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Abstract

Electrophysiological studies show that distinct subsets of nucleus accumbens (NAc) neurons

differentially encode information about goal-directed behaviors for intravenous cocaine versus

natural (food/water) rewards. Further, NAc rapid dopamine signaling occurs on a timescale similar

to phasic cell firing during cocaine and natural reward-seeking behaviors. However, it is not

known whether dopamine signaling is reinforcer specific (i.e., is released during responding for

only one type of reinforcer) within discrete NAc locations, similar to neural firing dynamics. Here,

fast-scan cyclic voltammetry (FSCV) was used to measure rapid dopamine release during multiple

schedules involving sucrose reward and cocaine self-administration (n=8 rats) and, in a separate

group of rats (n = 6), during a sucrose/food multiple schedule. During the sucrose/cocaine multiple

schedule, dopamine increased within seconds of operant responding for both reinforcers. Although

dopamine release was not reinforcer specific, more subtle differences were observed in peak

dopamine concentration [DA] across reinforcer conditions. Specifically, peak [DA] was higher

during the first phase of the multiple schedule, regardless of reinforcer type. Further, the time to

reach peak [DA] was delayed during cocaine-responding compared to sucrose. During the sucrose/

food multiple schedule, increases in dopamine release were also observed relative to operant

responding for both natural rewards. However, peak [DA] was higher relative to responding for

sucrose than food, regardless of reinforcer order. Overall, the results reveal the dynamics of rapid

dopamine signaling in discrete locations in the NAc across reward conditions, and provide novel

insight into the functional role of this system in reward-seeking behaviors.
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1. Introduction

Learning about rewards and appropriately directing behavior to obtain them is critical for

survival. These processes are subserved by a distributed network of brain nuclei including

the NAc and its dopaminergic input. The NAc receives convergent glutamatergic afferents

from limbic areas including the prefrontal cortex, hippocampus, and basolateral amygdala

(Zahm and Brog, 1992; Brog et al., 1993) and impacts behavior through its projections to

motor-related regions such as the ventral pallidum (Zahm, 1999). Further, dopamine

functions as a neuromodulator within the NAc, influencing the activity of the glutamatergic

afferents onto NAc neurons that ultimately alters output to motor structures (O'Donnell et

al., 1999; Nicola et al., 2000). This connectivity supports the classic view of the NAc as a

“limbic-motor integrator” that translates motivation into goal-directed actions (Mogenson et

al., 1980).

Consistent with this role, in vivo electrophysiology studies have shown that NAc neurons

encode goal-directed behaviors for both natural and drug rewards. That is, NAc neurons

exhibit phasic changes in activity (excitations and/or inhibitions in firing rate) within

seconds before, during, and after operant responses for natural as well as drug rewards

(Carelli and Deadwyler, 1994; Chang et al., 1998; Janak et al., 1999; Carelli, 2002; Nicola et

al., 2004; Peoples et al., 2004). In order to track the activity of the same NAc neurons across

different reinforcer conditions, studies from this lab employed multiple schedule designs.

This work revealed that subsets of NAc neurons exhibit largely differential, nonoverlapping

firing patterns during operant responding for natural rewards (food, water, or sucrose) versus

intravenous cocaine (Carelli et al., 2000; Carelli, 2002; Carelli and Wondolowski, 2003;

Carelli and Wondolowski, 2006; Cameron and Carelli, 2012). In contrast, NAc neurons

exhibit similar types of neuronal firing patterns during responding for two natural

reinforcers (food versus water) (Carelli et al., 2000). This pattern holds true even when one

of the natural reinforcers is highly palatable sucrose (Roop et al., 2002). Collectively, these

findings support the contention that the NAc is comprised of discrete, functionally

segregated ‘microcircuits’ that process particular types of reinforcement-related information

to influence goal-directed actions (Alexander et al., 1986; Pennartz et al., 1994;

Groenewegen et al., 1996; Carelli and Wightman, 2004).

Importantly, studies employing electrochemical methods have revealed that rapid

(subsecond) dopamine release in the NAc is also observed within seconds of goal-directed

actions for cocaine and natural rewards. Critically, these dynamic changes in dopamine

signaling occur on a timescale similar to NAc phasic cell firing (Phillips et al., 2003b;

Roitman et al., 2004; Stuber et al., 2005; Saddoris et al., 2013). The similarity in temporal

dynamics between NAc cell firing and rapid dopamine release support the contention that

dopamine functions to modulate NAc cell firing that encodes and ultimately influences goal-

directed actions. However, it is not known whether rapid dopamine release is reinforcer

specific within discrete locations in the NAc in a manner similar to NAc cell firing observed

in our previous electrophysiology studies (e.g., Carelli et al., 2000). To address this issue,

we used fast scan cyclic voltammetry (FSCV) to measure rapid dopamine release in the NAc

core during performance of two different tasks: a sucrose/cocaine or sucrose/food multiple
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schedule. This design allowed us to track and directly compare dopamine release dynamics

in specific locations in the NAc during operant responding for a natural reward and

intravenous cocaine, as well as two natural rewards.

2. Material and Methods

2.1. Subjects

Male Sprague-Dawley rats (Harlan Sprague Dawley, Indianapolis, IN, USA; n = 14) aged

90-120 days and weighing 260–350 g were used as subjects and individually housed with a

12/12 h light/dark cycle. Body weights were maintained at no less than 85% of pre-

experimental levels by food restriction (10–15 g of Purina laboratory chow each day). Water

was available ad libitum. This regimen was in place for the duration of the experiment,

except during the postoperative recovery period when food was given ad libitum. Animal

procedures were conducted in accordance with the National Institutes of Health Guidelines

for the Care and Use of Laboratory Animals, and were approved by the University of North

Carolina at Chapel Hill Institutional Animal Care and Use Committee (IACUC).

2.2. Surgery and Behavioral Training

All training was conducted in custom-made experimental chambers that consisted of a 43 ×

43 × 53 cm Plexiglass chamber housed within a commercial sound-attenuated cubicle (Med

Associates Inc., St Albans, VT, USA). One side of the chamber was equipped with two

retractable levers (Coulbourn Instruments, Allentown, Pennsylvania) 17 cm apart,

corresponding cue lights positioned 6 cm above each lever, and a reward receptacle located

equidistantly between the levers.

