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Abstract

Malignant gliomas are among the most devastating cancers as they are resistant to many kinds of 

treatment. Despite recent advances in the diagnosis and treatment, the prognosis of patients 

remains very poor and the development of new drug is urgently needed. Here, we report that a 

synthetic quinazolinone analog 2-(naphthalene-1-yl)-6-pyrrolidinyl-4-quinazolinone (MJ-66) 

induced glioma cell death. Immunofluorescence staining showed that MJ-66-induced cell death 

was associated with multinucleated phenotype and multipolar spindles that were typical 

characteristics of mitotic catastrophe. Flow cytometry analysis revealed that MJ-66 caused glioma 

cell cycle arrest at G2/M phase and increased the proportion of polyploidy cells. Western blotting 

indicated that the expression of cyclin B1, Cdk1 pY15 and Cdk1 increased after treatment with 

MJ-66. MJ-66 effectively inhibited tumor growth and induced apoptosis in the xenograft animal 

model of U87 human glioma cells. Together, these results suggest that MJ-66 inhibited malignant 

gliomas growth through inducing mitotic catastrophe by interference with G2/M cell cycle 

checkpoint which may open a new avenue for the treatment of malignant gliomas.
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1. Introduction

Mitosis is a process of cell division in which a eukaryotic cell separates the chromosomes in 

its cell nucleus into two identical sets, in two separate nuclei resulting in the production of 

two daughter cells. The daughter cells are identical to one another and to the original parent 

cell. During mitosis the pairs of chromatids condense and attach to fibers that pull the sister 

chromatids to opposite sides of the cells. The cell then divides in cytokinesis, to produce two 

identical daughter cells which are still diploid cells (Maton et al., 1997; De Souza and 

Osmani, 2007). Mitotic catastrophe (MC) has been widely used as a mode of cell death that 

results from unscheduled activation of cyclin B1–CDK1, premature or inappropriate entry of 

cells into mitosis and can be caused by chemical or physical stresses (Castedo et al., 

2004a,b; Vakifahmetoglu et al., 2008; Vitale et al., 2011). Mitotic catastrophe occurs either 

during or shortly after abnormal mitosis and is accompanied by the formation of giant 

micronucleated cells, which reflects the abnormal segregation of chromosomes (Fukasawa, 

2007; Kroemer et al., 2009). It has been shown that increased expression of cyclin B1 and 

Cdk1 or inhibition of DNA repair regulatory protein (such as ATR, ATM, Chk1, Chk2, Plk 

and 14-3-3ρ) as well as defective spindle assembly regulators (such as Mad, Bub, Survivin, 

Aurora B kinase) and anaphase promoting complex can cause mitotic catastrophe (de Bruin 

and Medema, 2008). Since mitotic catastrophe also resulted in caspase activation, chromatin 

condensation, mitochondrial release of pro-apoptotic proteins (cytochrome c or AIF) and 

DNA fragmentation (Castedo et al., 2004a,b), previous studies suggested that mitotic 

catastrophe was followed by apoptosis (Chakrabarti and Chakrabarti, 1987; Heald et al., 

1993; Jordan et al., 1996; Merritt et al., 1997; Vakifahmetoglu et al., 2008). However, some 

studies suggest that mitotic catastrophe is a cell characteristic that is distinct from apoptosis 

(Lock and Stribinskiene, 1996; Roninson et al., 2001; Broker et al., 2005; Fragkos and 

Beard, 2011).

Although the prevalence of malignant glioma is relatively low compared with other cancers 

such as lung, breast, prostate, colorectal, and liver cancers, malignant gliomas are among the 

most devastating cancers as they are resistant to many kinds of treatment. Malignant gliomas 

are normally treated with neurosurgery, followed by radiotherapy and chemotherapy with 

temozolomide (TMZ). However, TMZ therapy produces only modest increase in survival so 

that the development of new drugs for the treatment of malignant gliomas is urgently 

needed. TMZ is a cytotoxic imidazotetrazine that leads to the formation of O6-

methylguanine, which mismatches with thymine in subsequent DNA replication cycles. This 

induced apoptosis, autophagy mitotic catastrophe and senescence-like events in glioma cells 

(Hirose et al., 2001; Hermisson et al., 2006).

