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Despite 6 decades of research, only 3 drugs have been approved for astrocytomas, the most common malignant primary brain
tumors. However, clinical drug development is accelerating with the transition from empirical, cytotoxic therapy to precision,
targeted medicine. Preclinical animal model studies are critical for prioritizing drug candidates for clinical development and, ulti-
mately, for their regulatory approval. For decades, only murine models with established tumor cell lines were available for such
studies. However, these poorly represent the genomic and biological properties of human astrocytomas, and their preclinical use
fails to accurately predict efficacy in clinical trials. Newer models developed over the last 2 decades, including patient-derived
xenografts, genetically engineered mice, and genetically engineered cells purified from human brains, more faithfully phenocopy
the genomics and biology of human astrocytomas. Harnessing the unique benefits of these models will be required to identify
drug targets, define combination therapies that circumvent inherent and acquired resistance mechanisms, and develop molecular
biomarkers predictive of drug response and resistance. With increasing recognition of the molecular heterogeneity of astrocyto-
mas, employing multiple, contemporary models in preclinical drug studies promises to increase the efficiency of drug develop-
ment for specific, molecularly defined subsets of tumors.
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Oncology drug development is an inherently long and expen-
sive process. The average time required from the initial filing
of an investigational new drug application to marketing approv-
al by the US Food and Drug Administration (FDA) is �9 years.1

Most oncology drugs fail late in the clinical trial process from
lack of efficacy. Only 5% ultimately receive FDA approval after
a typical cost of $400 million.2 In addition to length and cost,
this inefficiency significantly limits the number of drugs with
proven clinical benefit. Since nitrogen mustard (mechloreth-
amine) became the first cytotoxic anticancer agent in 1949,
only 138 oncology drugs have received FDA approval (an aver-
age of 1.4 per year). The approval rate was even lower (�1 drug
per year) during the era of empirical therapy with cytotoxic
drugs (1949–1996). However, the rate of new drug approvals
has increased dramatically (�4 per year) since the dawn
of the precision-medicine era of oncology3 marked by the
1996 approval of rituximab, the first targeted anticancer
agent. Targeted agents now constitute 36% of all FDA-
approved oncology drugs. Twenty-three were approved in the

last 4 years alone (Fig. 1). Dozens more are currently in clinical
trials, and hundreds are in preclinical development at pharma-
ceutical companies and academic centers worldwide.

Only 3 drugs have been approved specifically for the treat-
ment of astrocytomas, the most common malignant primary
brain tumors.4 These include 2 cytotoxic agents, carmustine
wafers and temozolomide (TMZ), and one targeted agent, bev-
acizumab. Carmustine wafers were approved for recurrent and
newly diagnosed glioblastoma (GBM), a WHO grade IV astrocy-
toma, in 1997 and 2003. TMZ was approved for recurrent ana-
plastic astrocytomas (WHO grade III) and newly diagnosed
GBM in 1999 and 2005. The targeted agent bevacizumab, a
humanized monoclonal antibody to vascular endothelial
growth factor, was approved for recurrent GBM in 2009. Thus,
the therapeutic armamentarium for astrocytomas remains
severely limited despite the accelerated pace of oncology
drug development over the past 2 decades.

Histopathological classification has served as the founda-
tion for diagnosis and management of astrocytomas for nearly
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a century.5 Periodic refinement of the initial 1926 classification
culminated in the current scheme, published in 2007 by the
World Health Organization (WHO).6,7 This system utilizes cyto-
logical evidence of astrocytic differentiation and the presence
of morphological features, including mitotic activity, angiogen-
esis, and necrosis, to stratify patients into prognostically dis-
tinct diagnostic entities with increasingly poor survival. Low
grade (WHO grade II) astrocytomas have a 10-year median
overall survival. High-grade astrocytomas, including anaplastic
astrocytomas and GBMs, feature elevated mitotic activity and
angiogenesis and/or necrosis. These tumors have dismal

prognoses of �3 years and 15 months, respectively.7 Despite
their classification into distinct diagnostic entities, comprehen-
sive genomics analyses have shown that astrocytomas of all
grades are molecularly diverse.8,9 Recognition of this fact has
fueled efforts to develop a molecular classification scheme to
further accelerate the shift from empirical, cytotoxic therapies
to precision medicine with targeted agents in molecularly
defined tumor subsets (Fig. 2).3,8

Although astrocytomas contribute significantly to cancer-
related death and disability, they are relatively rare. GBMs
account for 86% of all astrocytomas but only affect 3.2 in
100 000 individuals in the United States. Its incidence is age
dependent and ranges from 0.14 in children to a peak of 14.9
in 100 000 75–84 year-old adults.4 Moreover, ,20% of adult
astrocytoma patients enroll in clinical trials.10 The low preva-
lence and limited clinical trial participation represent significant
challenges for astrocytoma drug development.

As the diagnostic and treatment landscape evolves from em-
pirical to precision medicine, now is an opportune time to reas-
sess the way drugs are developed for adult patients with
astrocytomas (Fig. 2). The reality that astrocytomas are rare rel-
ative to other cancer types and that trial participation is limited
makes this issue even more acute. A number of innovative ap-
proaches to clinical trial design, including adaptive biomarker-
based trials, are currently under investigation and will not be
the focus of this review.11,12 Rather, we focus on the role of mu-
rine models in preclinical drug development for adult astrocyto-
ma patients and will argue that fundamental changes in their
use are required to expand the therapeutic armamentarium
and improve outcomes for these devastating malignancies.

Given the number of promising targeted agents that deserve
clinical testing, preclinical astrocytoma modeling will be critical
for validating drug targets and prioritizing candidates for clinical
studies. These models will also be critical for the discovery and
development of novel predictive biomarkers that can be used to

Fig. 1. FDA approved oncology drugs. The cumulative number of
cytotoxic (C), biological (B), and targeted (T) drugs approved by the
FDA is shown. Dates correspond to the first indication approved.
Approvals for subsequent indications are not shown. Drugs used for
astrocytomas are indicated. Data were compiled from http://www.drugs.
com (accessed September 12, 2014) and http://www.medilexicon.com/
drugs-list/cancer.php (accessed September 12, 2014).

