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DREADDs are chemogenetic tools widely used to remotely control cellular signaling, neuronal 

activity and behavior. Here we used a structure-based approach to develop a new Gi coupled 

DREADD using the kappa-opioid receptor as template (KORD) that is activated by the 

pharmacologically inert ligand salvinorin B (SALB). Activation of virally-expressed KORD in 

several neuronal contexts robustly attenuated neuronal activity and modified behaviors. 

Additionally, co-expression of the KORD and the Gq coupled M3-DREADD within the same 

neuronal population facilitated the sequential and bi-directional remote control of behavior. The 

availability of DREADDs activated by different ligands provides enhanced opportunities for 

investigating diverse physiological systems using multiplexed chemogenetic actuators.

Introduction

Over the past several years, optogenetic and chemogenetic (Armbruster et al., 2007; Boyden 

et al., 2005) approaches have transformed neuroscience and other disciplines by facilitating 

the reversible, cell type-specific control of cellular signaling and electrical activity. As 

complementary technologies, opto- and chemo-genetics have demonstrated robust utility for 

deconstructing the neuronal codes responsible for both simple and complex behaviors 

(Deisseroth, 2011; Sternson and Roth, 2014). The chemogenetic platform known as 

DREADDs (Designer Receptors Exclusively Activated by Designer Drugs) has proven to be 

extremely useful for interrogating cellular signaling in cell types as diverse as glia (Agulhon 

et al., 2013), pancreatic β-cells (Guettier et al., 2009; Jain et al., 2013), hepatocytes (Li et al., 

2013), triple negative breast cancer cells (Yagi et al., 2011), transformed fibroblasts (Vaque 

et al., 2013) and induced pluripotent stem (iPS) cells (Dell’Anno et al., 2014).

Current DREADDs, activated by the inert clozapine metabolite clozapine-N-oxide (CNO), 

can silence (Armbruster et al., 2007) or enhance (Alexander et al., 2009) neuronal firing, and 

can modulate cellular signaling via Gi, Gq, Gs or β-arrestin cascades (Guettier et al., 2009; 

Nakajima and Wess, 2012). However, the dependence of DREADD technology on the same 

inert ligand CNO limits its effectiveness for bidirectional and multiplexed chemogenetic 

control of neuronal and non-neuronal activity. Thus, the development of a new DREADD 

that can be activated by a distinct chemotype would represent a powerful new tool for 

neuroscientists and biologists in general.

The first chemogenetic tool based on a G protein Coupled Receptor (GPCR) was developed 

by Strader and colleagues in 1991 (Strader et al., 1991). Since then, many orthologous 

receptor-ligand pairs have been developed (e.g. RASSLs, TRECs, neoceptors and so on 

(Conklin et al., 2008)), though with occasionally limited utility. Common problems 

associated with these first-generation chemogenetic tools included: (1) Many of the 

synthetic compounds that activate the modified receptors exhibit appreciable affinities and 

potencies for the native receptors. This nonselective activity limits their efficacy in vivo 

because of the need to employ knockout animals in order to avoid activation of endogenous 

receptors. (2) In some cases, ligand potency was too low to be useful for studies in vivo. (3) 

The selectivity profile of the ligands was typically unspecified (e.g. they may have activities 

at other unidentified cellular targets). (4) Many of the previously reported modified 

receptors had high basal signaling in vivo that obscures ligand-induced phenotypes (Rogan 
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and Roth, 2011). The recent development of engineered ligand-gated ion channels (PSAMs 

and PSEMs) overcomes many of these deficiencies (Magnus et al., 2011), although because 

PSAMs and PSEMs are ion channels, they have limited value in non-excitable cells.

Here we reveal the development of a new DREADD using the κ-opioid receptor (KOR) as a 

template that is activated by salvinorin B (SALB). Since SALB is an inactive, drug-like 

metabolite of the KOR selective agonist salvinorin A (SALA) (Ansonoff et al., 2006; Roth 

et al., 2002), and because SALB has excellent CNS penetrability and pharmacokinetic 

properties in both rodents and non-human primates (Hooker et al., 2009), the SALB/KORD 

combination will be exceptionally suited for a variety of contexts. Additionally, the SALB/

KORD pairing facilitates the multiplexed chemogenetic interrogation of GPCR signaling 

and behavior.