Quinazolinone is a heterocyclic compound and quinazolinone analogs possess diverse 

pharmacological activity, including anti-bacterial, anti-viral, anti-fungal, anti-malarial, anti-

inflammation, anti-depressant, anti-hypertensive and anti-cancer effects (Chinigo et al., 

2008; Hour et al., 2000; Li et al., 2010; Marzaro et al., 2012). These compounds interfered 

with DNA repair pathway, cytoskeleton, and cell proliferation in lung, liver, and colon 

cancer cells (Cao et al., 2006; Giri et al., 2010; Wu et al., 2011). In the present study, we 

investigated the effect of synthetic quinazolinone compounds, 2-(naphthalene-1-yl)-6-
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pyrrolidinyl-4-quinazolinone (MJ-66), 6-(piperidin-1-yl)-2-(naphthalen-1-yl)quinazolin-4-

one (MJ-68) and 6-(pyrrolidin-1-yl)-2-(benzo[b]thiophen-3-yl)quinazolin-4-one (MJ-78), on 

malignant glioma cells. We found that MJ-66-induced cell death was associated with 

multinucleated phenotype and multipolar spindles that are typical characteristics of mitotic 

catastrophe. MJ-66 effectively inhibited tumor growth and induced apoptosis in the 

xenograft animal model of U87 human glioma cells. Thus, MJ-66 seems to be a promising 

agent for the treatment of malignant gliomas.

2. Materials and methods

2.1. Cell culture and reagents

The human glioma cell lines U87, U251, T98G, U373, and rat glioma cell line RT2 provided 

by Dr. Michael Hsiao (Genomics Research Center, Academia Sinica, Taiwan) were cultured 

in Dulbecco's Modified Eagle medium (DMEM, Caisson) supplemented with 10% fetal 

bovine serum (FBS, Sigma–Aldrich), 2 mM L-glutamine (Caisson), 100 U/ml penicillin, and 

0.1 mg/ml streptomycin (Caisson). The rat glioma C6 cell line provided by Dr. Shun-Fen 

Tzeng (National Cheng Kung University, Taiwan) was cultured in DMEM/F12 (Caisson) 

supplemented with 10% fetal bovine serum, 2 mM L-glutamine, 100 U/ml penicillin, and 0.1 

mg/ml streptomycin. The human normal glia cell line SVGP12, kindly provided by Dr. 

Michael Hsiao was cultured in Minimum Essential Medium (MEM, Invitrogen) 

supplemented with 10% fetal bovine serum, 2 mM L-glutamine, 100 U/ml penicillin, and 0.1 

mg/ml streptomycin. Primary glia cells were prepared by surgery. Cerebral cortices without 

meninges were dissected from postnatal (P0–P2) Sprague–Dawley (SD, NCKU Laboratory 

Animal Center) rats and dissociated in 0.05% trypsin-EDTA (Biowest) at 37 °C for 10 min. 

Add culture medium and pipette several times, and remove supernatant after centrifuged at 

1000 rpm for 5 min, glia cells were filtered through 70 µm cell strainer (BD Falcon) and 

then cultured in Neuralbasal A medium (Gibco) supplemented with 5% fetal bovine serum 

(Sigma–Aldrich), 2 mM L-glutamine, 100 U/ml penicillin, 0.1 mg/ml streptomycin and 17.5 

mM D-glucose on 50 µg/ml poly-D-lysine (Sigma–Aldrich) pre-coating dish. All cells were 

maintained in a humidified incubator at 37 °C and 5% CO2/95% air. MJ-66, MJ-68 and 

MJ-78 provided by Dr. Mann-Jen Hour (China Medical University, Taiwan) (Hour et al., 

2013) were dissolved in dimethylsulfoxide (DMSO) as stock solution at concentration of 1 

mM.

2.2. Cell proliferation and viability assay

2.2.1. MTS assay—Cell proliferation was determined by MTS (tetrazolium compound 3-

(4, 5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) 

assay (Promega). MTS assay is a colorimetric assay for determining cell viability 

(Mosmann, 1983). The MTS tetrazolium compound is bio-reduced by NADPH or NADH 

produced by dehydrogenase in live cells into a colored formazan product. Cells were seeded 

in 96-well plates (C6, U87, U251, U373, T98G, 2000/well; RT2, 1000/well; SVGP12, 

primary glia cells, 5000/well) for MTS assay and cells were incubated for 24 h. Culture 

medium containing sequential concentration MJ-66, MJ-68 and MJ-78 (1, 0.1, 0.05, 0.025, 

0.0125, 0.00625 µM) or DMSO (0.1%) was added to each well, and cells were incubated at 

37 °C. At the indicated time points (0, 24.48,72 h), medium were removed, and then fresh 
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culture medium (100 µl/well) with MTS solution (20 µl/well) were added, and cells were 

incubated at 37 °C for 1–4 h. The absorbance of soluble formazan was measured at 490 nm 

with microplate reader (Molecular device). The cell viability was determined by the 

percentage of the absorption relative to untreated control.