Figure 1 shows the experimental timeline for each study. In the first experiment (sucrose/

cocaine multiple schedule; Fig. 1a), rats (n = 8) were surgically implanted with an

intravenous catheter following established procedures, described in detail previously (Carelli

et al., 2000). Following recovery from surgery, rats were first trained to press one lever for

sucrose (45 mg pellet; TestDiet, St. Louis, MO, USA) on a fixed-ratio 1 schedule of

reinforcement. The start of the sucrose training session was signaled by the onset of the cue

light positioned above the active lever and extension of the lever into the chamber. Lever

depression resulted in delivery of a sucrose pellet to the reward receptacle, onset of a tone

(65 dB, 2900 Hz, 20 s), and retraction of the lever (20 s). Rats underwent daily 30 min

training sessions until they reached criterion (at least 50 presses per session). Rats were then

trained to self-administer cocaine on a fixed-ratio 1 schedule of reinforcement during daily 2

h sessions. The start of the self-administration session was signaled by the onset of the cue

light positioned above the active lever and extension of the lever into the chamber. The

cocaine-associated lever was spatially distinct from the lever previously used during sucrose

training. Lever depression resulted in intravenous cocaine delivery (0.33 mg/infusion,

approximately 1 mg/kg/infusion, 6 s) via a computer-controlled syringe pump, onset of a

different tone (65 dB, 800 Hz, 20 s), and retraction of the lever (20 s). The tones and levers

(left or right) associated with cocaine vs. sucrose were counterbalanced across animals.

Following 14 days of cocaine self-administration, rats were surgically prepared for

voltammetric recording in the NAc core as previously described (Phillips et al., 2003a).
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Animals were anesthetized with a ketamine hydrochloride (100 mg/kg) and xylazine

hydrochloride (10 mg/kg) mixture (intramuscular) and placed in a stereotaxic frame. A

guide cannula (Bioanalytical Systems, West Lafayette, IN) was positioned dorsally to the

NAc core (+1.3 mm anterior, -1.3mm lateral from bregma). An Ag/AgCl reference electrode

was placed contralateral to the stimulating electrode in the left forebrain. The bipolar

stimulating electrode (Plastics 1 Inc., Roanoake, VA) was placed dorsally to the VTA (-5.2

mm posterior, -1.0 mm lateral from bregma and -7 mm ventral from brain surface). Stainless

steel skull screws and dental cement were used to secure all items. The bipolar stimulating

electrode was lowered in 0.2 mm increments until physical responses to electrical

stimulation diminished, indicative of proper electrode placement. The stimulating electrode

was then fixed with dental cement.

After recovering from surgery, rats were retrained for two consecutive days (one session of

sucrose operant responding followed the next day by one session of cocaine self-

administration) while tethered to the headstage. These retraining sessions were identical to

the training sessions that took place prior to surgery, and allowed the animals to habituate to

the headstage and reestablish normal operant responding. Following retraining, rats

underwent voltammetric recording (see below) during a multiple schedule of reinforcement

for sucrose and cocaine. Specifically, rats had access to the sucrose-reinforced lever (fixed-

ratio 1; 15 min) followed by a 20 s time-out period (no lever extended; dark chamber) and

extension of the second cocaine-reinforced lever (fixed-ratio 1; 2 h). Illumination of a cue

light above each lever signaled the phase (sucrose or cocaine) of the multiple schedule.

Lever depression resulted in delivery of the designated reinforcer (sucrose or cocaine), onset

of the reinforcer-associated tone, and retraction of the lever (20 s). The order of reinforcer

availability was varied across animals such that 4 animals self-administered sucrose

followed by cocaine while 4 other animals self-administered cocaine followed by sucrose.

Importantly, rats only received both reinforcers in the multiple schedule during the test day.

Therefore, one reinforcer never came to predict access to the other.

In a second experiment (sucrose/food multiple schedule; Fig. 1b), another set of rats (n = 6)

were trained in a similar manner; however, food (45 mg pellet, TestDiet, St. Louis, MO,

USA; fixed-ratio 1; 30 min) was substituted for cocaine in training and during the multiple

schedule. Following acquisition of sucrose responding, these animals underwent at least two

additional days of training on operant responding for food. On test day, the rats performed a

sucrose/food multiple schedule that consisted of two 15 minute periods of operant

responding separated by a brief 20 s time-out. All other aspects of the multiple schedule

(reward delivery, tone, lever retraction) were as described above. As in the sucrose/cocaine

multiple schedule, the lever and tone associated with each reinforcer was counterbalanced

across animals. Further, the order of reinforcer availability was varied across animals such

that 4 recordings were obtained in which sucrose was self-administered followed by food,

and 5 recordings in which food was self-administered followed by sucrose.

2.3. Fast Scan Cyclic Voltammetry

Changes in dopamine concentration ([DA]) during behavior were assessed using FSCV as

previously described (Roitman et al., 2004; Day et al., 2007). On the experimental day, a
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detachable micromanipulator containing a carbon-fiber electrode (90-110 μm length) was

inserted into the guide cannula and lowered into the NAc core. The carbon-fiber and Ag/

AgCl reference electrodes were connected to a head-mounted voltammetric amplifier

attached to a commutator (Med-Associates, St. Albans, VT) at the top of the test chamber.

Voltammetric recordings were made every 100 msec by applying a triangular waveform

(-0.4 to +1.3 V, 400 V/sec). Data were digitized and stored to a computer using software

written in LabVIEW (National Instruments, Austin, TX). Dopamine release within the NAc

core was electrically evoked by stimulating the VTA (24 biphasic pulses, 60 Hz, 120 μA, 2

msec per phase) to ensure that carbon-fiber electrodes were in close proximity to dopamine

release sites. The electrode position was optimized at a location with maximal dopamine

release. To create a training set for principal component analysis for the detection of

dopamine and pH changes during the behavioral session, additional stimulations at various

parameters were performed (2-24 biphasic pulses, 20-60 Hz, 120 μA, 2 msec/phase). After

the session, electrical stimulation was repeated to ensure that the site could still support

dopamine release. A second computer and software system (Med Associates) controlled

behavioral events and sent digital outputs for each event to the voltammetry recording

computer to be time-stamped along with the electrochemical data. In some cases (two

animals that performed the sucrose/food multiple schedule), a second or third recording

session was completed on another day in which an electrode was lowered to a new location

in the NAc core.