Fig. 2. Evolution of astrocytoma treatment, classification, and murine models. Shading in black depicts increased emphasis over time. Major
developments in each category are noted. Abbreviations: BCNU, bis-chloroethylnitrosourea; Bev, bevacizumab; DI, direct injection; ECL,
established cell line; GE, genetically engineered; geHC, genetically engineered human cells; GEM, genetically engineered mice; GEP, gene
expression profiling; GSC, glioma stem cell; nGEM, non-germline genetically engineered mice; PDX, patient-derived xenografts; TCGA, The Cancer
Genome Atlas; Thal, thalidomide; TMZ, temozolomide; VB, vinblastine; WHO, World Health Organization.
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stratify patients into biologically meaningful disease subtypes
and identify likely responders. Finally, these models will be criti-
cal for defining the molecular mechanisms of drug sensitivity
and resistance so that rational combination therapies and mo-
lecular diagnostic tests to guide their use can be developed.

The last 20 years have witnessed major improvements in the
preclinical modeling of astrocytomas. A number of recent re-
views have described these in detail.13 – 24 Here we examine
the role of conventional mouse models in the development of
cytotoxic drugs commonly used to treat adult astrocytoma pa-
tients. We then examine their use in the development of select
targeted agents that have recently failed in late stage clinical
trials. We will then describe contemporary mouse models and
how they may be best utilized to improve clinical drug develop-
ment in the future.

Development of DNA Alkylating Agents for Glioblastoma

Three cytotoxic, DNA alkylating agents, carmustine (bis-
chloroethylnitrosourea [BCNU]), lomustine (1-[2-chloroethyl]-
3-cyclohexyl-1-nitrosourea [CCNU]), and temozolomide (TMZ)
have been the cornerstones of astrocytoma chemotherapy

for the past 5 decades. The nitrosoureas BCNU and CCNU en-
tered clinical practice in the 1960s and were studied in a num-
ber of clinical trials through the 1990s. TMZ was developed in
the late 1980s and entered clinical practice in the mid 1990s.
How were animal model studies utilized to inform their clinical
development, and what lessons can be learned?

Randomized phase III clinical trials of nitrosoureas in adult
astrocytoma patients were published in the late 1970s.25,26

BCNU and CCNU were initially chosen for clinical development
based on their excellent ability to cross the blood-brain barrier
(BBB) and their efficacy in multiple preclinical models. However,
individual trial results from 1976 to 2001 were inconclusive,
and a meta-analysis of . 3000 patients from 12 trials was re-
quired to definitively demonstrate their efficacy (ie, an
�2-month increase in median survival and a 5% increase in
2-year survival).27 Although this study established chemother-
apy as a valuable adjuvant to surgical resection and radiation
therapy, the clinical benefits of nitrosoureas were marginal,
and systemic toxicity was not infrequent.

The successful culture of spontaneous tumors from chemi-
cally mutagenized rodents as established cell lines (ECLs) trans-
formed the cancer research landscape in the 1940s (Fig. 3A).

Fig. 3. Conventional and contemporary murine astrocytoma models. Conventional murine and human astrocytoma models utilized established
cell lines (ECL) (A). Murine ECL models were generated by serum culture of cells harvested from spontaneous rodent astrocytomas induced by
chemical carcinogens and transplantation into immunocompetent rodents. Human ECL were similarly generated from human astrocytomas
and xenografted into immunodeficient mice. Contemporary human models (B) consist of patient-derived xenografts (PDX) whereby tumor cells
harvested from human astrocytomas are directly injected or culture as nonadherent spheroids in defined, serum-free medium prior to
engraftment into immunodeficient mice. Genetically engineered models include genetically engineered human cells (geHC), whereby
astrocytes or neural stem cells (NSC) are harvested from normal human brains that have been genetically modified with oncogenic mutations
and xenografted into immunodeficient mice (C); GEM, whereby induction of oncogenic mutations produces tumorigenesis in situ (D); and
non-germline genetically engineered mouse (nGEM) models, whereby astrocytes or NSCs are harvested from GEM, cultured in vitro, and
allografted into immunocompetent or immunodeficient mice (D).
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Development of the P388 and L1210 models of leukemia in
particular were critical in development of dozens of cytotoxic
drugs by the Developmental Therapeutics Program at the Na-
tional Cancer Institute from the 1950s through the
1980s.28,29 Their rapid, reproducible growth, high penetrance,
and short latency when injected into syngeneic hosts made
these models particularly attractive for preclinical drug studies.
It is therefore not surprising, in retrospect, that the nitrosoureas
were first tested and found to have efficacy in intracranial leu-
kemia models.30 While chemical mutagenesis had been shown
to produce gliomas in rodents during the 1940s,31 ECL and al-
lograft models of murine gliomas, including GL26, GL261, 9L,
and C6, became widespread during the late 1960s and early
1970s.13,19,31 – 34 ECL cultures from human astrocytomas and
xenotransplantation into immunodeficient mice were devel-
oped contemporaneously.19,35 – 39 Thus, preclinical testing of
nitrosoureas in glioma models occurred much later during
their clinical development, with the first results being published
in 1973.33 A meta-analysis of preclinical studies employing ei-
ther murine allograft or human xenograft ECL models showed
highly variable efficacy that was significantly influenced by ex-
perimental design. Overall effect sizes were small (0.19-fold
and 0.43-fold increases in median survival for BCNU and
CCNU, respectively), and no statistically significant beneficial ef-
fect was found.40

TMZ, a mono-alkylating agent developed in the 1980s, was
clinically investigated due to its broad antitumor activity and
favorable toxicity profile in preclinical models, particularly
L1210 leukemias (Fig. 4).41 It was found to have excellent
oral bioavailability in a phase I study. Fortunately, this trial in-
cluded several high-grade astrocytoma patients who experi-
enced partial sustained responses.42 Subsequent clinical
experience in recurrent and newly diagnosed high-grade astro-
cytoma patients was similarly favorable.43 Phase II trials in re-
current high-grade astrocytomas and in combination with
radiation in newly diagnosed GBM patients showed 58% radio-
graphic response rates and 16-month median survival, respec-
tively.44,45 The definitive phase III trial published in 2005
established adjuvant TMZ in combination with fractionated ra-
diation as the standard of care for newly diagnosed GBM based
on a 21% increase in median survival and a 5-fold increase in
5-year survival compared with radiation alone, which produced
only 12.1-month median and 1.9% 5-year survivals.46,47

The first preclinical study of TMZ efficacy in GBM ECL models
was published in 1994, 7 years after its first description and 2
years after entering clinical trials.48 A 2013 meta-analysis of
TMZ in murine allograft and human xenograft ECL models of