2.2.2. Trypan-blue exclusion assay—Cell viability was also determined by trypan-

blue exclusion assay (Sigma). Cells were seeded in 6-well plates (2 × 104/well) for trypan 

blue exclusion assay, and incubated for 24 h at 37 °C. Culture medium containing MJ-66 

(IC50) or DMSO (0.006%)was added to each well, and cells were incubated at 37 °C. At 

indicated time points (0, 24, 48, 72, 96 h), cells were suspended with 0.05% trypsin-EDTA, 

and stained with trypan-blue dye (0.4%). The cell viability was evaluated by the percentage 

of death relative to the total cell, and cell growth curve was determined by live cell relative 

to the total number of cells.

2.3. Flow cytometry

2.3.1. Cell cycle assay—To analyze cellular DNA content by flow cytometry, 3 × 105 

cells were seeded in 10 cm dish and incubated for 24 h at 37 °C. Culture medium containing 

MJ-66 (IC50) or DMSO (0.006%)was added, and cells were incubated for 24 h at 37 °C. At 

indicated time points (0, 6, 12, 24, 48 h), >106 cells were suspended with 0.05% trypsin-

EDTA, and fixed in 70% ethanol > 1 h at −20 °C. After washed by phosphate-buffered 

saline (PBS) twice, cells were then suspension with 1 ml propidium iodide/Triton-X 100 

staining solution (20 µg/ml PI, 0.1% Triton-X 100, 0.2 mg/ml ribonuclease A (RNase A, 

Sigma) in PBS) and incubate 30 min at room temperature in the dark. After filtered by 35 

µm nylon mesh (Falcon, 352235), the DNA content was then analyzed by flow cytometry 

(FACS can, BD Bioscience). The cell-cycle distribution (subG1, G1, S, G2/M, and >4N 

DNA content) of ten thousand cells was analyzed by WinMDI software.

2.3.2. G1 synchronized by Ara-C—To analyze the effect of cytosine arabinoside (Ara-

C, a DNA synthesis inhibitor) on the MJ-66-treated glioma cells by flow cytometry. After 

seeded 3 × 105 cells in 10 cm plate for at least 24 h at 37 °C, glioma cells were then treated 

with Ara-C (4.17 mM/ml) for 12 h, and then MJ-66 (IC50) or DMSO (0.006%) was added. 

At indicated time points (0, 6, 12, 24 h), >106 cells were collected and fixed in 70% ethanol 

> 1 h at −20 °C. After staining with PI as described, DNA content of ten thousand cells was 

analyzed by flow cytometry.

2.3.3. Annexin V-FITC/PI staining—To evaluate whether MJ-66-treated glioma cells 

cell death undergo apoptosis or necrosis by flow cytometry. Annexin V-FITC/PI staining 

(Andree et al., 1990; Casciola-Rosen et al., 1996) was performed to detect early or late 

apoptosis. Translocation of phosphatidylserine (PS) on the outer membrane that disrupt 

membrane asymmetry of membrane is a characteristic in early apoptosis that cell membrane 

remains intact. Annexin V has a highly binding affinity to exposure PS, thus annexin V was 

used to detect the early apoptotic cells. 3 × 105 cells were seeded in 10 cm plate and 

incubated at least 24 h at 37 °C. Glioma cells were treated with medium containing MJ-66 

(IC50) or DMSO (0.006%), and incubated at 37 °C. At indicated time points (24, 36, 48 h), 

cells were suspended with 0.05% trypsin-EDTA, and 1 × 105 cells were stained with 
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Annexin V-FITC (5 µl, BD Bioscience) and PI (5 µg/ml). The percentage of the apoptotic or 

necrotic cells (intact cell, FITC−/PI−; early apoptotic cell, FITC+/PI−; late apoptotic or 

necrotic cell, FITC+/PI+) was then detected by flow cytometry. Apoptotic cells (FITC+/PI−) 

were counted and represented as percentage of the total cell count.

2.4. Immunofluorescent staining

2 × 104 cells were seeded on the PDL-coating 12 mm glass coverslips in 24-well plate and 

allowed to attach for 24 h at 37 °C. Culture medium containing MJ-66 (IC50) or DMSO 

(0.006%) was added, and cells were incubated at 37 °C. At indicated time points (0, 12, 24 

h), cells were fixed in 4% paraformaldehyde (PFA) in PBS for 30 min. After permeabilized 

by 0.2% Triton X-100 in 0.1 M PBS for 10 min and 10% methanol containing 0.2% Triton 

X-100 in 0.1 M PBS for 5 min, cells were blocked in 3% bovine serum albumin (BSA, 

Sigma) for 1 h. The cells were immunostained for mitotic spindle with mouse monoclonal 

alpha-tubulin (Sigma–Aldrich), and mitotic center with rabbit polyclonal gamma-tubulin 

(Genetex), and then stained with appropriated secondary antibodies conjugated with Texas 

Red or FITC for 1 h. Nuclei were stained with Hoechst 33342 for 10 min (0.5 µg/ml, 

Sigma–Aldrich, B2261). Fluorescence images were detected by confocal laser scanning 

microscope (FV1000, Olympus).

