal-induced anxiety (Breese et al, 2004; Knapp et al, 2004, 2005; Overstreet et al,
2003), we examined whether administration of this drug before the initial exposures to LPS
or TNF-α would have a similar inhibitory effect on anxiety during withdrawal and whether
the flumazenil would prevent the persistent sensitivity to withdrawal from a future re-
exposure to 5 days of ethanol diet (Overstreet et al, 2003; Breese et al, 2004; Knapp et al,
2004).

METHODS
Animals

Male Sprague–Dawley rats (Charles-River, Raleigh, NC) approaching 6 weeks of age (180–
200 g) were initially housed in groups of three or four and fed normal chow for several days
to adapt to the animal facility conditions (light:dark cycle of 12:12, with lights on at 0700
hours). Subsequently, the rats were individually housed and exposed to control and ethanol-
containing diets. For implanting injection cannulae into the ventricles for
intracerebroventricular (i.c.v.) administration, the rats were anesthetized with pentobarbital
sodium (50 mg/kg). The surgical procedure involved opening the skin over the skull, drilling
a small hole in the skull directly over the ventricle, placing the cannulae stereotaxically over
the ventricle, and placing screws in the skull before addition of cranioplastic cement to
secure the entire head apparatus. Post-surgical care required to minimize discomfort
included application of local anesthetic to the wound area along with antibiotic cream and
administration of sweetened pediatric Tylenol (100–300 mg/kg acetaminophen per day) in
their drinking water for 2 days after surgery. It was confirmed at the end of the procedure for
each rat that the injector needle tip was in the ventricle. The Institutional Animal Care &
Use Committee (IACUC) at the University of North Carolina approved all procedures
described.

Ethanol and Control Diets
After placement in individual cages, rats received a lactalbumin/dextrose-based nutritionally
complete liquid diet (with concentrations of vitamins, minerals, and other nutrients derived
from Dyets Inc., Bethlehem, PA) (Frye et al, 1983; Overstreet et al, 2002). Dextrose calories
in the control diet were equated with calories for ethanol in the ethanol-containing diet.
After 3 days of accommodation to control diet, a portion of rats continued on this diet for the
duration of the experiment. Other rats were placed on the cycled regimen of 4.5% (w/v)
ethanol diet (ethanol-treated groups). A modified pair-feeding design was used for control
rats to provide a volume of control diet equivalent to the average volume of ethanol diet
consumed the previous day by the rats maintained on ethanol diet. Rats were weighed at
weekly intervals to establish groups with similar body weights. After withdrawal, some
animals were returned to normal chow for 16 days, at which time they were re-exposed to 5
days of the 4.5% ethanol diet or control diet.

Repeated Exposure to LPS and Selected Cytokines before Chronic Ethanol
These experiments evaluated the effect of repeated LPS (Calbiochem, La Jolla, CA) or
repeated proinflammatory cytokine administration (rat IL-1β; TNFα: R&D Systems,
Minneapolis, MN, or MCP-1: Leinco Technologies, St Louis, MO) on social interaction
after exposure to the repeated withdrawal protocol. Rats on control diet were treated with
either varying doses of LPS (i.p., saline vehicle) or designated cytokines (100 ng/5 μl)
administered i.c.v. over a 2-min period at 1-week intervals before either continuing on
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control diet or switching to 5 days of ethanol-containing liquid diet (Figure 1). This 100-ng
dose of the cytokines was initially chosen from literature as one having consistent effects on
other functions (Ufnal et al, 2006;Plata-Salaman and Borkoski, 1994;Plata-Salaman et al,
1996). After showing that the 100-ng dose of TNFα sensitized withdrawal-induced anxiety,
several doses of TNFα were chosen to determine if lower doses would have a similar
consequence. For i.c.v. administrations, the cytokines were dissolved in artificial
cerebrospinal fluid vehicle. Rats not receiving cytokines received vehicle. The 2-day delay
(before ethanol diet was administered) was included in order to prevent any effect of the
LPS or cytokines on ethanol diet intake (Figure 1). As noted above, some rats exposed to the
LPS/withdrawal and cytokine/withdrawal protocols and control diet were also given an
additional 5-day exposure to 4.5% ethanol diet 16 days after the protocols to test for
persistence of adaptation that can sustain withdrawal-induced anxiety-like behavior
(Overstreet et al, 2002;Breese et al, 2004).