RESULTS

Salvinorin B is inert in vivo

Previous preliminary studies showed that SALB is pharmacologically inert in vitro and in 

vivo (Ansonoff et al., 2006). To verify and extend these findings, we profiled SALB against 

a large number of CNS molecular targets using the resources of the National Institute of 

Mental Health Psychoactive Drug Screening Program as described (Besnard et al., 2012; 

Keiser et al., 2009). SALB failed to show any activity except the previously reported low 

KOR [3H]-diprenorphine radioligand binding affinity (Ki=2.95 μM; Figure 1H). 

Importantly, SALB was also inactive at muscarinic receptor- based DREADDs (Gq, Gi and 

Gs DREADDs; Figure S1). We found that SALB is a weak KOR agonist with an EC50 of 

248 nM (Fig 1D; Table 1). Importantly the potency of SALB is so weak that even after i.c.v. 

administration SALB failed to produce KOR-mediated anti-nociception, while SALA (its 

active precursor) was potently analgesic (Ansonoff et al., 2006).

Given both the weak potency of SALB at wild-type (WT) KOR and its inactivity when 

administered i.c.v., we reasoned that SALB will be inactive in vivo. To test this hypothesis, 

we used several behavioral assays to determine whether SALB can induce behavioral effects 

commonly associated with KOR agonists: analgesia, impairment of motor performance, and 

the production of anhedonic-like states. First, we measured the analgesic and ataxic effects 

of SALB and compared its activity with a metabolically stable SALA analogue, MOM-ether 

salvinorin B (MOM-B), using hot plate and rotarod assays respectively. While 2.0 mg/kg 

MOM-B produced effects in both the hot-plate and rotarod tests, administration of 10.0 

mg/kg SALB did not alter performance relative to controls (Fig 1A and B). Subsequently, 

we used the curve-shift method of intracranial self-stimulation (ICSS) to detect reward-

devaluing effects of SALB. While SALA (0.1 – 1.0 mg/kg) significantly elevated brain 

stimulation reward thresholds in C57BL/6J mice at all doses tested (F3, 18 = 14.5, p < 0.001; 

Fig 1C, Fig S4), SALB (3.0 – 17.0 mg/kg) failed to significantly elevate thresholds up to 

17.0 mg/kg s.c. Given that SALB is apparently inert in vivo and because of its outstanding 

pharmacokinetic and CNS penetrability properties (Hooker et al., 2009), we predicted that 

SALB would represent a suitable ligand for a new DREADD.
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Structure-Based Design of KORD

In order to develop a new DREADD, we initially hoped to evolve the human KOR (hKOR) 

to be responsive to SALB using our yeast-based directed molecular evolution approach 

(Armbruster et al., 2007; Dong et al., 2010). For these studies, hKOR was cloned into the 

yeast expression plasmid p416 and functionally expressed in a genetically modified strain of 

S. cerevisiae, which enables ligand-induced activation of heterologously expressed 

mammalian Gi-coupled GPCRs to engage the pheromone signaling pathway, thereby 

promoting growth on selective media (Dong et al., 2010; Erlenbach et al., 2001; Noble et al., 

2003). We created a library of mutant hKOR receptors by random mutagenesis, and 

screened them for activation by SALB. We were able to identify multiple mutants activated 

by SALB, although they all displayed high levels of constitutive activity, rendering them 

relatively useless for the studies we envisioned.