2.5. Western blotting assay

To evaluate the mechanisms in MJ-66-treated glioma cells cell death by Western blot, 3 × 

105 cells were seeded in 10 cm plate and incubated at least 24 h at 37 °C. Glioma cells were 

treated with medium containing MJ-66 (IC50) or DMSO (0.006%), and incubated at 37 °C. 

At indicated time points (0, 12,18, 24, 48 h), cells pellets were collected and centrifuged at 

4000 rpm and stored at −80 °C. Cell pellets were lysed in a RIPA lysis buffer containing 50 

mM Tris–HCl, pH 7.4, 150 mM NaCl, 1% Nonidet P-40, 0.25% sodium deoxycholate, 0.1% 

SDS with complete protease inhibitor cocktail (Roche). Lysates were shaken at 30 rpm on 

ice for 1 h and then centrifuged at 13,000 rpm for 30 min. Supernatants were collected and 

determined concentration, subjected to heated in 5× sample buffer (12.5 mM Tris, 25% 

glycerol, 4% SDS, 1.54% DTT and 0.02% Bromophenol blue) at boiled-water for 10 min. 

Protein electrophoresis on 12%, 10%, or 8.5% SDS-polyacrylamide gel under 120 V, and 

the separated protein was transferred to a PVDF membrane (Immunobilon transfer 

membranes, Millipore) by semi-dry transfer system (BIO-RAD) under 400 mA, 20 V for 1.5 

h. The membrane was then immersed in 5%-TBST nonfat milk for 60 min at room 

temperature to perform non-specific blocking, and then reacted with the following primary 

antibodies: rabbit polyclonal Caspase-2 (Abcam), rabbit polyclonal Caspase-3 (Cell 

signaling), mouse monoclonal actin (Sigma, U.S.A), mouse monoclonal Chk1 (Gentex), 

mouse monoclonal Cdc2 (Genetex), rabbit polyclonal Chk2 phospho T68 (Abcam), mouse 

monoclonal Chk2 (BD Transduction Laboratories), rabbit polyclonal Cdc2 phospho T161 

(Abcam), polyclonal mouse Cdc2 phospho Y15 (BD Transduction Laboratories), mouse 

monoclonal Cyclin B1 (Millipore), rabbit polyclonal BAD phosphor S112, rabbit 

monoclonal BAD (Epitomics) or rabbit monoclonal Laminin (Cell signaling) at 4 °C 

overnight. The membrane was washed with TBST 3 times, and HRP-labeled secondary 

antibody (Jackson ImmunoResearch Lab., USA) was used at 1:10,000 concentrations and 

incubated at room temperature for 1 h. After washed with TBST for three times on shaker at 
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50 rpm, the ECL-plus chemical reagents (PerkinElmer) were added to the membrane and 

incubated for 1 min. Films (Fuji, Japan) were exposed at different time points to ensure the 

optimum density, but not saturated. The resulting Western blots were analyzed for 

desitometrically by using ImageJ software. Three replicates were performed for each 

experiment.

2.6. In vivo xenograft animal model

The male nude mice (8–10 weeks old, BALB/cAnN-Foxnlnu/CrlNarl mice) were obtained 

from Laboratory Animal Centre (LAC) of National Cheng Kung University (Tainan, 

Taiwan). All animals were housed in light- and temperature-controlled environments with 

food and water available ad libitum. All animal experiments were reviewed and approved by 

the Institutional Animal Care and Use Committee (IACUC) of National Cheng Kung 

University. For tumorigenesis, U87 glioma cells (1 × 106 cells per l00 µl PBS) were 

inoculated subcutaneously into the right flank of mice. Tumor growth was measured every 

three days. Tumor volume was calculated by volume (mm3) = (length × width2)/2 (Zhou et 

al., 2005). When the tumors reached a mean volume of 50–70 mm3, MJ-66 (1.36 µg/kg in 

saline) or vehicle (DMSO or saline) were injected intratumor once per two days for 20 days.

2.7. Statistical analysis

Experiments were performed at least in triplicate. All results were expressed as the mean ± 

standard error of the mean. Independent experiments were analyzed by unpaired t test. 