Flumazenil Treatment before Repeated LPS Administration
To determine if the repeated LPS/withdrawal and the TNFα/withdrawal protocols share
sensitivity to flumazenil inhibition of withdrawal-induced anxiety-like behavior after the
repeated withdrawal and repeated stress/withdrawal protocols (Breese et al, 2004; Knapp et
al, 2004, 2005), rats were treated with flumazenil (5 mg/kg, 2 ml/kg i.p.; Roche, Basel,
Switzerland) or 0.5% carboxymethylcellulose vehicle 30 min before each of the two weekly
doses of LPS (250 μ; i.p.) or TNFα (30 ng, i.c.v.), but not during withdrawal from the 5 days
of ethanol diet. This dose of flumazenil was chosen based upon effectiveness in previous
studies to diminish the adaptive change induced by the repeated withdrawal protocol (Knapp
et al, 2004, 2005) and the repeated stress/withdrawal protocol (Breese et al, 2004).
Subsequently, social interaction was measured in controls and drug-treated groups as noted
above.

Measurement of Social Interaction
The social interaction test introduced by File and Hyde (1978) has been validated as a
measure of anxiety-like behavior in many investigations (File, 1980; Guy and Gardner,
1985; Irvine et al, 2001; see review by File and Seth, 2003). In this test, the amount of time
animals actively interacted (ie, grooming, sniffing, boxing, or crawling over/under each
other) during a 5-min session is measured. Testing of rats unfamiliar to the environment was
carried out under relatively low lighting in a square open field (60 × 60 cm2, with 16 squares
marked on the floor; Overstreet et al, 2002). Social interaction was determined utilizing data
from individual rats in the pair (Overstreet et al, 2002, 2003; Breese et al, 2004), a proven
modification of the standard social interaction test (File, 1980; File and Seth, 2003). For this
investigation, the time rats spent in social interaction was measured 5–6 h after removal of
the ethanol diet to assess the degree of withdrawal-induced anxiety-like behavior. Generally,
each squad of 40 rats was tested in subgroups of 20 with balanced numbers of rats in each
treatment group. Rat pairs were matched on the basis of body weights and treatment
conditions and placed simultaneously in the open field (Overstreet et al, 2002). Line crosses
(by two forepaws), which served as a measure of locomotor activity independent of social
interaction (File, 1980; Overstreet et al, 2002), were recorded simultaneously with social
interaction. Experienced observers who scored rats were ‘blind’ to treatment conditions. In
some cases, controls within groups that had no surgery were also tested. Because these data
did not differ from that of rats with surgery, these data were combined.

Data Analysis
Statistical analyses were carried out using the GBStat software package. The data were
initially analyzed by ANOVAs. If the main effects were statistically significant, post hoc
analyses were performed using Tukey’s protected t-tests, as described previously (Breese et
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al, 2004; Knapp et al, 2004, 2005; Overstreet et al, 2002). As noted in the tables, there were
typically at least six or more rats in each group being investigated.

RESULTS
Dose-Effect of Repeated LPS on Withdrawal-Induced Anxiety-Like Behavior

In the initial experiment, it was demonstrated that twiceweekly administrations of various
LPS doses before a single exposure to a single 5-day 4.5% ethanol diet (ED LPS; LPS/
withdrawal protocol) significantly reduced social interaction upon withdrawal (F(8,87) =
22.89, p < 0.0001; Figure 2). Repeated weekly administration of LPS alone (250 or 1000 μg/
kg to rats maintained on control diet (CD LPS 1000/250)) did not affect social interaction.
Likewise, as previously reported (Breese et al, 2004;Overstreet et al, 2004), 5 days of
ethanol liquid diet in animals that received vehicle (ED Veh) did not change social
interaction compared with control diet (CD Veh) animals. Ethanol intake for the rats in these
groups is presented in Table 1. In each case of the LPS/withdrawal protocol treatments, the
ethanol intake of the rats did not differ across the groups that received ethanol. These
findings are consistent with previous data showing blood ethanol concentrations in animals
exposed to repeated withdrawals or repeated stress/withdrawal protocols were equivalent to
rats that received continuous ethanol (Breese et al, 2004;Overstreet et al, 2002).
Importantly, the body weights of the animals also did not differ. However, locomotor
activity was significantly reduced in all groups of rats that received ethanol diet but was
somewhat higher in the control group that received LPS alone.