2.4. Data Analysis

All lever press events were recorded during performance of the multiple schedule. The

number of lever presses as well as inter-response interval (INT) was calculated for each

reinforcer during each behavioral session. The number of lever presses and INT were

compared across reinforcers in each multiple schedule (sucrose/cocaine and sucrose/food)

with two-way mixed design ANOVAs (reinforcer type, within subjects factor × reinforcer

order, between subjects factor). To eliminate any effect of an uneven number of responses

for one reinforcer (sucrose, cocaine or food) over another, lever press responses were

randomly selected to allow for an equal number of trials within a recording session. The

number of random trials that were selected from each session were equivalent to the number

of trials of the reinforcer for which the animal responded less. Thus, if an animal responded

40 times for sucrose and 20 times for cocaine during a sucrose/cocaine multiple schedule, 20

trials were selected each for sucrose and cocaine. All trials were then averaged to obtain an

average trace for each reinforcer within a behavioral session. This procedure was used for all

analyses described below.

Dopamine signals from FSCV were identified as previously described (Roitman et al.,

2004). For analyte identification, current during a voltammetric scan is plotted against

applied potential to yield a cyclic voltammogram (the chemical signature of the analyte; see

examples in Figures 2a,b and 4a,b insets). Cyclic voltammetric data were analyzed on

stimulation trials before and after each experiment, and ±10 s relative to the important

behavioral events (lever press). A background signal from 1 voltammetric scan (100 msec

time bin) before a stimulation or behavioral trial was subtracted from the remainder of the

scans to reveal changes in [DA], as opposed to absolute values.
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[DA] changes were then quantified using principal component regression (Heien et al.,

2005; Keithley et al., 2010). Training sets were constructed from representative, background

subtracted cyclic voltammograms for dopamine and pH. These training sets were then used

to perform principal component regression on data collected during behavioral sessions.

Principal components were selected such that at least 99% of the variance in the training set

was accounted for by the model. Current was converted to [DA] using a calibration factor of

10nA/μM, a standard value obtained by calibrating numerous electrodes from different

studies in this laboratory.

Changes in extracellular [DA] during behavior were assessed by aligning [DA] traces to

lever press events. Data were averaged into 500 msec bins, and analyzed 10 s before to 10 s

after lever press. To account for any differences in baseline between reinforcers within a

behavioral session, the baseline bin (-10 to -9.5 s) was set to an equal value for each animal.

Changes in NAc [DA] from baseline in response to lever presses were evaluated

independently for each reinforcer (sucrose, cocaine, or food) using a one-way repeated

measures ANOVA with Newman-Keuls post hoc tests. This analysis compared the baseline

bin (-10 to -9.5 s) to each subsequent 500 msec bin.

The pattern of rapid dopamine release during lever pressing for sucrose versus cocaine (or

sucrose versus food) during the multiple schedule was compared with two-way repeated

measures ANOVAs (reinforcer × time) followed by Newman-Keuls post hoc tests of

significant effects. For these analyses, data were averaged into 500 msec bins, and analyzed

10 s before to 10 s after lever press.

Next, we examined peak [DA] elicited by operant responding for sucrose, cocaine, or food.

Peak [DA] was defined as the highest DA concentration within a 3 s window surrounding a

lever press (100 msec bins), and was determined for each reinforcer (sucrose, cocaine, or

food) for each animal. Again, differences in baseline between reinforcers within a

behavioral session were removed by setting the baseline bin (-10 to -9.9 s) to an equal value

for each animal. Average peak [DA] across rats were then compared across reinforcer types

(sucrose/cocaine or sucrose/food) using paired t tests. The influence of reinforcer order and

reinforcer type on peak [DA] was analyzed with a two-way mixed design ANOVA.

The time to reach peak [DA] was also determined for each reinforcer within a behavioral

session. For this analysis, [DA] across all trials for a particular reinforcer within a recording

session were averaged. Again, analysis was restricted to a 3 s window surrounding the lever

press (100 msec bins). The highest [DA] in this window was noted and the corresponding

time relative to the lever press considered the “time to peak.” For this analysis, time zero

corresponded to lever press. Thus, negative values represent a peak that occurred prior to a

response, while positive values represent a peak that occurred after a response. Time to peak

was compared across reinforcer types using paired t tests. The influence of reinforcer order

and reinforcer type on time to peak was analyzed with a two-way mixed design ANOVA.

For all analyses, the alpha level for significance was 0.05. All statistics were performed with

commercially available software (Statistica, Tulsa, Oklahoma; GraphPad Software, La Jolla,

CA).
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2.5. Histology

On completion of each experiment, rats were deeply anesthetized with a ketamine/xylazine

mixture (100 mg/kg and 10 mg/kg, respectively). To mark the placement of electrode tips, a

209 μA current was passed through a stainless steel electrode for 10 s. Brains were removed

and post-fixed in 10% formalin. After post-fixing and freezing, 50 μm coronal brain sections

were taken and mounted throughout the rostral–caudal extent of the NAc. The specific

position of individual electrodes was assessed by visual examination of successive coronal

sections for electrolytic lesions.

3. Results

3.1. Behavior during the multiple schedules

Behavioral data was obtained from 8 recordings (n = 8 rats) during performance of the

sucrose/cocaine multiple schedule and from 9 recordings (n = 6 rats) during the sucrose/food

multiple schedule. Independent of reinforcer order, during the sucrose portion of the

sucrose/cocaine multiple schedule, rats completed a mean of 39.75 ± 3.18 lever presses with

a mean inter-response interval (INT) of 30.14 ± 6.23 s. During the cocaine portion of the

multiple schedule, rats completed a mean of 23.00 ± 1.75 lever presses with a mean INT of

5.40 ± 0.39 min. A two-way mixed design ANOVA with a within-subjects factor of

reinforcer type and a between-subject factor of reinforcer order conducted on the number of

lever presses revealed a main effect of reinforcer type (F1,6 = 37.935, P < 0.001), but no

main effect of reinforcer order (F1,6 = 0.072, P > 0.05) and no reinforcer type × order

interaction (F1,6 = 1.023, P > 0.05). Further, a two-way mixed design ANOVA (reinforcer

type × reinforcer order) conducted on INT revealed a main effect of reinforcer type (F1,6 =

166.023, P < 0.0001), but no main effect of order (F1,6 = 0.005, P > 0.05) and no reinforcer

type × order interaction (F1,6 = 0.474, P > 0.05). Thus, rats pressed more often and faster for

sucrose than cocaine, and this pattern held regardless of order of reinforcer presentation in

the multiple schedule. These data reflect typical self-administration patterns previously

observed in this lab (e.g., Cameron and Carelli, 2012). Further, under a fixed-ratio schedule,

cocaine INTs are tightly correlated with levels of DA uptake inhibition (Oleson et al. 2009).