GBM showed that it was consistently efficacious in both, pro-
ducing 50% decreases in tumor volume and �2-fold increases
in median survival on average.49 This contrasts with the meta-
analysis of nitrosoureas in similar preclinical models that
showed far smaller and inconsistent effect sizes.40

The biological effects of TMZ are largely mediated by its abil-
ity to methylate the O6 position of guanine.50 Repair of this le-
sion is carried out by a single enzyme, encoded by the
methylguanine-DNA methyltransferase (MGMT) gene. MGMT
expression is regulated through promoter methylation, and
�50% of GBMs have methylated MGMT.51 Based upon this
knowledge, a retrospective companion study to the definitive
phase III trial that established TMZ as the standard of care for
GBM showed that MGMT promoter methylation was a favorable
prognostic, and likely predictive, marker for TMZ benefit in GBM
patients.52 Subsequent studies using more contemporary
human GBM models, whereby patient-derived tumors are directly
xenografted into immunodeficient mice without prior serum-
based culture, showed that MGMT promoter methylation was
an important predictor of TMZ efficacy.53,54 TMZ, given concur-
rently with radiation, produced a survival benefit only in a subset
of GBM patient-derived xenograft (PDX) models with methylated
MGMT.55 Moreover, TMZ showed a wider response range in PDX
models (0.2–5.9-fold increases in median survival) than in
human ECL models (0.3–2.5-fold) of GBMs, suggesting that
these newer models may more accurately reflect its clinical effi-
cacy, particularly in molecularly defined subsets of tumors.49,54,55

Based on the role of MGMT in TMZ resistance and the fact
that protracted, dose-dense TMZ depleted MGMT activity in pe-
ripheral blood mononuclear cells, the hypothesis that dose-
dense TMZ would enhance its therapeutic benefits, particularly
in GBM with unmethylated MGMT, was explored in a random-
ized, phase III clinical trial.56 – 58 Although this recently pub-
lished trial prospectively confirmed the prognostic significance
of MGMT promoter methylation, dose-dense TMZ failed to im-
prove survival in either MGMT unmethylated or methylated
GBM. These results are consistent with a preclinical study in
GBM PDX models showing that TMZ induced MGMT expression,
even in MGMT-unmethylated GBM.59 A similar lack of efficacy
and correlation with MGMT methylation status was found in a
preclinical study of dose-dense TMZ with 7 GBM PDX models
published during trial accrual.60

Development of Targeted Agents for Glioblastoma

The promise of small molecule inhibitors that target the dysre-
gulated signaling pathways driving gliomagenesis has fueled

Fig. 4. Developmental timeline for temozolomide (TMZ). Clinical studies outlined in black were conducted with newly diagnosed GBM patients,
unless otherwise noted. Preclinical studies are highlighted in gray. Abbreviations: DD, dose-dense; ECL, established cell line models; HGG,
high-grade gliomas; PDX, patient-derived xenograft models.
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neuro-oncology drug development since the late 1990s. The
epidermal growth factor receptor (EGFR) had long been
known to be a mutated target in GBM, where amplifications
and activating truncation mutations are among the most com-
mon genetic abnormalities.61 – 64 Based upon this knowledge,
their antitumor activity in preclinical models,65 – 69 and their ef-
ficacy in EGFR-mutant non–small cell lung cancers (NSCLCs),70

the first-generation EGFR tyrosine kinase inhibitors (TKIs) gefiti-
nib and erlotinib entered clinical trials in the 2000s (Fig. 5A).
However, no significant activity was found in a number of
phase II GBM studies, and no reliable biomarkers to predict
their efficacy could be identified in retrospective molecular
analyses.71–81 Reasons for their failure remain poorly understood,
but signaling pathway redundancy and molecular heterogeneity
were likely contributers.82 Subsequent pharmacokinetic (PK)
studies in patients with NSCLC brain metastases showed limited
CSF penetration of both gefitinib and erlotinib.83 Moreover, ex-
pression of ABC transporters, including P-glycoprotein and breast
cancer resistance protein, were shown to significantly limit brain
penetration of erlotinib.84

Newer EGFR TKIs showed broader activity spectra and tar-
geted multiple EGFR family receptors. Whereas first-
generation EGFR TKIs bound only the active conformation of
the EGFR TK domain, second-generation TKIs, such as lapati-
nib, bound the inactive conformation. Studies using GBM ECL
and neurosphere culture models showed that GBM-specific
EGFR extracellular domain mutations were poorly inhibited
by first-generation TKI, but effectively inhibited by lapatinib,
in contrast to TK domain mutations in NSCLC.82 However,
lapatinib showed minimal activity in recurrent GBM clinical tri-
als.85 Subsequent retrospective PK studies using NABTC 04-01
trial material showed intratumoral lapatinib concentrations to
be well below its predicted therapeutic threshold.82

In contrast to EGFR TKI, data from preclinical glioma
models significantly influenced the design of clinical trials
with cilengitide, an alpha v-integrin antagonist and putative

antiangiogenic agent (Fig. 5B). Cilengitide showed efficacy in
subcutaneous GBM ECL xenografts in a 2001 study.86 A subse-
quent phase I trial in recurrent GBM patients reported promising
biological activity and demonstrated a correlation between PK
parameters and radiographic response.87 Moderate antitumor
activity in the recurrent setting was confirmed in a single-agent
phase II trial, supporting its continued investigation in combi-
nation regimens.88 Prior to those trials, preclinical studies in
GBM ECL xenograft models demonstrated the radiosensitiza-
tion effects of cilengitide and revealed an unanticipated depen-
dence on schedule.89 These preclinical data informed the
design of subsequent phase I–III trials of cilengitide in combi-
nation with chemoradiation in newly diagnosed GBM.90 – 92 Ret-
rospective molecular analysis of phase II specimens suggested
that MGMT methylation was associated with cilengitide benefit
in this clinical setting;90 however, cilengitide failed to prolong
survival in newly diagnosed GBM patients with methylated
MGMT in a randomized phase III trial.92

Lessons From the Development of Cytotoxic
and Targeted Agents for Glioblastoma

What lessons can be gleaned from the development of alkylat-
ing and targeted agents for GBM that might improve future
drug development efforts? Clinical trials of nitrosoureas and
TMZ were initiated based on preclinical data from murine leuke-
mia models. Data from glioma models came later. With the
benefit of hindsight and decades of research conclusively dem-
onstrating that neoplasms from different tissues are molecu-
larly and biologically distinct, it is now clear that the decision
to initiate clinical studies should be based on preclinical data
in the tumor type of interest. Preclinical data from models
that do not accurately reflect the tumor histology or its native
organ-based microenvironmental interactions are likely to pro-
duce misleading results.28,93