Effect of Repeated Cytokine Administration before 5-Days of Ethanol Diet on Withdrawal-
Induced Reduction in Social Interaction

As LPS increases cytokines in brain (Breder et al, 1994; Buttini et al, 1997; Hagan et al,
1993; Hillhouse and Mosley, 1993; Ilyin et al, 1998; Matalka et al, 2005; Quan et al, 1994),
it was next determined if cytokines could indeed be responsible for the LPS/withdrawal
protocol sensitization of withdrawal-induced anxiety. To test this possibility, the cytokines
(IL-1β, CCL2 (MCP-1), and TNFα (100 ng)) or vehicle were given i.c.v. at weekly intervals
(instead of systemic LPS) before the 5-day exposure to ethanol diet (cytokine/withdrawal
protocol). As shown in Figure 3, repeated administration of a 100-ng dose of each of these
cytokines before ethanol-diet exposure, like LPS, reduced social interaction during
withdrawal (F(5,59) = 22.41, p < 0.0001), a reflection of the ability of the cytokine/
withdrawal protocol to sensitize withdrawal-induced anxiety-like behavior.

In order to test for dose–response effects of cytokine influences on sensitization of
withdrawal-induced anxiety, various doses of TNFα (3–100 ng) were administered i.c.v.
twice at weekly intervals before a 5-day cycle of 4.5% ethanol diet. As shown in Figure 4,
TNFα was again active (F(5,58) = 24.99, p < 0.0001) at doses as low as 3–10 μg with the
effect of the 3 μg dose being significantly different from all other groups. Finally, there was
no difference in ethanol intake, body weight, or locomotor behavior after the various
cytokine treatments (Tables 2 and 3).

Effect of the LPS/Withdrawal or Cytokine/Withdrawal Protocols on Withdrawal-Induced
Anxiety from Re-Exposure to Chronic Ethanol Diet

Previous data show that rats previously exposed to the repeated withdrawal (Overstreet et al,
2002) or the stress/withdrawal (Breese et al, 2005b) protocols exhibited sensitized anxiety-
like behavior upon withdrawal from a future re-exposure to an additional 5 days of ethanol
diet 16 days after the initial withdrawal. Therefore, the possibility that the repeated LPS/
withdrawal and the cytokine/withdrawal protocols would produce a similarly persistent
sensitization of withdrawal-induced anxiety after re-exposure to an additional 5 days of
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ethanol diet was assessed. As shown in Figure 5, reinstatement of the ethanol diet 16 days
after the initial LPS or cytokine (IL-1β or TNFα)/withdrawal protocols reduced social
interaction equivalent to that observed during withdrawal from the initial treatments (F(4,35)
= 13.93, p < 0.0001; compare to Figures 3 and 4). Finally, no differences among the groups
were found on ethanol intake, locomotor behavior, or body weight (Table 4) despite the
persistent effect of cytokines on social interaction behavior (Figure 5).

Flumazenil Treatment before LPS and TNFα Blocks Sensitized Withdrawal-Induced Anxiety
Induced by the LPS/and TNFα/Withdrawal Protocols