Therefore, we employed a rational approach to designing the KOR DREADD based on our 

recent crystallographic, mutagenesis, and molecular modeling studies of hKOR (Vardy et 

al., 2013; Wu et al., 2012). These studies showed that an alanine mutation at E297 at the 

extracellular end of TM6 (an important residue in KOR specificity determinant, in the so-

called “address domain” (Larson et al., 2000)) causes a 10-fold decrease in the affinity and 

potency of the endogenous peptide ligand dynorphin A (DYNA) without altering the affinity 

or potency of SALA (Vardy et al., 2013). Another residue D138 in TM3, which belongs to 

the general opioid activation determinant, was also examined. This residue resides in the 

“message domain” of KOR (Portoghese, 1989; Vardy et al., 2013), and D138A mutations 

have been reported to nearly abolish the binding of all known KOR agonists without 

affecting the affinity or potency of SALA (Kane et al., 2006; Vardy et al., 2013). 

Furthermore, recent high resolution crystal structures of related opioid receptors (Fenalti et 

al., 2014; Fenalti et al., 2015) implied that this residue is also essential for the interaction of 

other classes of opioids including opioid peptides and opioid antagonists. We reasoned, 

therefore, that changing the negative charge to a polar residue via a D138N mutation would 

further decrease the potency of endogenous peptide ligands and enhance the potency of 

SALB and SALA.

Indeed the D138N mutation apparently abolished DYNA (1-13) agonist efficacy and 

potency and diminished peptide binding affinity while enhancing SALA and SALB 

affinities and potencies 10- to 30-fold (see Figs 1D, 1F, 1G, 1H; Table 1). As a key requisite 

of DREADDs is the failure to be activated by endogenous neurotransmitters, we combined 

these two KOR mutants (e.g. D138N/E297A) and evaluated the resulting construct. Both the 

double D138N/E297A mutant and the single D138N mutant responded to SALB and SALA 

with greatly enhanced potencies compared to WT, while the E297A mutant alone had no 

effect on SALB agonist potency (Fig. 1D). Critically, the single D138N mutant was not 

activated by any tested synthetic or endogenous peptide KOR ligands (Fig. 1G and Table 1). 

Thus in a screen of 21 endogenous opioids performed at WT and the D138N mutants, no 

opioid peptide was found to have detectible agonist activity at the D138N mutant (Table 1; 

Fig 1G). As the D138N mutant is potently activated by the inactive drug SALB and 

apparently not activated by any tested endogenous peptide agonist, we chose it as our 

candidate DREADD and have dubbed it KORD (κ–opioid DREADD).
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GPCR over-expression typically results in a large degree of receptor reserve thereby 

enhancing agonist potency. Thus, because a high level of receptor reserve can be easily 

achieved for DREADDs via virally-mediated transduction, receptor reserve could further 

enhance the apparent affinity, selectivity, and potency of SALB for the KORD. To test this 

notion, we transfected HEK293T cells with increasing concentrations of plasmids 

expressing either WT hKOR or the KORD (D138N hKOR), which resulted in varying levels 

of receptor expression. As predicted, increased receptor expression levels correlated with an 

increase in the apparent potency of SALB (Fig 1E). Significantly, the potency differences 

between cells expressing levels of WT receptor (1 μg DNA), which is a level similar to 

endogenous brain expression, versus cells expressing high levels of the mutant receptor (15 

μg DNA) is close to 1000-fold (Fig. 1E). Thus, our rationally designed KORD greatly 

enhances hKOR sensitivity to SALB and simultaneously abolishes the agonist activity of a 

variety of endogenous and exogenous KOR agonists (Fig. 1G; Table 1).

As constitutive activity is a potential confounding issue with respect to over-expressed 

chemogenetic and optogenetic tools, we next examined the constitutive activity of KORD 

compared to both a WT and a constitutively active KOR mutant (V108L). We found that the 

basal activity of KORD (137 +/− 3.7 × 105 lumens/min; n = 44; p > 0.05 vs WT) was 

equivalent to WT (134 +/− 3.2 × 105 lumens/min; n = 48) and less than the V108L 

constitutively active mutant (94 +/− 3.7 × 105 lumens/min; n = 50; p < 0.001 vs WT), 

indicating that the KORD does not represent an apparently constitutively active mutant. 