Thus, the INT for cocaine observed in this study (5.40 ± 0.39 min) is predicted by the self-

administered dose of cocaine (∼1mg/kg/infusion).

During performance of the sucrose portion of the sucrose/food multiple schedule, rats

completed a mean of 37.56 ± 3.47 lever presses with a mean INT of 24.64 ± 1.57 s. During

responding for food in the multiple schedule, rats completed a mean of 43.22 ± 1.71 lever

presses with a mean INT of 21.81 ± 0.059 s. A two-way mixed design ANOVA (reinforcer

type × reinforcer order) conducted on number of lever presses revealed no main effect of

reinforcer type (F1,7 = 2.221, P > 0.05) or order (F1,7 = 0.002, P > 0.05), and no reinforcer

type × order interaction (F1,7 = 4.403, P > 0.05). Further, a two-way mixed design ANOVA

(reinforcer type × reinforcer order) conducted on INT revealed no main effect of reinforcer

type (F1,7= 2.780, P < 0.05) or order (F1,7 = 1.389, P > 0.05), but a significant reinforcer

type × order interaction (F1,7 = 6.836, P > 0.05). Newman-Keuls post hoc tests on the

reinforcer type × order interaction revealed that rats had a slightly longer INT for sucrose

when it was presented in phase 2 of the multiple schedule compared to when sucrose was
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presented in phase 1. Collectively, these data indicate that rats pressed a similar number of

times for sucrose and food regardless of order of presentation, but order of presentation did

influence the rate of responding for sucrose.

3.2. Dopamine release during performance of the sucrose/cocaine multiple schedule

To compare extracellular [DA] during lever pressing for sucrose pellets versus intravenous

infusions of cocaine (i.e., drug self-administration), [DA] traces were aligned to the

execution of lever press responses. Figure 2 (a,b) shows example cyclic voltammograms and

color representations (colorplots) of a set of background-subtracted cyclic voltammograms

and the corresponding [DA] traces (c,d) for one animal that completed the cocaine/sucrose

multiple schedule. In this example, cocaine was the reinforcer in phase 1 followed by

sucrose in phase 2. Dopamine release was observed during both phases of the multiple

schedule. During cocaine self-administration (phase 1), a one-way repeated-measures

ANOVA revealed that [DA] during lever pressing for cocaine was significantly higher than

during baseline (F39,1092 = 10.698, P < 0.0001; Fig. 2c). Newman-Keuls post hoc tests

revealed a significant increase in dopamine release from baseline beginning 1 s before and

ending 2 s after the lever press (P < 0.05). Likewise, a one-way repeated measures ANOVA

revealed that [DA] was also increased from baseline during responding for sucrose (F39,1092

= 9.501, P < 0.0001; Fig. 2d). Newman-Keuls post hoc tests revealed significant increases in

dopamine release events that began 0.5 s before the press and ended 2 s after response

completion (P < 0.05). These findings are consistent with our previous electrochemistry

reports showing increased [DA] relative to lever pressing for either sucrose (Roitman et al.,

2004) or cocaine (Phillips et al., 2003b).

This pattern of increased dopamine release was observed across all animals. Separate one-

way repeated measure ANOVAs were performed to examine when [DA] increased from

baseline during responding for cocaine versus sucrose. These statistics revealed that [DA]

increased relative to baseline during both the cocaine (F39,273 = 5.152, P < 0.0001) and

sucrose (F39,273 = 8.864, P < 0.0001) portions of the multiple schedule. Newman-Keuls post

hoc tests revealed that for the cocaine portion of the multiple schedule [DA] increased

beginning at lever press, or time 0, and ended 1.5 s after response completion (P < 0.05).

Likewise, during the sucrose portion of the multiple schedule, Newman-Keuls post hoc tests

revealed that [DA] was significantly elevated beginning 1 s before the response and returned

to baseline levels 1.5 s after the lever press (P < 0.05).

In order to directly compare changes in DA signaling dynamics across reinforcer types

relative to lever press, a two-way repeated measures ANOVA was conducted that examined

reinforcer type (sucrose versus cocaine) and time on [DA] (Fig. 3). This statistic revealed a

main effect of time (F39,273 = 10.995, P < 0.0001), but no main effect of reinforcer type

(F1,7 = 0.525, P > 0.05) and no reinforcer type × time interaction (F39,273 = 0.846, P >

0.05). Thus, [DA] increased from baseline during responding for both sucrose and cocaine,

but there were no significant differences in [DA] between the two types of reinforcers.

Next, we examined if there were significant differences in peak [DA] across the two

reinforcer types. Peak [DA] was calculated with 100 msec bins restricted to a 3 s analysis

window surrounding lever press. No significant difference was observed in average peak
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[DA] across the two reinforcer types (t7 = 0.2792; P > 0.05; Fig. 3, inset), indicating that

rapid dopamine release does not occur selectively to one component of the sucrose/cocaine

multiple schedule. Therefore, unlike our previous electrophysiology studies that revealed

reinforcer specific patterned cell firing in the NAc during food/cocaine multiple schedules

(Carelli et al., 2000; Carelli, 2002; Carelli and Wondolowski, 2003; Carelli and

Wondolowski, 2006; Cameron and Carelli, 2012), rapid dopamine signaling increases to the

same extent in the NAc during responding for a natural reward versus intravenous cocaine.