Fig. 5. Developmental timelines for EGFR tyrosine kinase inhibitors (A) and cilengitide (B). Clinical studies outlined in black were conducted with
newly diagnosed GBM patients, unless otherwise noted. Preclinical studies are highlighted in gray and were performed with established GBM
xenograft models, unless otherwise noted.
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Comparison of alkylating agent efficacy in preclinical glioma
models and clinical studies demonstrates striking similarities.
Nitrosoureas produced small, but significant benefits in some
murine models and astrocytoma patients. In contrast, TMZ
was consistently effective in both ECL model studies and clini-
cal trials, with relatively large effect sizes. These data suggest
that large effect sizes in multiple preclinical models may be re-
quired to accurately predict efficacy in clinical trials, particularly
those that enroll molecularly heterogeneous, unselected
patient populations. We therefore recommend that the bar
for future preclinical drug studies be set well beyond small,
but statistically significant prolongations of survival in single
model systems, particularly ECL models. Rather, consistent
demonstration of large effect sizes in newer model systems
that more accurately recapitulate the genomic and biological
properties of human astrocytomas may have increased ability
to predict clinical efficacy in unselected patient populations.

How do newer model systems, such as PDXs, fare in predict-
ing clinical success relative to conventional ECL models? Pre-
clinical studies with nitrosoureas and cilengitide were only
conducted in ECL models (Table 1). Many of the same ECL mod-
els were also used in the initial preclinical development of TMZ
(Fig. 4), as well as the EGFR TKIs gefitinib and erlotinib (Fig. 5).
However, more recent preclinical TMZ and EGFR TKI studies
have utilized PDX models to characterize genetic mechanisms
of response and resistance and discover predictive biomark-
ers.53 – 55,59,60,68,69,94 – 96 Thus, the fact that TMZ succeeded

clinically, while EGFR TKIs and cilengitide failed, cannot be at-
tributed simply to use of newer model systems in preclinical de-
velopment. Comprehensive comparison of drug efficacy in
newer PDX versus conventional ECL models is limited to TMZ.
Such data suggest that PDX models may more accurately re-
flect the heterogeneity of response seen in GBM patients.
Therefore, systematic drug efficacy screening in multiple
genomically characterized PDX models might be useful for
prospectively identifying sets of tumors that are likely to re-
spond.18,97 In order to evaluate the predictive accuracy of
these models and maximize their utility for biomarker discovery
and development, preclinical studies in PDX models should be
performed earlier in the drug development process, ideally prior
to initiating clinical trials or concurrently as “co-clinical trials.”98

Rather than relying on data from preclinical models, predictive
biomarker discovery for TMZ and EGFR TKIs was largely conduct-
ed by retrospective molecular analyses of clinical trial specimens.
Of the above examples, only the phase III cilengitide trial utilized
prospective molecular stratification of MGMT-methylated GBM to
increase molecular homogeneity and enrich for likely responders.
While this approach is critical for clinical biomarker validation and
required for its eventual incorporation as an inclusion criterion in
prospective trials, retrospective analyses are inefficient because
they require completion of the trial. Given the limited incidence
and trial participation of astrocytoma patients, we would argue
that a more efficient approach for the discovery of predictive bio-
markers would be an increased reliance on preclinical drug

Table 1. GBM models used in preclinical development of alkylating and targeted agents

Chemotherapeutic Agent Conventional ECL Models Contemporary Models

Murine Allografts Human Xenografts PDX nGEM

Alkylating agents Carmustine (BCNU) 9L40

GL26, GL261
VMDk 497-P(1)

D54MG40

U251MG

Lomustine (CCNU) G XII40

G XIII
GL26, GL261
VMDk 497-P(1)

U251MG40

Temozolomide (TMZ) 9L49

C6
F98
T98

A17249

D54MG, Hs683
SNB-75, SF295
U251MG, U373MG
U87MG

GBM649,53 – 55,59,60,94 – 96

GBM8, GBM10, GBM12
GBM14, GBM22, GBM 26
GBM34, GBM36, GBM39
GBM43, GBM44

TRP127,185,186

Targeted agents Gefitinib U87MG67 ODA-4-GEN69

GBM-1-HAM, GBM-17-ROM
GBM-14-RAV, TG-17-GIR
GBM-9-THI

Erlotinib U87MG66 GBM6, GBM868

GBM12, GBM14, GBM15
GBM22, GBM 28
GBM34, GBM36, GBM39
GBM44

Lapatinib GS676, GS60082

Celingitide U87MG86

U251MG89
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studies in genomically and biologically faithful murine models.
Such markers could then be validated in retrospective molecular
studies of clinical trial specimens. Indeed, this approach has been
applied to investigate the ability of a prognostic gene expression
signature for predicting bevacizumab efficacy in mesenchymal
GBM.99 – 102 Increased use of this approach for future drug
development is likely to reduce time and costs and improve the
efficiency of clinical trials.

Nitrosoureas and TMZ were attractive clinical candidates
due to their lipophilic chemical structures and favorable brain
PK profiles. Indeed, their ability to penetrate the BBB and
reach diffusely infiltrative tumor cells is likely one reason for
their clinical efficacy.103 In contrast, the failure of first- and
second-generation TKIs to fulfill the promise of EGFR-targeted
therapy was likely due in part to their poor brain PKs and the
activity of BBB drug efflux pumps. Unfortunately, CNS neo-
plasms are a frequent exclusion criterion in phase I studies,
and brain PKs are not routinely analyzed during early develop-
ment of many targeted agents. The unfortunate failure of EGFR
TKIs clearly demonstrates the importance of such data. Preclin-
ical PK studies in both glioma models and mice with genetically
engineered defects in BBB efflux pumps have the potential to
predict clinical failure on the basis of poor PKs if used prior to,
or concurrent with, the initiation of advanced clinical trials.