Previous work demonstrates that flumazenil given before initial repeated withdrawals or
repeated stresses, but not the final withdrawal, minimized withdrawal-induced anxiety-like
behavior (Breese et al, 2004; Knapp et al, 2004, 2005; Overstreet et al, 2003). Based upon
these findings, flumazenil (5 mg/kg, i.p.) was given before each repeated dose of LPS or
TNFα to determine if the withdrawal-induced anxiety-like behavior that accompanies the
LPS/and TNFα/withdrawal protocols would be affected. As shown in Figure 6a, prior
flumazenil treatment significantly reduced the deficit in social interaction induced by these
protocols (F(4,44) = 24.79, p < 0.0001). Previous results indicate that two injections of
flumazenil to rats receiving control liquid diet had no effect on social interaction (Knapp et
al, 2004, 2005). In addition, when retested after re-exposure to an additional cycle of ethanol
diet 16 days later, the prior flumazenil treatment retained activity to limit the magnitude of
‘reinstated’ ethanol withdrawal-induced anxiety response (Figure 6b) (F(4,26) = 7.02, p <
0.001). However, no differences among the groups were found on ethanol intake, locomotor
behavior, or body weight (Tables 5 and 6).

DISCUSSION
Repeated stresses before a single 5-day cycle of ethanol diet sensitize withdrawal-induced
anxiety (Breese et al, 2004). Stress not only can increase cytokine levels (Black, 2002; Deak
et al, 2005; Minami et al, 1991; Nguyen et al, 1998; O’Connor et al, 2003; Shintani et al,
1995a, b; Shizuya et al, 1997; Suzuki et al, 1997) but also can augment the effects of a
subsequent increase in cytokines by LPS or stress (Johnson et al, 2004; Munhoz et al, 2006;
Takemura et al, 1997). These findings led to the hypothesis that cytokines are involved in
depressive illness (Anisman and Merali, 2003; Dunn et al, 2005; Hayley et al, 2005; Raison
et al, 2006; Simen et al, 2006) and addictive behavior (Crews et al, 2006; Friedman and
Eisenstein, 2004). Further, the release of CRF by stress partly depends on cytokines
(Sapolsky et al, 1987; Turnbull and Rivier, 1995). Therefore, the potential existed that
cytokines could substitute for stress to sensitize withdrawal-induced anxiety that follows 5
days of alcohol diet (Breese et al, 2004), particularly given the view that cytokines can act
as neuromodulators (Adler et al, 2006; Bauer et al, 2007). The present work demonstrates
that repeated administration of LPS before 5 days of chronic ethanol exposure sensitized
withdrawal-induced anxiety. It is well established that this amount of ethanol exposure itself
does not normally induce this behavioral syndrome upon withdrawal (Breese et al, 2004;
Overstreet et al, 2002; Knapp et al, 2004, 2005; Figures 2 and 3). Likewise, LPS exposure in
the absence of the chronic ethanol exposure did not affect this measure of anxiety-like
behavior. As LPS is known to increase cytokines in brain (Grinevich et al, 2001; Hagan et
al, 1993; Hillhouse and Mosley, 1993; Ilyin et al, 1998; Matalka et al, 2005; Munhoz et al,
2006; Obuchowicz et al, 2006; Quan et al, 1994; Zujovic et al, 2001), it was speculated that
the ability of the repeated LPS exposure to affect withdrawal-induced anxiety is related to a
central expression of cytokines.

To test this latter view, the cytokines IL-1β, CCL2 (MCP-1), and TNFα were administered
i.c.v. at weekly intervals before 5 days of ethanol diet to substitute for the LPS exposure.
Like LPS, the repeated exposure to these cytokines induced an adaptive change as evidenced
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by emergence of sensitized anxiety-like behavior upon withdrawal from a single 5-day
exposure to chronic ethanol diet. The fact that repeated systemic LPS and repeated i.c.v.
cytokine administration did not affect the amount of ethanol ingested seems to eliminate the
possibility that an increase in blood ethanol concentration is responsible for this
sensitization. Additionally, a reduction in locomotor activity did not consistently relate to
the change in withdrawal-induced anxiety in the various LPS/ethanol or cytokine/ethanol
groups. Further, ameliorative drug treatments (eg, flumazenil) dramatically altered anxiety-
like behavior with little impact on locomotor behavior. Thus, as consistently established
(Overstreet et al, 2002), locomotor activity in this social interaction test appears to be
differentially regulated from anxiety-like behavior. Conversely, while reduced locomotor
activity was observed on occasion (Table 1), the relative independence of the two behaviors
was further underscored by the reduced locomotor activity in an ethanol diet-treated group
with no concurrent change in anxiety-like behavior (Figure 2). Previous observations
showing no correlation between social interaction behavior and locomotor behavior or
between the social interaction behavior of members in a socially interacting pair further
emphasize this point (Overstreet et al, 2002). It should also be noted that behavioral testing
was conducted in a drug-free state; therefore, acute nonspecific effect of the treatments was
not operating. Overall, the present results are consistent with previous findings that
overexpression of cytokines in autoimmune mice is associated with anxiety (Schrott and
Crnic, 1996) and reports of cytokine administration to rodents producing anxiety (Cragnolini
et al, 2006).