3.3. Dopamine release during performance of the sucrose/food multiple schedule

In contrast, our prior electrophysiology studies also revealed that the same population of

NAc neurons was similarly activated during lever press responding on a multiple schedule

involving two natural reinforcers (food versus water) (Carelli et al., 2000), even when one of

the natural reinforcers was highly palatable sucrose (Roop et al., 2002). Here, we extended

that work to determine if similarities in dopamine release dynamics are observed during

performance of a sucrose/food multiple schedule. To compare changes in extracellular

dopamine in each phase of the sucrose/food multiple schedule, [DA] traces were aligned to

the execution of the lever press response for each reinforcer. Figure 4 shows example cyclic

voltammograms, colorplots (a,b) and dopamine traces (c,d) for one animal that completed

the food/sucrose multiple schedule. Note in this session, food was the reinforcer in phase 1

and sucrose was the reinforcer in phase 2. Here, increases in dopamine release were

observed during both portions of the multiple schedule. A one-way repeated-measures

ANOVA revealed that lever-pressing for food significantly increased [DA] compared to

baseline (F39,1482 = 16.646, P < 0.0001; Fig. 4c), 0.5 s before to 0.5 s after the lever press

(Newman-Keuls post hoc tests, P < 0.05). Likewise, a one-way repeated-measures ANOVA

revealed that [DA] increased from baseline from 0.5 s before to 1 s after lever press

responding for sucrose (F39,1482 = 25.389, P < 0.0001; Newman-Keuls post hoc tests, P <

0.05; Fig. 4d).

This pattern of increased dopamine release relative to responding for both types of

reinforcers was observed in all animals. Separate one-way repeated measures ANOVAs

revealed that [DA] increased relative to baseline during both the food (F39,312 = 2.159, P <

0.001) and sucrose (F39,312 = 5.047, P < 0.0001) portions of the multiple schedule.

Newman-Keuls post hoc tests revealed that for the food portion of the multiple schedule

[DA] increased beginning 0.5 s before and ending at lever press, or time 0 (P < 0.05).

Likewise, during the sucrose portion of the multiple schedule, [DA] was significantly

elevated beginning 0.5 s before the response and returned to baseline levels 0.5 s after the

lever press (P < 0.05).

To compare dopamine release dynamics across the two reinforcer conditions (Fig. 5), a two-

way repeated measures ANOVA (reinforcer type × time) was conducted on [DA]. There

was no main effect of reinforcer type (F1,8 = 1.132, P > 0.05); however, there was a main

effect of time (F39,312 = 3.856, P < 0.0001) and a significant reinforcer type × time

interaction (F39,312 = 2.553, P < 0.0001). Newman-Keuls post hoc tests on the significant

reinforcer type × time interaction revealed that [DA] was higher during responding for
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sucrose than during responding for food beginning 1.5 s before lever press and ending 0.5 s

following lever press (P < 0.05).

As above, we also examined if there were differences in peak [DA] across the two reinforcer

types, where peak [DA] was calculated with 100 msec bins restricted to a 3 s analysis

window surrounding lever press. In this case, [DA] was significantly higher during lever

pressing for sucrose than lever pressing for food (t8 = 2.552; P < 0.05; Fig. 5, inset).

3.4. Influence of reinforcer order and type on peak [DA] during performance of the
sucrose/cocaine versus sucrose/food multiple schedules

The order in which a reinforcer was presented during each multiple schedule was

counterbalanced across animals such that one reinforcer did not predict access to the other.

The influence of reinforcer order (i.e., self-administered 1st or 2nd) and reinforcer type (i.e.,

sucrose or cocaine) on peak [DA] was examined for each multiple schedule design. For the

sucrose/cocaine multiple schedule, a two-way mixed design ANOVA with main effects of

reinforcer type (sucrose vs. cocaine; between subjects factor), reinforcer order (1st or 2nd in

multiple schedule; within subjects factor), and type × order interaction was performed on

peak [DA]. This statistic revealed a main effect of reinforcer order (F1,6 = 24.114, P <

0.005), but no main effect of reinforcer type (F1,6 = 0.342, P > 0.05) or interaction (F1,6 =

0.335, P > 0.05). Therefore, peak [DA] was significantly higher for the reinforcer self-

administered first compared to the reinforcer self-administered second in the sucrose/

cocaine multiple schedule (Fig. 6a). These findings indicate that a higher average peak DA

concentration was observed in phase 1, regardless of the type of reinforcer (sucrose or

cocaine) obtained.

For the sucrose/food multiple schedule, a similar analysis was completed. Specifically, a

two-way mixed design ANOVA with main effects of reinforcer type (sucrose vs. food;

within subjects factor), reinforcer order (1st or 2nd in multiple schedule; between subject

factor), and type × order interaction was performed on peak [DA]. This analysis showed a

main effect of reinforcer type (F1,7 = 7.342, P < 0 .05), but no main effect of reinforcer

order (F1,7 = 0.097, P > 0.05), and no interaction (F1,7 = 1.299, P > 0.05). Therefore, peak

[DA] was higher relative to responding for sucrose than during responding for food,

independent of order in the multiple schedule (Fig. 6b).

3.5. Time to peak [DA] during the sucrose/cocaine and sucrose/food multiple schedules

Finally, we examined the influence of both reinforcer type (cocaine, sucrose, or food) and

order of reinforcer presentation (self-administered in phase 1 or phase 2) on the time to

reach peak [DA] relative to lever press responding in each multiple schedule. These data are

displayed in Figure 7 where negative values indicate time before the reinforced response

(time 0) and positive values indicate time after the press. For the sucrose/cocaine multiple

schedule, a two-way mixed design ANOVA was completed with main effects of reinforcer

type (within subject factor), reinforcer order (between subject factor) and type × order

interaction on peak [DA]. Results indicated no main effect of reinforcer type (F1,6 = 4.653,

P = 0.07) or reinforcer order (F1,6 = 4.539, P > 0 .05), and no interaction (F1,6 = 0.987, P >

0 .05; Fig. 7a). Although not significant, there was a trend for the main effect of reinforcer
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type such that the time to reach peak [DA] was later for cocaine compared to sucrose (P =

0.074). These findings indicate that the time to reach peak [DA] concentration was slightly

delayed when animals pressed for intravenous cocaine compared to when they responded for

sucrose pellets, independent of phase.