In addition to poor brain PKs, receptor tyrosine kinase (RTK)
signaling pathway redundancy and intertumoral molecular het-
erogeneity likely contributed to the clinical failures of first-
generation EGFR TKIs. Although they share EGFR mutations in
common, the divergent efficacy of these drugs in NSCLC and
GBM demonstrates that mutational status of a biologically
attractive target gene alone is insufficient to predict efficacy of
inhibitors that specifically target its activity. Rather, preclinical
and clinical data with these drugs in NSCLC and GBM demon-
strate that mutation location, within specific functional domains,
and its impact on protein structure and catalytic activity is equal-
ly important for determining efficacy. Moreover, these data
suggest that current precision medicine initiatives that utilize
next-generation sequencing to identify “actionable” somatic
mutations in oncogenic kinases may require more nuance to ful-
fill their potential of targeted therapy. Indeed, success of such
efforts rests on 3 critical assumptions: (i) that the identified mu-
tation activates downstream signaling and promotes tumori-
genesis in the specific tumor type in which it is found; (ii) that
the mutated kinase is sensitive to drug inhibition in the appropri-
ate anatomical context (eg, lung vs brain); and (iii) that inhibition
results in clinical benefit in the specific tumor type of interest.
Because the biological function and druggability of mutational
targets are likely tissue specific, it stands to reason that experi-
mental evidence, such as that provided by contemporary pre-
clinical model studies, is necessary to prove the actionability of
drug-targetable gene mutations in the specific clinical context to
be investigated.

Astrocytoma Genomic Heterogeneity and its Impact
on Drug Development

Over the last 15 years, advances in genomics and DNA se-
quencing technologies have revolutionized cancer research.
Studies have conclusively demonstrated that significant inter-
tumoral heterogeneity exists on multiple molecular levels,

both within and among the 3 diagnostic categories of astrocy-
tomas.9,104,105 The transcriptome profiles of lower-grade astro-
cytomas (WHO grades II and III) and GBM are distinct,102,103

and each consists of 3 or 4 transcriptomal subtypes.61,64,106,107

Particular patterns of somatic mutations, chromosomal alter-
ations, and DNA methylation are evident not only within each
grade but also within grade-specific subtypes.61,64,108 For ex-
ample, the IDH1 and IDH2 genes are mutated in �60%–80%
of lower-grade astrocytomas and �50%–80% of the second-
ary GBMs into which they inevitably progress but are only
found in �3%–7% of primary GBMs that arise de novo without
a clinically detectable, lower-grade antecedent.109 Lower-
grade astrocytomas that lack IDH mutations have transcrip-
tome and copy number profiles similar to GBM. A molecular
classification system that supplements histological classifiers
with layers of molecular information promises to provide a
diagnostic framework that not only reflects the intertumoral
heterogeneity present in these neoplasms but also facilitates
more accurate prognostic stratification and prediction of ther-
apeutic response to targeted therapies.8,9

Many of the putative oncogenic driver mutations in astrocy-
tomas occur in genes that comprise 3 core signaling pathways:
(i) the G1/S cell cycle checkpoint controlled by the Rb family of
pocket proteins, (ii) RTKs and their downstream RAS-mitogen
activated protein kinase (MAPK) and phosphoinositide 3-kinase
(PI3K) effector pathways; and (iii) the TP53 pathway; and (iii)
the TP53 pathway.63 Dozens of drugs are currently in develop-
ment to inhibit kinases in these pathways, and many are active-
ly being investigated in astrocytoma clinical trials. However,
given limited trial participation, low disease prevalence, and
the number of promising targeted agents that deserve clinical
testing, a more rational approach to preclinical drug develop-
ment for astrocytomas is required.

In addition to intertumoral heterogeneity, genomic studies
have shown significant molecular heterogeneity within individual
astrocytomas as well.110 – 113 Sequencing data from multiple
samples of individual tumors have demonstrated coexistence
of spatially distinct clones with divergent mutational and tran-
scriptomal profiles. Phylogenetic reconstruction showed patient-
specific patterns of evolution within each tumor.111,112 Moreover,
treatment of lower-grade astrocytomas with DNA-damaging
agents such as TMZ may modify the evolutionary path to high-
grade disease by inducing alternative mutational spectra.112

Similarly, comprehensive fluorescence in situ hybridization stud-
ies have shown that multiple RTK genes, including EGFR, MET, and
PDGFRA, can be simultaneously amplified not only within spatially
distinct subpopulations of tumor cells but within individual tumor
cells as well.114 This mosaic gene amplification can lead to
coactivation of multiple redundant RTK signaling pathways, lim-
iting the effectiveness of inhibitors targeting individual kinases
and suggesting the need to develop rational combination
therapies.115

In addition to molecular heterogeneity, murine modeling
studies of human GBM have suggested that individual cells
within the tumor may be functionally heterogeneous.116 The
cancer stem hypothesis posits that a small subpopulation of
tumor cells, termed cancer stem cells (CSCs), are uniquely
capable of tumor maintenance and hierarchical differentiation
into multiple tumor cell lineages.117 – 119 CSCs have been pro-
posed as a cause of therapeutic resistance and tumor
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recurrence.120 Their implications in astrocytoma biology and
drug development have been previously reviewed in
detail.121 – 125

GBM subtypes may have distinct treatment responses.64

Although transcriptome profiling was recently evaluated in
the trial of bevacizumab in combination with standard-of-care
therapy for newly diagnosed GBM,99,102 it remains unclear how
this measure of intertumoral genomic heterogeneity should be
incorporated in future clinical trials. It is likely that novel drug
efficacy will be restricted to specific molecular subtypes with
unique mutational, epigenetic, or CSC profiles. However, the
ideal molecular diagnostic approach to prospectively identify
likely responders has yet to be developed. How should molecu-
lar profiles be incorporated into clinical trial design to account
for the heterogeneity present in astrocytomas? In the absence
of definitive data on their prognostic and predictive signifi-
cance, a prudent approach would be to retrospectively charac-
terize genomic heterogeneity in clinical trial specimens on as
many molecular levels as is economically feasible. An even
more cost-effective approach may be to conduct preclinical
drug studies, either before or parallel with clinical trials, using
biologically diverse panels of contemporary murine models
that have also been comprehensively profiled.

Conventional and Contemporary Murine Models
of Astrocytomas

Like diagnosis and therapy, the last 2 decades have witnessed
major improvements in preclinical modeling of astrocytomas
(Figs. 2 and 3). A number of recent reviews have described
these improvements in detail.13 – 24 Here we compare contem-
porary with conventional ECL models and discuss how they
may be utilized to improve preclinical astrocytoma drug
development.