Although the atomic mechanisms responsible for the increased affinity and potency for 

SALB are unknown, our modeling results suggest that it is likely due to the removal of an 

unfavorable desolvation cost associated with non-basic ligand binding to a charged aspartate 

(Asp) (Vardy et al., 2013). Indeed our docking studies suggest that changing the Asp at this 

position to Asparagine (Asn) results in an improved conformation for the Asn, decreases the 

energetic cost for desolvation, and thus increases affinity (see Fig. 1I)

In vivo Neuronal Validation of KORD

KORD activation induces neuronal hyperpolarization—To test the activity of the 

KORD in vivo, we used a standard Cre-recombinase–dependent adeno-associated virus 

(AAV), which enabled the targeting of KORD to specific neuronal populations in different 

Cre-driver mouse lines (Fig 2A). We verified effective transduction of KORD in a Cre-

dependent manner in a variety of neurons, including the substantia nigra (SN) and the 

ventral tegmental area (VTA) of vesicular GABA transporter (VGAT)-ires-Cre mice (Figs 

2B and 2C), the paraventricular hypothalamus (PVH) of single-minded1 (SIM1)-Cre mice 

(Balthasar et al., 2005), and the arcuate nucleus (ARC) of Agouti-Related Peptide (AGRP)-

ires-Cre mice (Tong et al., 2008)(Fig 3A, B, E and F).

We next performed whole-cell patch clamp recordings in acutely prepared slices to test the 

ability of KORD to generate a SALB-induced hyperpolarization. Results were calculated as 

a shift from baseline resting membrane potential (RMP). In VTA/SN-VGAT-expressing 

(VTA/SNVGAT) neurons transduced with KORD, bath application of SALB led to a robust 

and significant membrane potential hyperpolarization while SALB had no effect on control 

(mCherry-transduced) neurons (t9 = 2.97, p < 0.05; Fig 2D). To determine the 
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generalizability of KORD-mediated hyperpolarization, we also evaluated SIM1-expressing 

neurons in the paraventricular hypothalamus (PVHSIM1) and AgRP-expressing neurons in 

the arcuate nucleus (ARCAgRP). Upon bath application of SALB, both PVHSIM1 and 

ARCAgRP neurons expressing KORD exhibited robust hyperpolarization, shifting −6.2 ± 2.1 

mV and −10.1 ± 1.7 mV respectively (PVHSIM1: t5 = 2.99, p<0.05; ARCAgRP: t4 = 5.94, p < 

0.05; Fig 3D, H). Next, we sought to determine if the KORD can act presynaptically to 

inhibit neurotransmission by recording miniature inhibitory post-synaptic currents (mIPSCs) 

in VTA/SN neurons in the presence of SALB. In VGAT-ires-Cre mice with AAV-hSyn-

DIO-KORD-injected in to the VTA/SN, SALB significantly reduced mIPSC frequency (t2 = 

24.7, p < 0.001; Fig 2E) but not amplitude (t2 = 2.45, p > 0.05) compared to baseline, 

consistent with a presynaptic effect. SALB had no effect on mIPSCs in naive mice 

(frequency: t2 = 0.92, p > 0.05; amplitude: t2 = 4.1, p > 0.05). No differences in baseline 

mIPSC frequency were observed between AAV-hSyn-DIO-KORD-injected mice and naïve 

mice (Fig 2E).

Peripheral SALB Administration Produces Robust Behavioral Responses—
Given that SALB induced KORD-mediated hyperpolarization, we next tested whether the 

SALB-induced activation of KORD had functional consequences on three distinct neuronal 

populations: (1) VTA/SNVGAT and hypothalamic (2) PVHSIM1 and (3) ARCAgRP (using 

VGAT-ires-Cre, SIM1-Cre, and AGRP-ires-Cre mice, respectively). Since previous studies 

have demonstrated that optogenetic modulation of VTA/SNVGAT neurons can modify 

locomotion (van Zessen et al., 2012), we predicted that chemogenetic silencing via KORD 

of VTA/SNVGAT neurons (Figs 2B and 2C) would increase locomotion. As expected, SALB 

produced a dose-dependent increase in locomotor activity (F3, 21 = 19.1, p < 0.001) (Fig 2F), 

while vehicle was without effect; post hoc testing revealed that the 1.0, 3.0, and 10.0 mg/kg 

SALB doses significantly enhanced locomotion. Importantly, mice expressing mCherry in 

the same neuronal population were unresponsive to SALB (Fig 4B).