Earlier studies from our laboratory demonstrate that the repeated withdrawal and the stress/
withdrawal protocols have an extended maladaptive influence (Overstreet et al, 2002;
Breese et al, 2004). This persistent effect of these protocols is emphasized by induction of
anxiety-like behavior following a subsequent withdrawal from a future re-exposure to 5 days
of ethanol diet (Overstreet et al, 2003; Breese et al, 2004). Such an ethanol challenge to rats
previously treated with only control diet did not affect the social interaction measure, a
finding suggesting that the sensitization depends on the previous repeated exposure to the
withdrawal and the stress/withdrawal protocols (Overstreet et al, 2002; Breese et al, 2004).
In the present investigation, rats exposed to the LPS/withdrawal protocol showed a similar
cumulative persistent adaptive effect on social interaction when a future re-exposure to
ethanol was delayed for 16 days—a result comparable to that observed previously
(Overstreet et al, 2002; Breese et al, 2004). Likewise, the repeated IL-1β and TNF-α/
withdrawal protocols induced an anxiety-like behavioral response upon withdrawal
following a similar 16-day delay in re-exposure to chronic ethanol diet. This latter
observation suggests that the persistent adaptation observed with the LPS/withdrawal
protocol depends upon its influence on cytokines (Munhoz et al, 2006; Obuchowicz et al,
2006).

To gain further evidence that the LPS/withdrawal and the TNFα/withdrawal protocols
shared an additional common relationship with the stress/withdrawal protocol, flumazenil
(which prevents sensitization of anxiety-like behavior induced by the stress/withdrawal
protocol; Breese et al, 2004) was administered before each of the two LPS or the TNFα
treatments given before the 5 days of ethanol diet. Flumazenil prevented the anxiety-like
behavior in both protocols. Further, flumazenil prevented the reappearance of anxiety upon
withdrawal from an additional cycle of ethanol diet introduced 16 days later. Thus, the
induction and the prevention of the sensitized response appear to reflect modulation of a
persistent maladaptive change. Although the mechanism responsible for this effect of
flumazenil is unknown, this pharmacological finding is consistent with the view that stress
and the ability of cytokines to facilitate an adaptive change responsible for the sensitization
of anxiety-like behavior may be linked to GABAA receptor function. Importantly, serotonin
and CRF are also closely related to cytokine function (Hayley et al, 2002; Zhu et al, 2006;
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Sapolsky et al, 1987) as well as the stress/withdrawal protocol (Breese et al, 2004).
Therefore, future investigations should determine whether drugs affecting CRF and
serotonergic function that minimize the adaptation induced by the stress/withdrawal protocol
will have a similar effect on the sensitization of withdrawal- induced anxiety induced by the
cytokine/withdrawal protocols.