Established Cell Line Models

Established cell lines (ECLs) were cultured from rodent astrocy-
tomas induced by chemical mutagenesis and transformed the
preclinical drug development landscape in the late 1960s
(Fig. 3A).13,19,31 – 38 These technically straightforward, highly
penetrant models were widely disseminated and developed tu-
mors with rapid, uniform growth kinetics and short latency
when transplanted subcutaneously or orthotopically into the
brains of murine hosts (Table 2). Many recapitulated the histo-
pathological features of human high-grade astrocytomas, in-
cluding their diffuse invasion of normal brain. Orthotopic

Table 2. Comparison of conventional and contemporary murine astrocytoma models

Characteristic Conventional ECL Models Contemporary Models

Mouse Allografts Human Xenografts Human
Xenografts

Engineered
Mice

PDX geHC GEM nGEM

Host Intact immune system Ya Y Y
Faithful microenvironment Y Y Y
Intact DNA repair Y Yb Yb Yb Y Y
Host and tumor genomes differ Y Y Y

Tumor In vitro culture possible Y Y Y Y Y
Subcutaneous growth Y Y Y Y Y
Orthotopic growth Y Y Y Y Y Y
Histologically faithful Yc Y Y Y Y
Rapid growth kinetics Y Y Y Y d d

High penetrance Y Y Y Y d d

Short latency Y Y Y Y d d

Defined oncogenic mutations e e e Y Y Y
Straightforward genotype-phenotype comparisons Y Y Y
Complex genome landscapes Yf Y Y Yf

Defined cellular origin Y Yg Y
Low grade astrocytomas develop h Y Y
Stochastic malignant progression Y

aSome murine ECL are immunogenic and xenografting requires immunodeficient hosts.19

bImmunodeficient severe combined immunodeficiency, but not nude mice have genetic DNA repair defects.187

cSome murine ECL fail to invade normal brain.19

dGrowth kinetics, penetrance, and latency in GEM and nGEM models vary greatly depending on oncogenic mutations and targeted cell type.
eMutational profiles can be defined by genomic analyses, but genomic complexity renders direct genotype-phenotype correlations difficult.
fComplex gene rearrangements occur less frequently in murine compared to human tumors.
gConventional knockout GEM models do not have a defined cellular origin.
hIDH mutant PDX models of anaplastic oligodendrogliomas, not astrocytomas, have recently been described.177,179
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murine allograft models were particularly attractive for the
development of drugs targeting tumor-stroma interactions or
immunomodulatory therapies because tumorigenesis could
be induced in the native brain microenvironment in immuno-
competent, syngeneic mice.13,19

Xenograft models using ECLs cultured from human astrocy-
tomas, which were developed from the late 1960s through
the 1980s, shared many of the attractive features of murine al-
lograft models. Because ECLs originated from human tumors,
extrapolation of experimental results were uncomplicated by
molecular and physiological differences between mice and hu-
mans. However, many failed to recapitulate the brain invasive
histopathology of human astrocytomas.20,126,127 The require-
ment for immunodeficient hosts also rendered examination
of microenvironmental and immune influences on drug
response impossible.

Comprehensive genomic analyses of both murine and
human ECL models identified a number of additional limita-
tions. Phenotypic and genotypic drift due to clonal selection
upon serial culture of adherent cells in serum-containing
media rendered ECLs markedly different from their original
tumor.19 ECLs cultured under these nonphysiological condi-
tions adapted to the presence of abundant nutrients by
increasing metabolic and proliferation pathways and to their
artificial microenvironment by decreasing cell adhesion. Thus,
ECLs frequently developed uncharacteristic and complex chro-
mosomal abnormalities, and their molecular profiles differed
significantly from acutely isolated GBM samples.128 – 131

Although genomic analyses have defined the mutational
landscapes of many astrocytoma ECLs, their abundance
of mutations and complex chromosomal alterations render
genotype-phenotype comparisons difficult.

Subcutaneous ECL models remain a popular method of as-
sessing both in vivo tumorigenesis and drug efficacy due to the
technical ease of monitoring growth kinetics in this anatomic
compartment. Nevertheless, these models fail to account for
native microenvironmental influences on tumor pathogenesis
and drug response and do not accurately model PK effects of
the BBB. Targeted agents, such as palbociclib, that show effica-
cy in subcutaneous xenografts have failed when tested in
orthotopic models due to drug efflux pumps at the BBB.132

The molecular profiles of ECLs xenografted subcutaneously dif-
fer markedly from corresponding orthotopic xenografts.133

Tumor location can also significantly impact molecular and bi-
ological responses to cytotoxic therapies such as radiation.134

Because subcutaneous ECL models can overestimate the ther-
apeutic potential of novel agents, their use should be restricted
to validation of therapeutic targets in biological proof-of-
principle experiments, and their role in prioritizing drugs for
clinical investigation should be minimized.

Patient-derived Xenograft Models

Many of the shortcomings of ECL models can be directly attrib-
uted to their serial culture as adherent cells in serum-
containing medium. Some of these have subsequently been
overcome through development of PDX (Fig. 3B), whereby
fresh tumor fragments are directly injected into the brain
or serially passaged subcutaneously in immunodeficient
mice. Alternatively, PDX can be cultured as nonadherent

spheroids in growth factor-defined, serum-free medium prior
to orthotopic transplantation.15,19,135 Development of these
techniques has been critical for defining the functional hetero-
geneity present in human astrocytoma cells and exploring the
biological and therapeutic implications of the CSC hypothesis in
these tumors.121 – 125

PDXs share many of the advantages of ECL models for pre-
clinical drug development including high penetrance, short la-
tency, and rapid, uniform growth kinetics in vivo. However,
unlike ECL, PDXs maintain the genomic features of the tumors
from which they were derived and faithfully recapitulate the
molecular profiles and histopathological features of GBM,
including diffuse brain invasion.19,136 – 141 Although their cellular
origin is undefined and their genomic complexity renders eluci-
dating the phenotypic consequences of individual oncogenic
mutations difficult when studied in multimodel panels, PDXs
more broadly recapitulate the intertumoral genomic heteroge-
neity evident in GBM.137 As such, systematic drug screening in
these models has the potential to more accurately reflect clin-
ical activity of novel drugs and more readily identify predictive
molecular characteristics. The multi-institutional Ivy Genomics-
based Medicine Project is currently utilizing this approach to
investigate both novel and conventional cytotoxic agents and
develop predictive biomarkers in a genomically diverse panel
of PDX models.18,97

Genetically Engineered Human Cell Models

Models using genetically engineered normal human brain cells
(geHCs) have been recently developed to overcome some
of the limitations of human astrocytoma ECL and PDX models
(Fig. 3C). These models were generated by purifying specific
cell types, such as astrocytes or neural stem cells, from
normal human brains and using standard molecular biology
techniques to engineer their expression of specific oncogenic
mutations.142 – 145 By virtue of their design, these genetically
defined models permit direct determination of the phenotypic
consequences of astrocytoma-associated mutations in specific
neural cell types. Their serial culture in vitro is generally unac-
companied by additional genomic abnormalities.144 While pen-
etrance, growth kinetics, and latency vary based on mutations
and cellular origin, many geHC models give rise to diffusely infil-
trative astrocytomas when orthotopically injected into the brains
of immunodeficient mice.