Next, we evaluated KORD activity in a neural circuit known to be involved in feeding 

behavior. PVHSIM1 neurons (Figs 3A and 3B), which make up the vast majority of PVH 

cells, have been previously demonstrated to increase food intake when chemogenetically 

inhibited (Atasoy et al., 2012; Stachniak et al., 2014). Consistent with prior results obtained 

using hM4Di, SALB activation of KORD in PVHSIM1 neurons significantly increased 

feeding behavior compared to baseline (0.61 ± 0.04g vs. 0.06 ± 0.01g; t6 = 11.8, p < 0.05; 

Fig 3C), whereas wild type control mice (t5 = 0.30, p < 0.05) injected with the cre-dependent 

KORD virus had no feeding effects in response to the administration of SALB.

As a final test, we evaluated the orexigenic ARCAgRP neurons (Figs 3E and 3F), which have 

been shown to send inhibitory projections to the PVH and synapse onto a subpopulation of 

PVHSIM1 neurons (Krashes et al., 2014; Atasoy 2012). Having established that activation of 

KORD hyperpolarizes PVHSIM1 neurons in vitro and increases food intake in vivo, we next 

tested KORD activation with SALB on the upstream inhibitory ARCAgRP neurons (Fig 3G; 

Fig S2). Following light cycle food restriction, food consumption was monitored during the 

first 60 min of the dark cycle, when mice normally eat and ARCAgRP neural activity is high 

(Krashes et al., 2011; Krashes et al., 2013). Compared to vehicle (0.59 ± 0.07g), KORD 

inhibition of the hunger-promoting ARCAgRP neurons resulted in significantly diminished 
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levels of food intake (0.11 ± 0.03g; t5 = 11.29, p < 0.05). Importantly, SALB administration 

did not impact feeding responses in wildtype animals (vehicle: 0.52 ± 0.05g; SALB: 0.55 ± 

0.07g).

KORD Facilitates Chemogenetic Multiplexed Control of Behavior

One of our main goals for developing the KORD was to enable multiplexing experiments 

for either the simultaneous or sequential manipulation of neuronal pathways using a variety 

of chemo- and optogenetic platforms. To test whether two distinct DREADDs can 

reciprocally modulate neuronal activity and behavior in vivo, we transduced VTA/SNVGAT 

neurons or hypothalamic ARCAgRP neurons with both the inhibitory, Gi-coupled, SALB-

activated KORD and the stimulatory, Gq-coupled, CNO-activated hM3Dq. We then tested 

for receptor expression and behavioral effects.

We found that locomotor activity could be bidirectionally modulated by KORD and hM3Dq 

in the same mouse. During different testing sessions, SALB (10.0 mg/kg) enhanced 

locomotor activity in mice that expressed both KORD and hM3Dq in VTA/SNVGAT 

neurons compared to vehicle (t4 = 2.89, p = 0.04; Fig 4B), and CNO (3.0 mg/kg) decreased 

locomotor activity (t4 = 5.44, p = 0.006). When tested during the same session, CNO (3.0 

mg/kg) produced significant locomotor depression (t4 = 3.28, p = 0.03), while SALB (17.0 

mg/kg) rescued the effects of CNO and significantly elevated locomotor activity when 

compared to vehicle (t4 = 3.44, p = 0.03; Fig 4C–D). In these sessions, the onset of action of 

both CNO and SALB began influencing locomotor behavior within 10–20 minutes post-

injection. Importantly, neither SALB (10.0 mg/kg; t5 = 1.93, p > 0.05) nor CNO (3.0 mg/kg; 

t5 = 0.95, p > 0.05) had any effect on locomotor activity in control mice expressing mCherry 

in VTA/SNVGAT neurons (Fig 4B). Histologic analysis of VTA/SNVGAT neurons showed 

that 87.7 ± 1.7% of transduced neurons co-expressed both receptors with no significant 

difference in the transduction efficiency of either DREADD (t2 = 0.82, p > 0.05; Fig S3). 