Cytokines and LPS have been associated with immunity and inflammation and mediate a
variety of CNS-induced responses including ‘sickness behavior’ (Kent et al, 1992; Bluthe et
al, 1992; Fiore et al, 1998), fever, altered emotional behavior (Anisman and Merali, 2003;
Yamada et al, 2000), and changes in endocrine function (Connor et al, 1998; Dunn et al,
2005; Turnbull and Rivier, 1999a, b; Watkins et al, 1995). In addition to the involvement of
cytokines in these acute symptoms, cytokines may be involved in symptoms of depressive
illness and negative affect (Anisman and Merali, 1999, 2003; Bonaccorso et al, 2003; Dunn
et al, 2005; Millan, 2003; Pucak and Kaplin, 2005; Smith, 1991) and addictive behavior
(Friedman and Eisenstein, 2004). Leonard (2005) has implicated interactions of the HPA
axis, the immune system, and serotonergic mechanisms as contributors to induction of
anxiety-associated behavior and depression. Kiefer et al (2002) associated elevated TNFα
levels in the alcoholic to factors that may facilitate craving and relapse to drinking. It is
emphasized that the anxiety-like behavior, which occurs with exposure to the LPS/
withdrawal and cytokine/withdrawal protocols, does not occur when the repeated LPS or the
repeated cytokines are administered in the absence of a subsequent ethanol challenge.
Because withdrawal from the 5 days of ethanol diet alone does not effect anxiety-like
behavior, it appears that adaptive changes responsible for withdrawal-induced anxiety
follows prior exposures to LPS and cytokines, just as occurred with prior stress experience
(Breese et al, 2004).

The present investigation provides the first evidence for a potentially new mechanism that is
based upon the action of cytokines to contribute to a cumulative adaptation that sensitizes
anxiety-like behavior upon withdrawal from exposure to chronic ethanol diet. The persistent
adaptation associated with the LPS/withdrawal and cytokine/withdrawal protocols is
proposed to be related to behaviors associated with negative affect—a response thought to
facilitate relapse to drinking (Breese et al, 2005a, c). Consequently, the argument that
cytokines are involved in the neural disruption and addictive behaviors induced by other
drugs of abuse (Friedman and Eisenstein, 2004; Yamada and Nabeshima, 2004; Nakajima et
al, 2004) may apply to an association of cytokines to alcohol abuse (Kiefer et al, 2002). The
results of the present work would be consistent with this view. Future work is required to
further establish this association.
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Figure 1.
Protocol for repeated administration of the LPS or a cytokine (TNF-α, MCP-1 (CCL2), and
IL-1β) before 5 days of chronic ethanol (ETOH) diet to assess social interaction deficits
(increased anxiety-like behavior). At the arrows on days 3 and 10, LPS or one of the
cytokines was administered weekly followed 2 days later by 5 days of ethanol liquid diet
(ED 4.5%). The LPS was given i.p. and the cytokines were administered i.c.v. at the
indicated time points. SI indicates testing of social interaction on day 17, 5–6 h after
removal of the final ED exposure. Reinstatement animals were returned to chow food for 16
days, then exposed again to 5 days of the 4.5% ED before being withdrawn and tested.
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Figure 2.
Repeated LPS reduces social interaction behaviors during withdrawal from chronic ethanol.
Dose response (16–1000 μg/kg) for LPS given twice at weekly intervals before exposure to
5 days of 4.5% ethanol diet (ED; see Figure 1 for illustration of the protocol), sensitized
anxiety (ie, reduced social interaction behavior). No such effect was observed in rats that
received only 5 days of ethanol diet with vehicle injections (ED-Veh) or that received LPS
(1000 or 250 μg/kg) before control diet (CD). N for each group listed in Table 1.
*Significantly different from CD-Veh, p < 0.001. +Significantly different from CD-Veh, p <
0.05.
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Figure 3.
Repeated IL-1β, TNFα, or MCP-1 (100 ng/5 μl, i.c.v.) sensitize ethanol withdrawal-induced
anxiety. Rats were injected twice at weekly intervals with either vehicle or cytokine (IL-1β,
TNFα, or MPC-1) while drinking control diet (CD) and then were either continued on CD or
switched to a 4.5% ethanol diet (ED) for 5 days. The cytokine (MCP-1) was also given
twice in a group exposed only to CD to test for an effect on social interaction in the absence
of the ethanol exposure. Social interaction for all groups was measured 5–6 h after removal
of the ED. MCP-1 = monocyte chemo-attractant protein-1; IL-1β = interleukin-1β; TNFα =
tumor necrosis factor-α; CD = control diet; Veh = artificial cerebrospinal fluid. N for each
group listed in Table 2. *p < 0.001 compared to CD-Veh or ED-Veh groups.
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Figure 4.
Dose response effect for repeated TNFα sensitization of ethanol withdrawal induced anxiety.
In this case, various doses of TNFα, including the 100 ng dose tested in Figure 3, were given
twice before exposure to 5 days of 4.5% ethanol diet (ED). As shown, all doses induced a
significant sensitization of anxiety-like behavior. No such effect on anxiety-like behavior
was observed in rats that received only 5 days of ethanol diet with vehicle (ED-Veh). CD =
control diet. N for each group listed in Table 3. *p < 0.01 compared to CD-Veh or ED-
Veh. + p < 0.05 compared to all other groups.
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Figure 5.
Persistent effect of repeated IL-1β, TNFα, or LPS on withdrawal-induced anxiety following
re-exposure to 5 days of chronic ethanol starting 16 days later. Subgroups of rats from
Figures 2 and 3 were treated with an additional 5 days of ethanol diet (4.5%) 16 days after
having been exposed earlier to the initial repeated LPS or to the cytokines TNFα or IL-1β.
All groups treated earlier with LPS or the cytokines exhibited a significant reduction of
social interaction. Abbreviations for treatments are as per those in Figures 2 and 3, while the
16-day notation refers to the 16- day delay between the two ethanol diet cycles. N for each
group listed in Table 4. *p < 0.01 compared to CD-Veh-16-day or ED-Veh-16day groups.