Levels of P < 0.05 were considered to be of statistical significance.

3. Results

3.1. MJ-66, MJ-68 and MJ-78 induced glioma cell death

Fig. 1A shows the structures of 4-quinazolinone analogs. To investigate the effects of 

quinazolinone analogs on cell proliferation, C6 and U87 glioma cells were treated with 

various concentrations of MJ-66, MJ-68, or MJ-78 for 48 h and cell viability was measured 

by MTS assay. As shown in Fig. 1B, cell viability was concentration-dependently inhibited 

by MJ-66 with median inhibitory concentrations (IC50s) of 0.06 ± 0.15 µM and 0.05 ± 0.013 

µM for C6 and U87 cells respectively. The IC50s of MJ-68 for C6 and U87 glioma cells 

were 0.47 ± 0.165 µM and 0.57 ± 0.24 µM respectively. By contrast, MJ-78 was much less 

effective with IC50 > 1 µM for both C6 and U87 glioma cells (Table 1). Since MJ-66 was 

the most potent compound, we further investigated its concentration- and time-dependent 

effects on rat glioma cell lines of C6 and RT2, and human glioma cell lines of U87, U251, 

U373 and T98G (Fig. 1C). Table 2 shows the IC50s of MJ-66 on these cells. C6 and U87 

glioma cells were treated with MJ-66 (30, 60, 90 nM) or vehicle (DMSO, 0.009%) for 48 h 

and morphological changes were observed including cell rounding and shrinkage (Fig. 1D).

3.2. MJ-66 caused C6 glioma cells G2/M arrest

We investigated the effect of MJ-66 on the cell cycle distribution. C6 glioma cells, treated 

with 60 nM MJ-66 for the indicated time, were stained with propidium iodide (PI) and cell 

cycle distribution was monitored by flow cytometry. FACS analysis revealed that 6–12 h of 

MJ-66 treatment significantly increased the percentage of cells in the G2/M phase (Fig. 2A). 
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In addition, 12 h after MJ-66 treatment, the percentage of cells in the sub-G1 phase and with 

DNA content >4N were significantly increased (Fig. 2B). These data suggest that MJ-66 

induces glioma cell death early through G2/M arrest and mitotic catastrophe, and later 

apoptosis.

To investigate the influence of MJ-66 on normal glia such as human glia cell line SVGP12 

and rat primary glia cells, cells were treated with different concentrations of MJ-66 and 

viability was assessed by MTS assay (Fig. 3A). Cell viability of SVGP12 and rat glia cells 

was inhibited by MJ-66 with IC50s of 0.06 µM and 0.04 µM respectively. Since glia cells 

proliferate constantly in vitro, we tested the possibility that proliferating cells were more 

sensitive to MJ-66 by pre-treating glia cells with cytosine arabinoside-C (Ara-C), a DNA 

synthesis inhibitor which inhibited proliferation. Then the cells were treated with MJ-66, 

stained with PI and analyzed by flow cytometry. Fig. 3C shows that MJ-66 did not induce 

cell death in Ara-C-pretreated glia cells. These results suggest that proliferating cells were 

more sensitive to MJ-66 than those of non-proliferating glia cells.

3.3. MJ-66 induces glioma cell death through apoptosis but not necrosis

Given that MJ-66 induced cell death in glioma cells by interfering with cell cycle, we 

determined whether it was due to apoptosis or necrosis. Fig. 4A shows that activation of 

caspase-2 (cleaved caspase-2) and caspase-3 (cleaved caspase-3) increased dramatically 

after treatment of MJ-66 for 24 or 48 h suggesting that glioma cells underwent apoptosis. 

Next, glioma cells were treated with MJ-66 for various times and co-stained with early-

apoptotic marker Annexin V-FITC and necrotic marker PI. PI is a nonspecific DNA 

intercalating agent, which is excluded by the plasma membrane of living cells, and thus can 

be used to distinguish necrotic cells from apoptotic. FACS analysis revealed that the 

percentage of FITC+/PI− cell population increased in a time-dependent manner (Fig. 4B). 

Thus, MJ-66 induces cell death through caspase-dependent apoptosis, but not necrosis. 

However, as noted in Fig. 4B, only 24.6% cells underwent late apoptosis in comparison with 

about 50% cell death induced by 60 nM MJ-66. Taken together, these results suggest that 

MJ-66 induced G2/M arrest and mitotic catastrophe cell death, and caspase-dependent 

apoptotic cell death.