Genetically Engineered Mouse Models

Genetically engineered mouse (GEM) models revolutionized
basic cancer research in the 1990s. Over the past 2 decades,
dozens of astrocytoma GEM models have been developed to
dissect the genetics of de novo tumorigenesis in the native
brain microenvironment (Fig. 3D).19,20 Because knockout and
transgenic GEMs harbored engineered mutations in all cell
types, embryonic lethality precluded study of genes critical
for development.20 GEMs that utilized conditional alleles were
subsequently developed to overcome this limitation and to
spatially restrict oncogenic mutations to defined cell types
within the brain. Conditional, inducible, and somatic gene
transfer GEM models, including the RCAS-tva system, were de-
signed to facilitate temporal as well as spatial control of
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mutations. The value of these models in basic astrocytoma re-
search has been reviewed extensively elsewhere.16 – 24 Here we
focus on their use in astrocytoma drug development.

A number of factors inherent in the design of astrocytoma
GEM models has limited their use in preclinical drug develop-
ment, particularly for studies evaluating drug efficacy by con-
ventional clinical endpoints (eg, radiographic response and
overall survival).146 – 149 Whereas single oncogenic alleles are
sufficient to induce tumorigenesis in medulloblastoma models,
multiple mutations are typically required to induce astrocyto-
ma tumorigenesis in GEMs.20,150,151 Conditional GEM models
require complex and often inefficient breeding schemes to gen-
erate sufficiently large cohorts for preclinical drug studies.
RCAS/tva GEMs are much more amenable because multiple
predefined, oncogenic alleles can be simultaneously introduced
into specific neural cell types using a single transgenic mouse
line engineered to express tva receptors.20,152 However,
because RCAS retroviral vectors are required, these models
are limited to the transformation of endogenously proliferative
cell types.152 High-grade astrocytoma tumorigenesis typically
occurs with variable penetrance after relatively long periods
of latency in these model systems. Moreover, GBMs develop
in a temporally heterogeneous, stochastic manner. Therefore,
the presence and location of tumors in individual mice must
be confirmed by radiographic imaging prior to treatment initia-
tion and intermittently thereafter to monitor drug response in
vivo.20,152 – 154 Taken together, these features make preclinical
drug studies in astrocytoma GEMs long, cumbersome, and
expensive.

Non-germline Genetically Engineered Mouse Models

Non-germline GEM (nGEM) models overcome many of the lim-
itations of GEMs and may be more amenable to preclinical drug
studies. Like geHC, nGEM models utilize cultures of specific cell
types harvested from GEM brains, including astrocytes and neu-
ral stem cells (Fig. 3D).127,155 – 159 They harbor defined genetic
mutations, and their serial culture is generally unaccompanied
by additional genomic abnormalities (unpublished observa-
tions). While penetrance and latency vary with mutations and
cellular origin, nGEM astrocytomas developed with uniform
growth kinetics in vivo when injected into syngeneic, immuno-
competent hosts, precluding the need for radiographic screen-
ing.127 Like ECLs, PDXs, and geHCs, these cells can be readily
modified genetically to express luminescent proteins that
facilitate monitoring of disease burden and drug response
with bioluminescence imaging.53,160 Both geHC and nGEM
models enable direct determination of genotype-phenotype
relationships. Unlike ECLs and PDXs, these models can be
used to define the oncogenic roles of single mutations and
the cooperative roles of multiple mutations during tumorigen-
esis. They are thus uniquely suited for the systematic validation
of putative oncogenic driver mutations identified in large-scale
genome characterization projects.161 Because geHC and nGEM
grow in vitro and in vivo and feature defined genomic land-
scapes, these models can also be used to unambiguously
define the genetics of drug response and resistance.

nGEMs may be useful for dissecting the role of individual
mutations and their cellular origin in generating genomic diver-
sity of human astrocytomas. As such, subtype-specific nGEM

models of GBM may be developed for drug development. We
have recently published a nGEM model derived from G1/S
defective astrocytes with activated MAPK and PI3K signaling
that molecularly mimics proneural human GBM.64,127 However,
in contrast to ECL, PDX, and geHC models, nGEM models utilize
syngeneic, immunocompetent hosts and may be useful in
development of drugs targeting tumor-stroma interactions or
immunomodulatory therapies.

Modeling Low-grade Astrocytomas

Despite advances in modeling techniques, murine models that
mimic the natural history of low-grade astrocytomas (WHO
grade II) in humans have been difficult to develop. These tu-
mors generally fail to become established when cultured in
vitro or grow when transplanted into immunodeficient mice.
In fact, in vivo tumorigenesis has long been known to correlate
with histological grade and poor prognosis.162 Thus, human ECL
and PDX models of low-grade astrocytomas are virtually non-
existent. Their absence has significantly impeded study of
the genetics of malignant progression and the development
of effective drugs for these tumors. However, several GEM mod-
els have recently been described that develop as clinically silent
but histopathologically detectable low-grade astrocyto-
mas.154,163 These tumors progressively expand over time,
spontaneously acquire additional mutations, and undergo ma-
lignant progression to lethal, high-grade disease.164 Despite
their initiation by a limited number of oncogenic mutations,
malignant progression in these GEMs results in GBMs with tran-
scriptomes that recapitulate the full spectrum of human sub-
types.153,154 Moreover, we have genomically characterized
multiple, spatially distinct GBMs that developed in different
brain regions of individual mice and found that their genomic
landscapes differed, suggesting that divergent genetic evolution
occurs in these models.164 These GEM models therefore may be
uniquely suited for defining the genetics of malignant progres-
sion, the prognostic impact of TMZ-induced hypermutation in
low grade astrocytomas,112,165 and the development of novel
treatments to prevent or delay their progression.