Breese et al. Page 17

Neuropsychopharmacology. Author manuscript; available in PMC 2008 March 17.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 6.
Pretreatment with flumazenil prevented the acute as well as the persistent sensitization of
withdrawal-induced anxiety induced by LPS and TNFα. In accordance with previous studies
(Breese et al, 2004; Knapp et al, 2005), flumazenil (Flum; 5 mg/kg, 2.5 mg/ml in
carboxymethylcellulose) was injected before LPS (250 μg/kg, i.p., 2 ml/kg in saline) or
TNFα (10 ng/5 μg). Assessment of anxiety-like behavior (ie, social interaction deficit) was
measured 5–6 h after withdrawal from the initial 5 days of ethanol and again after re-
exposure to an additional 5 days of ethanol. Flumazenil (ED-Flum- LPS250; ED-Flum-
TNFα) prevented the reduced social interaction observed during the initial withdrawal (a) as
well as the withdrawal from the re-exposure to another ethanol diet cycle 16 days later (b).
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The 16-day notation refers to the 16-day delay between the two ethanol diet cycles. N for
each group listed in Tables 5 and 6. *p < 0.001 compared to the CD-Veh-Veh or flumazenil-
treated groups. +p < 0.05 compared to the CD-Veh-Veh-16day or flumazenil-treated groups.
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Table 1

Effect of the Repeated LPS/Withdrawal Protocol on Ethanol Intake, Locomotor Activity and Body Weight

Treatments Alcohol intake (g/kg/day) Locomotor activity (crosses/5 min) Body weight (g)

CD Veh (0) (16) — 105±9 299±3

CD LPS (250) (8) — 142±9+ 285±4

ED Veh (0) (16) 9.2±0.3 69±9** 303±4

ED LPS (16) (8) 8.9±0.2 55±6** 296±4

ED LPS (31) (8) 8.9±0.4 54±8** 291±5

ED LPS (62) (8) 8.9±0.3 57±11** 299±3

ED LPS (125) (16) 9.2±0.3 85±11* 291±4

ED LPS (250) (8) 9.5±0.3 83±15* 294±5

ED LPS (1000) (8) 9.5±0.4 81±13* 286±7

F NS 4.45 NS

*
p < 0.05,

**
p < 0.01 compared to vehicle-control diet;

+
p < 0.01 compared to vehicle-control diet or the LPS–ethanol groups; these data are associated with Figure 2.