3.4. MJ-66-induced multinucleated phenotype and multipolar spindles in glioma cells

Glioma cells were treated with MJ-66 for 24 h, stained with Hoechst 33342 and antibodies 

against α-tubulin conjugated with FITC, and then detected with confocal laser scanning 

microscope. Fluorescence images showed that glioma cells treated with MJ-66 exhibited 

abnormal nuclear phenotype and possessed multinuclear giant cells (Fig. 5A). In the early 

stage, we also discovered that MJ-66-treated cells with aberrant multipolar spindle and 

unaligned chromosomes (Fig. 5B). The formation of multinuclear and multipolar spindle is a 

typical characteristic of mitotic catastrophe.

3.5. MJ-66 increases Cdk1/cyclin B1 activity in C6 glioma cells

Cdk1/cyclin B1 complex, the critical target of G2/M checkpoint, plays critical roles in 

mitosis and mitotic catastrophe (Castedo et al., 2004a,b). We used Western blot analysis to 

investigate the expression of cyclin B1, Cdk1 pY15 and Cdk1 after treatment with MJ-66. 
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As shown in Fig 6, the expression of cyclin B1 increased at 6, 12 and 18 h after the 

treatment with MJ-66 and then returned to baseline at 24 h. The expression of inhibitory 

Cdk1 pY15 increased at 6 h after the treatment with MJ-66 and then returned to baseline at 

12 h. The expression of Cdk1 had a similar time course as the expression of cyclin B1. 

Accordingly, MJ-66-induced glioma mitotic catastrophe was mediated through interrupting 

with cyclin B1/Cdk1 complex activity. We next determined the phosphorylated level of 

BAD at Ser112. BAD. As illustrated in Fig. 6C and D, phosphorylated level of BAD 

decreased after 12–24 treatment of MJ-66 (60 nM).

3.6. MJ-66 inhibits tumor growth in a xenograft animal model

We examined whether MJ-66 inhibited tumor growth in a U87 human glioma xenograft 

animal model. Nude mice were inoculated subcutaneously with 1 × 106 U87 glioma cells. 

When tumors reached 50–70 mm3 in volume, MJ-66 (1.36 µg/kg in saline) or saline were 

injected into the tumor every 2 days for 10 times and tumor growth was observed for 20 

days after the cessation of treatment. Tumor growth was significantly inhibited by MJ-66 

(tumor volume, Control: 2234 ± 214.2 mm3, n = 8; vehicle: 1894 ± 148.9 mm3, n = 9; 

MJ-66: 944.7 ± 92.3 mm3, n = 8, p < 0.01, MJ-66 vs. control and vehicle) (Fig. 7). To 

examine whether MJ-66 induced apoptosis in vivo, we examined the activation of caspase-3, 

especially the cleavage of caspase-3. As shown in Fig. 7C, the cleavage of caspase-3 

increased significantly in tumors treated with MJ-66.

4. Discussion

In the present study, we demonstrated that MJ-66 induced cell death in C6 and U87 glioma 

cells in a concentration-dependent manner with IC50s of approximately 0.06 ± 0.15 µM and 

0.05 ± 0.013 µM respectively. 4-Quinazolinone analogs, MJ-68 and MJ-78, were much less 

effective. Using Western blotting and FACS analyses, we found that 6–12 h of MJ-66 

treatment significantly increased the percentage of cells in the G2/M phase (Fig. 2A). In 

addition, 12 h after MJ-66 treatment, the percentage of cells in the sub-G1 phase and with 

DNA content >4N were significantly increased (Fig. 2B). The expression of cleaved 

caspase-2 and caspase-3 and the percentage of FITC+/PI− cell population increased 

significantly after treatment of MJ-66 both in vitro C6 glioma cells and in vivo xenograft 

tumors treated with MJ-66. These data suggest that MJ-66 induces glioma cell death early 

through (1) G2/M arrest and mitotic catastrophe and (2) caspase-dependent apoptosis in a 

small population of cells.

In the present study, we found MJ-66 inhibited cell viability of rat normal glia cells with 

IC50 similar to those of glioma cell lines. However, in glia cells treated with Ara-C to inhibit 

proliferation, MJ-66 did not induce cell death. This result suggests that proliferating cells are 

more sensitive to MJ-66 and MJ-66 may cause less toxicity to normal glia cells. However, 

glia cells proliferate constantly, this conclusion requires further verification in animal 

studies.