IDH1 and IDH2 mutations are subtype-defining genetic
features of lower-grade astrocytomas.107,109 However, pre-
clinical models for the development of IDH-mutant astrocyto-
ma therapies are scarce. Most studies published to date have
used stably transfected ECLs or geHCs to investigate the bio-
logical effects of IDH mutations in vitro.166 – 174 Adherent
serum cultures of IDH-mutant astrocytomas have been
shown to lose the mutant allele upon serial passage, and
mutant-containing clones have failed to become ECLs.175 In
contrast, 4 IDH1R132H-mutant anaplastic gliomas (WHO
grade III) have been successfully cultured as neurospheres
in vitro.176 – 179 However, only 2 of these, both from anaplastic
oligodendroglial neoplasms, formed serially transplantable
gliomas in the immunodeficient mouse brain. Thus, only 2
potential PDX models are currently available for preclinical
IDH-mutant glioma drug development.178,179

The initial attempt to develop a GEM model of IDH-mutant
gliomas was also disappointing.180 Conditional activation of a
heterozygous, floxed IDH1R132H mutant allele using Nestin-cre
or Gfap-cre drivers failed to elicit tumorigenesis in the developing
mouse brain, despite production of the oncometabolite
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D-2-hydroxyglutarate (D2HG). Rather, D2HG blocked collagen
maturation and altered vascular basement membranes, leading
to brain hemorrhage and embryonic lethality. These results
suggest that IDH1 mutations alone are not sufficient to induce
tumorigenesis, at least in the developing mouse brain. However,
the effects of IDH1R132H have not been examined in the adult
brain. It therefore remains possible that temporal control
of IDH1R132H induction in the adult mouse brain using drug-
inducible Cre drivers may be more successful in modeling IDH-
mutant gliomas.

Alternatively, successful culture and xenografting of IDH-
mutant human gliomas as well as GEM modeling may require
the presence of cooperative oncogenic mutations. geHCs and
nGEMs represent attractive model systems for exploring this
hypothesis. In this regard, the IDH1R132H mutation has been
shown to impair histone demethylation in immortalized normal
human astrocytes.173 IDH1R132H also remodeled the DNA
methylome of these cells and was sufficient to induce the gli-
oma CpG island methylator (G-CIMP) phenotype. Moreover,
IDH1R132H blocked astrocytic differentiation in neurosphere cul-
tures of neural stem cells harvested from neonatal Ink4a/Arf
null GEMs.174 When engineered to express mutations in the
RAS-MAPK and PI3K pathways, immortalized human and
murine astrocytes have been shown to induce tumorigenesis
upon transplantation into mouse brains.127,143,144,181 Thus,
IDH-mutant geHC or nGEM brain cells with additional engi-
neered mutations may represent promising preclinical systems
for development of IDH targeted therapies.

Contemporary Murine Models in Preclinical Astrocytoma
Drug Development

Murine models can address a number of issues important in the
development of clinical drugs for astrocytomas. These include
validating molecular targets, defining the role of cellular origin
in drug response, prioritizing drugs for clinical development,
and developing predictive markers to identify potential re-
sponders (Table 3). The ideal model(s) to address these issues
differs based on the inherent strengths and weaknesses of their
design.

GEMs have established roles in the validation of molecular
targets, particularly in defining the role of putative oncogenic
drivers in the initiation and progression of tumorigenesis.
Because of their genetic tractability, nGEM and geHC models
are poised to supplement GEMs in future target validation

efforts. Indeed, we utilized nGEM models to establish that
cooperation between MAPK and PI3K signaling is required for
GBM pathogenesis in vivo, suggesting that simultaneous inhibi-
tion of both pathways may be required for effective therapeutic
design.127 Moreover, geHC models with human astrocytes
proved critical in defining the effects of IDH mutations on the
epigenetic control of tumor cell differentiation.173

In addition to target validation, GEM, nGEM, and geHC models
may be useful for defining the impact of cellular origin on astro-
cytoma tumorigenesis and drug sensitivity.20 Like astrocytomas,
multiple genomic subtypes of medulloblastoma with distinct
mutations exist.182 GEM models have shown that different onco-
genic mutations in specific cells of origin in the developing
mouse cerebellum lead to distinct genomic subtypes of medul-
loblastoma that mimic their human counterparts. GEM models
of sonic hedgehog-associated medulloblastoma in particular
are currently being utilized for the preclinical evaluation of
subtype-specific targeted therapies.150

PDX and GEM models with defective ABC transporters have
established roles in characterizing CNS PKs.132,183 The advantag-
es of PDX, nGEM, and geHC over ECL models promise to replace
their use in defining dose and schedule dependencies of combi-
nation therapies for GBM.89 Due to the redundancies of RTK sig-
naling, mosaic amplification of multiple RTKs in GBM and
significant inter- and intratumoral molecular heterogeneity,
monotherapy with single targeted agents will likely prove inef-
fective for GBM.105 Increasing use of contemporary PDX, nGEM,
and geHC models in preclinical development of these agents is
likely to aid in defining and further characterizing these mecha-
nisms of drug resistance. Because these cells can be cultured in
vitro, synthetic lethality screens or kinome profiling promise
to aid definition of rational combination therapies to combat
drug resistance.184 Moreover, more systematic use of multiple
genomically diverse models in preclinical drug efficacy screens
promises to aid development of predictive genomic
biomarkers.18,97

Conclusion
Despite decades of research, the therapeutic armamentarium of
approved drugs for astrocytomas remains limited. The field of
neuro-oncology has yet to benefit from the accelerated pace
of oncology drug development due to issues of prevalence,
trial participation, and biological complexity of the disease. How-
ever, comprehensive genomic characterization and changes in

Table 3. The role of contemporary murine models in preclinical astrocytoma drug development

Clinical Issue Role of Preclinical Models Ideal Model(s) References

Target validation Define role in tumorigenesis GEM, nGEM, geHC 127,143,144,154,188

Cellular origin Define role in tumorigenesis GEM, nGEM, geHC 127,143,145,153,154,189,190

Drug prioritization Characterize CNS penetration PDX, GEM 132,183

Define effective dose and schedule PDX, nGEM, geHC 53,60,89

Define resistance mechanisms PDX, nGEM, geHC 82,191,192

Test combination therapies PDX, nGEM, geHC 95,156,193 – 195

Patient selection Developing predictive biomarkers PDX, nGEM 53 – 55,59,60,68,69,94 – 96
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clinical trial design promise to improve disease classification and
increase the number of targeted agents that can be clinically
evaluated. Improvements in preclinical murine models and
their systematic integration by the neuro-oncology community
during early drug development promises to further accelerate
therapeutic advances for these devastating malignancies.
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