For the sucrose/food multiple schedule, a two-way mixed design ANOVA was completed

with main effects of reinforcer type (within subjects factor), reinforcer order (between

subjects factor) and type × order interaction on peak [DA]. Results revealed no main effect

of reinforcer type (F1,7 = 1.028, P > 0 .05), no main effect of reinforcer order (F1,7 = 2.449,

P > 0.05), and no interaction (F1,7 = 1.622, P> 0.05; Fig. 7b). Thus, unlike the sucrose/

cocaine multiple schedule, there was no difference in time to peak [DA] relative to

reinforcer type in the sucrose/food multiple schedule.

3.6. Histology

Histological reconstruction of carbon fiber electrode placements confirmed the location of

recording sites in the NAc core (Fig. 8). Only data from electrode placements within the

borders of the NAc core (Paxinos and Watson, 2007) were included in the analysis.

4. Discussion

The present study incorporated multiple schedule designs to determine the dynamics of

rapid dopamine release in the NAc core during operant responding for intravenous cocaine

versus sucrose, or two natural rewards (sucrose and food). One advantage of using multiple

schedules was that it enabled a direct comparison of dopamine release events in discrete

NAc locations during lever pressing for different rewards within the same behavioral

session. During the cocaine/sucrose multiple schedule, significant increases in rapid

dopamine signaling were observed relative to operant responding during both phases of the

task. Thus, unlike the selective cell firing of NAc neurons related to reinforcer type observed

in previous electrophysiology studies (Carelli et al., 2000; Carelli, 2002; Carelli and

Wondolowski, 2003; Carelli and Wondolowski, 2006; Cameron and Carelli, 2012), rapid

dopamine release does not ‘turn on’ or ‘turn off’ across each phase of the cocaine/sucrose

multiple schedule (i.e., is not reinforcer specific). However, more subtle differences were

observed in peak [DA] across the drug versus natural reward conditions related to the order

of reinforcer presentation and the time to reach peak [DA]. Likewise, similar dopamine

release dynamics were observed during operant responding for two natural rewards, sucrose

and food, also with some subtle differences in peak [DA] across reinforcer conditions. These

findings are discussed in detail below.

4.1. Rapid dopamine release is not reinforcer specific during goal-directed behaviors for
cocaine versus a natural reward

A major finding of the present study was that rapid dopamine release was not reinforcer

specific during the sucrose/cocaine multiple schedule. That is, significant increases in [DA]

were observed relative to operant responding for both sucrose and cocaine reward across

both phases of the multiple schedule. The finding that rapid dopamine release increases in

the NAc relative to lever pressing for a natural reward or intravenous cocaine is consistent
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with prior reports (Phillips et al., 2003b; Roitman et al., 2004). However, since

electrophysiology studies from this laboratory have repeatedly shown that separate

populations of NAc neurons selectively encode goal-directed actions for a natural reinforcer

(food, water, or sucrose) versus cocaine (Carelli et al., 2000; Carelli, 2002; Carelli and

Wondolowski, 2003; Carelli and Wondolowski, 2006; Cameron and Carelli, 2012), and that

dopamine is considered a neuromodulator that may drive the activation of discrete

populations of NAc neurons during behavior (O'Donnell et al., 1999; Nicola et al., 2000;

Pennartz et al., 1994; Carelli and Wightman, 2004), the lack of reinforcer specificity in

dopamine release dynamics reported here was unexpected. These findings indicate a more

complex relationship between NAc activity that encodes goal-directed actions and rapid

dopamine release events than simply a one-to-one correspondence (i.e. changes in cell firing

are not related solely to increases in rapid dopamine release at the same sites). Indeed, using

a combined electrophysiology/electrochemistry method we previously showed that although

rapid dopamine release occurs almost exclusively at locations where NAc neurons encode

goal-directed behaviors, only excitatory (not inhibitory) cell firing by NAc neurons appears

functionally linked to rapid dopamine release (Cacciapaglia et al., 2011).

Another possibility is that phasic DA release during cocaine-responding was blunted

through an increase in tonic extracellular DA levels. Repeated cocaine administration

increases levels of tonic DA in the synapse, leading to presynaptic autoreceptor stimulation

and decreased phasic DA release (Grace, 2000). However, this explanation can not account

for the differences we observed in peak [DA] due to the order of reinforcer presentation,

discussed in more detail below. Whether cocaine is self-administered prior to or after

sucrose should have no effect on the autoreceptor-mediated feedback mechanism, yet the

peak [DA] is higher when cocaine is self-administered first compared to when it is self-

administered second.

Despite similarities in dopamine release dynamics across reinforcer conditions, more subtle

differences in peak [DA] were revealed during the sucrose/cocaine multiple schedule. First,

differences in rapid dopamine release events were observed as a function of reinforcer order

in this task. Specifically, when cocaine was self-administered in phase 1, peak [DA] was

higher relative to responding for it than during sucrose-responding in phase 2 (and vice

versa for the opposite order of presentation). This finding was not observed when animals

responded in the multiple schedule involving two natural rewards (sucrose and food). Thus,

there was something unique about the sucrose/cocaine multiple schedule design (maybe

related to having a history of cocaine training) that made dopamine release dynamics more

responsive during presentation of the first reinforcer in the series.

A second subtle difference between dopamine release dynamics across the phases of the

sucrose/cocaine multiple schedule was the time to reach peak [DA]. Prior work using FSCV

indicated that increases in dopamine concentration typically begin within seconds prior to

operant responding for cocaine (Phillips et al., 2003b) and sucrose (Roitman et al., 2004),

and this increase in [DA] peaks near the execution of the lever press response. While similar

in their temporal pattern, those prior studies did not compare the time to reach peak [DA]

since measurements were completed in different animals. However, the multiple schedule

designs incorporated here enabled a direct comparison of time to peak [DA] across
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reinforcer conditions. While not significant, we showed that the time to reach peak [DA]

was delayed during cocaine-responding compared to responding for sucrose (Fig. 7a). It is

likely that the relatively slower temporal resolution of FSCV (100 msec) compared to

techniques such as in vivo electrophysiology prevented us from observing a statistically

significant effect. However, this trend still suggests an interesting difference in the time to

reach peak [DA]. This difference could be related to the delay of onset of interoceptive cues

associated with cocaine versus food/sucrose. That is, in the present study intravenous

cocaine infusion occurred over 6 s and typically takes another ∼10 s to result in general

increases in dopamine release (transients) in the NAc due to its pharmacological actions

(Stuber et al., 2005). In contrast, delivery of a pellet to a foodcup and its consumption

typically occurs within ∼1-2s. Thus the difference in the temporal dynamics of peak [DA] is

likely related to dissimilarities in the delivery, pharmacology, perception and consumption

of the drug versus natural reward.