In the Treatments column, the first number in parentheses is the i.p. dose in μg and the second number is the n per group.
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Table 2

Effect of Cytokine Administration on Ethanol Intake, Locomotor Activity, and Body Weights for Rats
Exposed to 5 Days Ethanol Diet Starting Immediately after Repeated i.c.v. Administration of 100 ng IL-1β,
TNF-α, or MCP-1a

Treatments Ethanol intake (g/kg/day) Locomotor activity (crosses/5 min) Body weight (g)

CD Veh (15) — 82±6 312±5

CD MCP-1 (10) — 83±7 306±9

ED Veh (16) 9.1±0.2 68±5 308±7

ED TNFα (7) 9.0±0.2 58±5 323±8

ED MCP-1 (10) 8.8±0.2 74±9 303±9

ED IL1β (7) 9.2±0.1 65±9 309±5

F NS NS NS

a
No significant differences noted among the groups for any of the measures. These data relate to work completed in Figure 3. In the Treatments

column, the numbers in parentheses are the n sizes per group.
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Table 3

Ethanol Intake, Locomotor Activity, and Body Weights in Rats Exposed to Different Doses of TNF-α before
Exposure to Ethanol Dieta

Treatments Ethanol intake (g/kg) Locomotor activity (lines/5 min) Body weight (g)

CD Veh (0) (16) — 102±8 315±6

ED Veh (0) (16) 8.7±0.2 87±8 313±6

ED TNFα (3) (9) 8.4±0.2 81±5 305±10

ED TNFα (10) (9) 8.6±0.3 85±9 313±8

ED TNFα (30) (5) 8.2±0.2 99±26 296±4

ED TNFα (100) (9) 8.9±0.2 71±9 320±7

F NS NS NS

a
No significant differences noted among the groups for any of the measures; these data relate to work in Figure 4. In the Treatments column, the

first number is the i.p. dose in μg and the second number is the n per group.
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Table 4

Ethanol Intake, Locomotor Activity, and Body Weights for Rats Exposed to 5 Days of Ethanol Re-Exposure
16 Days after the Repeated LPS/Withdrawal or Repeated Cytokine Protocolsa

Treatments Ethanol intake (g/kg/day) Locomotor activity (crosses/5 min) Body weight (g)

CD Veh 16day (8) — 43±7 415±9

ED Veh 16day (8) 7.3±0.3 63±16 429±12

ED LPS250 16day (8) 7.3±0.6 35±14 414±15

ED IL-1β 16day (8) 7.3±0.4 45±8 413±13

ED TNFα 16day (8) 7.4±0.4 37±8 409±17

F NS NS NS

a
No significant differences noted among the groups for any of the measures. These data relate to work in Figure 5. In the Treatments column, the

number in parentheses represents the n size per group.
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Table 5

Ethanol Intake, Locomotor Activity, and Body Weights for Rats Pretreated with Flumazenil or Vehicle before
LPS or TNFα and 5 Days of Ethanol Dieta

Treatments Ethanol intake (g/kg/day) Locomotor activity (crosses/5 min) Body weight (g)

CD Veh Veh (10) — 74±6 322±5

ED Veh LPS250 (8) 9.0±0.5 61±10 319±6

ED Flum LPS250 (8) 9.1±0.1 73±9 325±8

ED Veh TNFα (11) 8.4±0.2 74±11 311±7

ED Flum TNFα (12) 8.4±0.2 69±7 318±6

F NS NS NS

a
No significant differences noted among the groups for any of the measures. These data relate to work in Figure 6a. In the Treatments column, the

number in parentheses represents the n size per group.
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Table 6

Ethanol Intake, Locomotor Activity, and Body Weights in Rats Pretreated with Flumazenil or Vehicle before
LPS or TNFα and 5 Days of Ethanol Dieta

Treatments Ethanol intake (g/kg/day) Locomotor activity (crosses/5 min) Body weight (g)

CD Veh Veh 16 day (6) — 42±8 415±9

ED Veh LPS250 16 day (6) 7.3±0.5 36±11 412±12

ED Flum LPS250 16 day (7) 7.0±0.4 52±11 445±13

ED Veh TNFα 16 day (7) 6.7±0.2 70±7 420±20

ED Flum TNFα 16 day (6) 6.3±0.2 69±10 418±15

F NS NS NS

a
Reinstatement of ethanol diet 16 days later. No significant differences noted among the groups for any of the measures. These data relate to work

in Figure 6b. In the Treatments column, the number in parentheses represents the n size per group. See Table 5 for similar measures in these
animals 16 days before the start of the 5-day dietary reinstatement cycle.
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