These results demonstrate for the first time that two different biologically inert designer 

ligands can produce robust behavioral changes in the same mouse, providing the first proof-

of-concept for multiplexed chemogenetic control of behavior.

We next investigated the effectiveness of multiplex manipulation of behavior while 

transducing ARCAgRP neurons with both the hM3Dq and KORD. As acute opto- and 

chemo-genetic activation of ARCAgRP neurons drives feeding behavior (Aponte et al., 2011; 

Betley et al., 2013; Krashes et al., 2011; Krashes et al., 2013), we attempted to reverse 

ARCAgRP hM3Dq activation-induced feeding with simultaneous KORD inhibition. 

Importantly, for this experiment to work, extensive restraint of ARCAgRP neuron activity is 

necessary to overcome the chemogenetically-induced feeding response given that only 

~10% of ARCAgRP neurons are required to drive the full magnitude of food intake (Aponte 

et al., 2011; Betley et al., 2013; Krashes et al., 2013). Consistent with previous studies, 

CNO/hM3Dq-induced activation of ARCAgRP neurons increased light cycle food intake 

(0.75 ± 0.03g) significantly compared to saline baseline (0.04±0.02g; Time: F6, 108 = 108.4, 

Treatment: F1, 18 = 10.6, and Time x Treatment: F6, 108 = 4.5; F6, 108 = 62.1, p < 0.001 for 

all, Fig 4E). However, co-administration of CNO and SALB significantly blunted feeding 

behavior (CNO vs CNO + SalB; Time: F6, 108 = 80.9, Treatment: F1, 18 = 204.3, and Time x 
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Treatment: F6, 108 = 62.1; p < 0.001 for all). Post hoc testing revealed a significant reduction 

of food intake similar to that observed during simultaneous optogenetic activation and 

hM4Di-mediated inhibition of ARCAgRP neurons (Stachniak et al., 2014). Interestingly, 

these animals elevate their feeding rate in the next two hours (1–3 hours after ligand 

injection), reflecting both the transient action of SALB/KORD and persistent action of 

CNO/hM3Dq (Fig 4E).

Discussion

Here we report the development of a new chemogenetic tool based on the κ-opioid receptor 

we have dubbed KORD (κ-opioid DREADD). We demonstrate that KORD can be used 

alone or in conjunction with other chemogenetic tools, thereby facilitating the multiplexed 

dissection of neural circuitry and behavior. As KORD is activated by SALB, it can be used 

in mice also expressing CNO-responsive DREADDs, allowing for the first time 

bidirectional chemogenetic manipulation of neural circuits. Although bidirectional control 

has only been demonstrated in the hypothalamus and VTA/SN, it is likely that this approach 

will work in other brain regions. The KORD could also be used together with other 

chemogenetic and optogenetic tools in order to provide higher order multiplexed modulation 

of GPCR signaling in non-neuronal cells.

The kinetics of CNO on neuronal activation via hM3Dq have been demonstrated thoroughly 

by a large number of independent studies, with in vivo DREADD mediated responses 

beginning 5–10 min after IP injection, and peak electrophysiological response occurring 45–

50 min after injection (Alexander et al., 2009; Urban and Roth, 2015). It has also been 

reported by many labs that both the behavioral and electrophysiological effects of CNO-

mediated DREADD activation can persist for several hours following a single injection in a 

manner predicted by its pharmacokinetic properties (Hooker et al., 2009; Urban and Roth, 

2015). By contrast, SALA and SALB concentrations in the rodent and primate brain 

increase within a few seconds following parenteral administration and then rapidly decline 

(t1/2=10–15 min; (Hooker et al., 2009)). Likewise, the behavioral effects of SALB in 

KORD-expressing mice begin and peak shortly after injection, yielding a behavioral effect 

that lasts for approximately one hour with the doses administered here. As a prolonged 

activation of DREADDs by CNO may be a problem when studying rapidly-modulated, 

short-term behaviors, the apparently brisk onset of the effects of SALB in KORD-expressing 

mice may prove valuable for such studies. Indeed, prior studies have demonstrated that 

SALB is cleared quickly from the brain but has a slightly more prolonged plasma half-life 

(Hooker et al., 2009), and thus its pharmacokinetic properties may be better suited for 

studies in which relatively acute neuronal silencing is required, while CNO-based 

DREADDs (e.g. hM4Di) are useful where prolonged silencing is desired.