4.2. Rapid dopamine release is not reinforcer specific during goal-directed behaviors for
two natural rewards

Rapid dopamine release dynamics were also similar relative to operant responding for two

natural rewards in the sucrose/food multiple schedule. However, given previous findings

from in vivo electrophysiological recordings showing that two natural reinforcers activate

largely the same population of NAc neurons (Carelli et al., 2000; Roop et al., 2002), this

later finding was not unexpected. Specifically, our earlier electrophysiology work found that

the majority of NAc neurons recorded exhibited similar patterned cell firing (increases

and/or decreases in activity) across two natural reinforcer conditions (Carelli et al., 2000).

This overlapping pattern of phasic activity was maintained even when one of the natural

reinforcers was of greater hedonic value (Roop et al., 2002). Thus, similarities in the

temporal dynamics of rapid dopamine signaling and NAc cell firing should occur if the

former functions as a neuromodulator of the later.

However, it is important to note that despite these similarities, more subtle differences in

peak [DA] were observed during to sucrose/food multiple schedule. First, peak sucrose-

evoked [DA] was significantly higher than peak food-evoked [DA] (Fig. 5), regardless of

reinforcer order (Fig 6b). This finding may be related to differences in reward value for

sucrose versus food. Indeed, prior electrochemistry studies revealed that the value of a

reward is encoded by rapid dopamine release in the NAc, even when this value is subjective

(Day et al., 2010; Sugam et al., 2012). In another study, sucrose-predictive cues evoked

greater dopamine release in the NAc core than saccharin-predictive cues, and this difference

in dopamine signaling was correlated with a behavioral preference for sucrose over

saccharin (McCutcheon et al., 2012). The authors suggest that rats' preference for sucrose

may be driven by several factors, including nutrition and taste; regardless, NAc dopamine

appears to track this preference. While we did not directly test rats' preference for sucrose

versus food in the present study, decades of research have shown that rats find sucrose more

palatable than food (for a recent review, see (Berridge et al., 2010). Therefore, it seems

likely that the greater dopamine release observed relative to sucrose compared to food

responding in this study reflects a neural correlate of subjective hedonic value.
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4.3. Insights into the functional organization of the NAc

It is often hypothesized that drugs of abuse exert their actions by ‘tapping into’ the brain

reward system that has evolved to process natural reinforcers, causing aberrant reward

processing and, ultimately, addiction (Wise, 1997). However, electrophysiological

recordings from this laboratory have revealed that this notion may be an oversimplification,

as goal-directed actions for natural and drug reinforcers are encoded by largely separate

populations of NAc neurons (Carelli et al., 2000; Carelli, 2002; Carelli and Wondolowski,

2003; Carelli and Wondolowski, 2006), and appear to be influenced by time away from

drug, or abstinence (Cameron and Carelli, 2012). Further, two natural reinforcers are

encoded by largely overlapping populations of NAc neurons (Carelli et al., 2000; Roop et

al., 2002). Collectively, these findings indicate that the NAc is part of a more complex

neurocircuity underlying drug versus natural reward processing.

The anatomical organization of the NAc shows that this structure receives convergent

synaptic inputs from a variety of cortical (e.g., PFC) and subcortical (e.g., BLA and

hippocampus) structures, and in turn, sends efferent projections to motor areas, thereby

supporting its role in limbic-motor integration (Mogenson et al., 1980). However, it is

unlikely that the NAc as a whole sends a single integrated output to its target structures in

order to initiate and modulate behavior. Theories of basal ganglia function suggest that the

NAc is embedded in a larger system that is organized into several structurally and

functionally discrete circuits that are essentially parallel in nature (Alexander et al., 1986;

Alexander and Crutcher, 1990). Further, Pennartz et al. (1994) proposed that the NAc is

composed of a collection of functionally heterogeneous ‘neuronal ensembles’ that are

characterized by distinct afferent/efferent projections. Within this framework, dopamine acts

as a neuromodulator, differentially influencing the discrete glutamatergic afferents onto

specific neuronal ensembles (O'Donnell et al., 1999; Nicola et al., 2000; Carelli and

Wightman, 2004) rather than exerting global actions across all NAc neurons.

Studies that employed a combined electrophysiology/electrochemistry method (i.e., enabling

simultaneous measurements of rapid dopamine release and cell firing within discrete

locations in the NAc) support this view. Those studies revealed that dopamine release occurs

primarily at locations in the NAc where phasic cell activity was observed, and little to no

dopamine release was observed at sites with nonphasic cell activity (Owesson-White et al.,

2009; Cacciapaglia et al., 2011). While these findings might initially suggest that rapid

dopamine release directly influences phasic cell firing, pharmacological manipulations show

that this is not always the case. For example, reducing phasic DA release in the NAc has no

effect on phasic inhibition of NAc neurons (Cheer et al., 2005; Cacciapaglia et al., 2011),

but does reduce phasic excitation of NAc neurons (Cacciapaglia et al., 2011). Further,

antagonism of D1-type dopamine receptors selectively reduces excitatory phasic activity of

NAc neurons without altering DA release (Cheer et al., 2005). Together these findings

suggest that rapid dopamine signaling plays a clear role in excitatory NAc cell firing, but is

perhaps not functionally linked to inhibitory activity. As such, rapid dopamine release may

not directly influence global NAc phasic cell firing, but make certain neurons more attuned

to glutamatergic afferent inputs from brain regions such as the prefrontal cortex, basolateral

amygdala and hippocampus.
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4.4. Conclusions

The results of this study reveal that unlike NAc cell firing that is reinforcer specific during

goal-directed behaviors for natural rewards versus cocaine, rapid dopamine release increases

in a nonselective manner across reinforcer conditions. However, this study also reveals more

subtle differences in peak [DA] across goal-directed behaviors for cocaine versus natural

rewards related to factors such as the order of reinforcer presentation and the time to reach

peak [DA]. As such, the exact relationship between dopamine release and phasic cell firing

during operant responding for a natural versus drug reward remains to be established.