Mitotic catastrophe has been defined as a ‘prestage’ to necrosis or to caspase-dependent and 

caspase-independent apoptosis (Vakifahmetoglu et al., 2008; Mansilla et al., 2006). In 

contrast to our report in glioma cells, MJ-66 (previously termed HL-66)-induced mitotic 
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catastrophe preceded caspase-independent mode of death in skin cancer M21 cells, as 

indicated by the lack of typical features of apoptosis (the cell population of early and late 

apoptosis) by annexin V/propidium iodide staining and flow cytometry analysis (Wu et al., 

2011). The differential cell death produced by MJ-66 in these studies is not clear, although 

MJ induced cell cycle arrest at G2/M phase in both cell lines. It is likely that the mode of 

MJ-66-induced cell death depends on the genetic background in the cells being treated and 

the concentration of drug used (Portugal et al., 2010). Previous study used 33 nM MJ-66 

(Wu et al., 2011) (as opposed to 60 nM in the present study) and therefore failed to observe 

the late apoptosis.

Progression from G2 to M phase is driven by the activation of the Cdk1/cyclin B1 complex. 

The Cdk1/cyclin B1 heterodimer induces mitosis by phosphorylating and activating 

enzymes that regulate chromatin condensation, nuclear membrane breakdown, mitosis-

specific microtubule reorganization and the actin cytoskeleton allowing for mitotic rounding 

up of the cell (Nigg, 2001; Castedo et al., 2004a,b). Aberrant mitotic entry, before the 

completion of DNA replication, can cause mitotic catastrophe and it has been suggested that 

premature entry of active Cdk1/cyclin B1 complex into the nucleus results in premature 

chromatin condensation and apoptosis (Heald et al., 1993; Fotedar et al., 1995; Jin et al., 

1998; Porter et al., 2003). In the present study, we found that the expression of cyclin B1 

and Cdk1 increased at 6, 12 and 18 h after the treatment with MJ-66 and then returned to 

baseline at 24 h. On the other hand, the phosphorylation of Cdk1 on Tyr15 which inhibits its 

activity increased transiently at 6 h after the treatment with MJ-66 and then returned to 

baseline at 12 h. These results were consistently with the idea that MJ-66-induced glioma 

mitotic catastrophe was mediated through interrupting with cylin B1/Cdk1 complex activity.

In the G1 checkpoint, cyclin E and its partner Cdk2 regulate cell cycle progression. We 

found that expression of Cdk2 markedly increased 6 h and returned to baseline 24 h after 

treatment with MJ-66. This result suggests that MJ-66 is able to induce the degradation of 

cyclin D1 and increase in Cdk2 expression, leading to the cell cycle arrest in S phase.

BAD, a distant member of the BCL-2 family, exerts its death-promoting effect by hetero-

dimerizing with BCL-XL and BCL-2 death antagonists in the mitochondria (Yang et al., 

1995). Upon phosphorylation, BAD dissociates from BCL-XL and is bound and sequestered 

in the cytoplasm by the tau form of 14-3-3 proteins (Zha et al., 1996). In the present study, 

we found the phosphorylation of BAD at Ser112 was significantly decreased after 12 h of 

MJ-66 treatment. This reduces the interaction between phosphorylated Ser112 and 14-3-3, 

allowing BAD to translocate to mitochondria and induce cell death.

In summary, we have provided evidence for the occurrence of mitotic catastrophe and its 

role in glioma cells in response to MJ-66. These results coupled to inhibition of tumor 

growth in a xenograft animal model makes MJ-66 a promising agent for the treatment of 

malignant gliomas.
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Fig. 1. Effects of quinazolinone analogs on glioma cell lines
A. The structures of MJ-66, MJ-68 and MJ-78. B. Concentration-dependent effects of 

MJ-66, MJ-68 and MJ-78 on C6 and U87 Glioma cell lines. Cells were treated with various 

concentrations of drugs for 48 h and cell viability was determined by MTS assay. C. 

Concentration- and time-dependent reduction of cell viability in various glioma cell lines by 

MJ-66. D. C6 and U87 glioma cells were treated with MJ-66 (30, 60, 90 nM) or vehicle 

(DMSO, 0.009%) for 48 h and morphological changes were observed including cell 

rounding and shrinkage.
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Fig. 2. MJ-66 induced glioma cells G2/M arrest and cell death
A. C6 glioma cells were treated with MJ-66 (60 nM) for the indicated times and cell cycle 

distributions were monitored by flow cytometry with propidium iodide staining. B. The 

graph displayed the percentage of subG1, G1, S, G2/M and >4N DNA content analyzed 

from (A).
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Fig. 3. MJ-66 has no effect on non-proliferating cell death
A. Concentration-dependent effects of MJ-66 on human normal glia cell line and rat primary 

glia cells. Cells were treated with MJ-66 at various times as indicated. B. C6 glioma cells 

were treated with Ara-C (41.6 nM) for the indicated times and cell cycle distributions were 

monitored by flow cytometry with propidium iodide staining. C. Upper panel: C6 glioma 