Within distinct NAc microcircuits, rapid dopamine release likely modulates NAc cell

activity based on a variety of factors such as dopamine receptor sub-type, phasic activity

(excitatory versus inhibitory), reward type (sucrose versus food versus cocaine), and

ongoing behavior. Additional studies are being completed that couple iontophoresis with

FSCV and electrophysiology (Herr et al., 2010; Belle et al., 2013) to shed further insight

into the causal relationship between rapid dopamine signaling and cell firing in the NAc

during goal-directed behaviors.
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• Voltammetry was used to measure accumbens dopamine during goal-directed

behaviors

• Dopamine release was observed during responding for cocaine, sucrose, and

food

• Dopamine release during goal-directed behaviors was not reinforcer specific

• However, more subtle disparities were noted in release dynamics across

reinforcers

• These findings shed light on the functional circuitry in the accumbens in reward
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Figure 1.
Experimental timeline. (a) Timeline for the sucrose/cocaine multiple schedule. Each box

represents one day of behavioral training. Black boxes indicate days of sucrose responding.

Gray boxes indicate days of cocaine self-administration. On the recording day, animals

completed a multiple schedule for sucrose and cocaine. (b) Timeline for the sucrose/food

multiple schedule. Each box represents one day of behavioral training. Black boxes indicate

days of operant responding for sucrose and gold boxes indicate days of food responding. On

the recording day, animals completed a multiple schedule for sucrose and food.
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Figure 2.
Example of dopamine release dynamics for a representative animal during the sucrose/

cocaine multiple schedule (phase 1 = cocaine, phase 2 = sucrose). The rat completed 29

responses for cocaine and 48 responses for sucrose; 29 trials for each reinforcer were

included in the analysis. Lever press is indicated by dotted line at time zero. (a,b) Two-

dimensional color representation of cyclic voltammetric data collected for 20 s around lever

pressing for cocaine (a) or sucrose (b). The ordinate is the applied voltage (Eapp) and the

abscissa is time (s). Changes in current at the carbon-fiber electrode are indicated in color.

Insets: cyclic voltammograms at the time of lever press. (c,d) Differential dopamine

concentrations determined via principal component analysis for cocaine (c) and sucrose (d).

Data are plotted in 500 msec bins (mean ± S.E.M.). Asterisks above open (c) or closed (d)

bars indicate significant increases in [DA] from baseline, p < 0.05.
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Figure 3.
Sucrose responding and cocaine self-administration evoke rapid dopamine release in the

NAc core across all rats (n=8). [DA] is averaged into 500 msec bins (mean ± S.E.M) and

aligned to lever press (dotted line, time 0 s) for cocaine (gray) and sucrose (black). Inset:

comparison of peak [DA] within a 3 sec window surrounding lever press for sucrose (black)

versus cocaine (gray). Peak [DA] is calculated with 100 msec bins. ns = non significant.
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Figure 4.
Example of dopamine release for a representative animal during performance of the sucrose/

food multiple schedule (phase 1 = food, phase 2 = sucrose). The rat completed 45 responses

for food and 40 responses for sucrose; 39 trials for each reinforcer were included in the

analysis. Lever press is indicated by dotted line at time zero. (a,b) Two-dimensional color

representation of cyclic voltammetric data collected for 20 s around lever pressing for food

(a) or sucrose (b). The ordinate is the applied voltage (Eapp) and the abscissa is time (s).

Changes in current at the carbon-fiber electrode are indicated in color. Insets: cyclic

voltammograms at the time of lever press. (c,d) Differential [DA] determined via principal

component analysis for food (c) and sucrose (d). Data are plotted in 500 msec bins (mean ±

S.E.M.). Asterisks above open (c) or closed (d) bars indicate significant increases in [DA]

from baseline, p < 0.05.
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Figure 5.
Sucrose and food responding evoke rapid dopamine release in the NAc core. [DA] is

averaged into 500 msec bins (mean ± S.E.M.) and aligned to lever press (dotted line, time

0s) for food (gray) and sucrose (black). Data represent all animals (n = 6) that completed the

sucrose/food multiple schedule. Asterisks above closed circles indicate significantly higher

[DA] relative to sucrose-responding compared to food-responding within the indicated 500

msec bins, p < 0.05. Inset: comparison of peak [DA] within a 3sec window surrounding

lever press for sucrose (black) versus food (gray). Peak [DA] is calculated with 100 msec

bins, *p < 0.05.
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Figure 6.
The influence of reinforcer order and reinforcer type on peak [DA] during the multiple

schedules. (a) Comparison of peak [DA] for the sucrose (black bars) versus cocaine (gray

bars) multiple schedule. (b) Comparison of peak [DA] for the sucrose (dotted bars) versus

food (striped bars) multiple schedule. *p < 0.05.
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Figure 7.
The influence of reinforcer type on time to peak [DA] within each multiple schedule. (a)

Comparison of time to peak [DA] during the sucrose/cocaine multiple schedule. (b)

Comparison of time to peak [DA] during the sucrose/food multiple schedule. Time 0

corresponds to lever press response. Positive numbers indicate the peak in [DA] occurred

after lever press, negative numbers indicate that the peak in [DA] happened before lever

press.

Cameron et al. Page 25

Neuropharmacology. Author manuscript; available in PMC 2015 November 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 8.
Schematic representation of electrode tip placements in the NAc core. Numbers to the left of

coronal sections indicate distance anterior to bregma (Paxinos & Watson, 2007). (a)

Electrode placements for the sucrose/cocaine multiple schedule. Black dots indicate

recording locations from animals that self-administered sucrose followed by cocaine. Gray

dots represent recording locations from animals that self-administered cocaine followed by

sucrose. (b) Electrode placements for the sucrose/food multiple schedule. Circles indicate

recording locations from 4 separate animals. Triangles indicate 2 recording locations from

the same rat over multiple days. Squares indicate 3 recording locations from the same rat

over multiple days. Black symbols indicate recording locations in which animals self-

administered sucrose followed by food. Gray symbols indicate recording locations in which

animals self-administered food followed by sucrose.
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