cells were treated with MJ-66 (60 nM) for the indicated times and cell cycle distributions 

were monitored by flow cytometry with propidium iodide staining. Middle and Lower 

panels: C6 glioma cells were pre-treated with Ara-C (41.6 nM) for 12 h and were treated 
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with MJ-66 (60 nM) for the indicated times. Cell cycle distributions were monitored by flow 

cytometry with propidium iodide staining.
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Fig. 4. MJ-66 induced glioma cells apoptosis but not necrosis
A. Western blotting analysis of caspase-2 and caspase-3 activation in U87 glioma cells 

treated with vehicle (DMSO) or MJ-66 (60 nM) for the indicated times. B. U87 glioma cells, 

treated with MJ-66 (60 nM) for the indicated times, were stained with propidium iodide and 

annexin V-FITC and analyzed with flow cytometry.
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Fig. 5. MJ-66 induces multinucleated phenotype and multipolar spindles in glioma cells
A. U87 glioma cells were treated with MJ-66 (60 nM) for 24 h and were stained with 

Hoechst 33342 and antibody for α-tubulin (green) (arrows: multinucleated cells). Bar: 10 

µm. B. U87 glioma cells were treated with MJ-66 (60 nM) for 12 h and were stained with 

Hoechst 33342 and antibodies for α-tubulin (red) and γ-tubulin (green) (arrow heads: 

multipolar spindles). Bar: 10 µm. C. Quantitative analysis of multinucleated cells after 

treatment with MJ-66 (60 nM) for the indicated times. *p < 0.05, **p < 0.01, ***p < 0.001 
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vs. DMSO. (For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this article.)
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Fig. 6. MJ-66 increases Chk2/Cdk1/cyclin B1 activity and phosphorylation of BAD in C6 glioma 
cells
A & B. C6 glioma cells were treated with MJ-66 (60 nM) or vehicle (DMSO) for indicated 

times and cell lysates were blotted with Chk2 pT68, Cyclin B1, Cdk1 pY15 and Cdk1. C & 

D. C6 glioma cells were treated with MJ-66 (60 nM) or vehicle (DMSO) for indicated times 

and cell lysates were blotted with BAD pS112 and BAD.*p < 0.05, **p < 0.01, ***p < 

0.001 vs. DMSO.
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Fig. 7. MJ-66 inhibits tumor growth in a xenograft animal model
A & B. U87 glioma cells (1 × 106) were inoculated subcutaneously into the nude mice (n = 

6 for each group). When the tumors reached 50–70 mm3 in volume, intraperitoneal 

injections of MJ-66 (1.36 µg/kg) were administered every 48 h for 10 times and tumor 

volume was measured for another 30 days after the cessation of treatment. C. Western blots 

showed induction of caspase-3 activation at 30 days after the cessation of treatment.
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Table 1

The IC90, IC50 and IC10 of C6 and U87 glioma cell line treated with quinazolinone analogs at 48 h.

Cell line IC90 (µM) IC50 (µM) IC10 (µM)

MJ-66 C6 >1 0.06 ± 0.015 0.02 ± 0.010

U87 >1 0.55 ± 0.013 0.02 ± 0.009

MJ-68 C6 >1 0.47 ± 0.165 0.08 ± 0.016

U87 >1 0.57 ± 0.240 0.06 ± 0.068

MJ-78 C6 >1 >1 0.05 ± 0.027

U87 >1 >1 0.04 ± 0.039

IC90 represents the inhibitory concentration that reduces 90% cell survival; IC50 represents the inhibitory concentration that reduces 50% cell 

survival; IC10 represents the inhibitory concentration that reduces 10% cell survival.
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Table 2

IC90, IC50 and IC10 of several glioma cell lines and normal glia cells treated with MJ-66 at 48 h.

IC90 (µM) IC50 (µM) IC10 (µM)

C6 >1 0.06 ± 0.015 0.02 ± 0.010

U87 >1 0.05 ± 0.013 0.02 ± 0.009

RT2 >1 0.04 ± 0.004 0.01 ± 0.001

U373 >1 0.06 ± 0.024 0.02 ± 0.008

U251 >1 0.08 ± 0.006 0.02 ± 0.013

T98G >1 0.05 ± 0.005 0.01 ± 0.004

SVGP12 >1 0.06 ± 0.002 0.03 ± 0.006

Glia >1 0.04 ± 0.010 0.01 ± 0.006

IC90 represents the inhibitory concentration that reduces 90% cell survival; IC50 represents the inhibitory concentration that reduces 50% cell 

survival; IC10 represents the inhibitory concentration that reduces 10% cell survival.
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