Given that SALB has some modest activity at KOR, it is possible that neurons with a high 

degree of receptor reserve could show responses to high systemically administered doses of 

SALB. Even though we have been unable to detect any pharmacological effect of SALB 

administration, it will be important to avoid using excessively high doses (e.g. >10 mg/kg) 

and to test SALB in animals in which KORD has not been expressed. Additionally, because 
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of the limited solubility of SALB, it will be important going forward to develop analogues 

of SALB which show improved water solubility.

Optogenetic and chemogenetic tools have revolutionized neuroscience research by 

facilitating the region- and cell-type-specific manipulation of neuronal activity. 

Optogenetics provides inherent advantages with millisecond temporal resolution, although 

the hardware required for precise intracranial light-delivery is not only invasive but 

cumbersome in comparison to the minimal requirements for chemogenetic manipulation. 

Chemogenetic control via DREADDs provides slower kinetics due to the systemic 

administration of CNO or SALB, but has demonstrated its ability to achieve the same 

functional mapping results with less invasive intervention [reviewed by (Mahler et al., 2014; 

Stachniak et al., 2014; Urban and Roth, 2015)]. It is also possible to directly infuse CNO 

into specific brain structures to obtain a transient and focal DREADD activation. The newly 

developed KORD described here provides potentially greater temporal resolution compared 

to existing DREADDs, as SALB pharmacokinetics are relatively rapid; additionally the 

KORD’s effects are apparently robust. Finally, given the relative simplicity of multiplexing 

with bimodal control now easily achievable, the KORD will prove broadly useful for 

neuroscientists and other biologists.

Experimental procedures

Molecular methods

Molecular biology—Mutagenesis, radioligand binding and functional assays were done 

exactly as described in (Vardy et al., 2013).

Molecular modeling—Molecular modeling of salvinorins A and B in complex with the 

wild-type KOR was performed as previously described (Vardy et al., 2013). Modeling of 

salvinorins A and B in complex with the KORD was achieved by in silico mutation of D138 

to N in the respective wt KOR–ligand complexes, with subsequent energy minimization in 

SYBYL-X 2.1 (Tripos Force Field, Gasteiger-Hückel charges, distance-dependent dielectric 

constant = 4.0; non-bonded interaction cutoff = 8 Å; termination criterion = energy gradient 

< 0.05 kcal/(mol × Å) or 100,000 iterations).

Viral production methods

Virus production—KORD (table S2) in pCDNA 3.0 was cloned into a human synapsin 

(hSyn)-driven double floxed pAAV vector derived from pAAV-HA-M4D-IRES-mCitrine. 

The pAAV-HA-KORD-IRES-mCitrine was then used for AAV9 production at the UNC 

Vector Core as described (Zhu et al., 2014)

Viral infusion in vivo—Mice were anesthetized with ketamine (120 mg/kg) and xylazine 

(18 mg/kg) (Sigma, St Louis, MO), and viral constructs (AAV--hSyn-DIO-HA-KOR 

DREADD, AAV-hSyn-mCherry, or AAV-hSyn-KOR DREADD + AAV-hSyn-hM3D) were 

stereotaxically injected bilaterally into the VTA/SN, or hypothalamic PVH or ARC 

(coordinates for VTA/SN: AP −3.1, ML ±0.4, DV −5.0; coordinates for PVH: AP: −.65, ML 

±0.2, DV −4.7; coordinates for ARC: AP: −1.5, ML ±0.3, DV −5.7) using a 1.0 μL 
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Hamilton Neuros 7001 KH syringe (Reno, NV) at a volume of 300 nL/side, at a rate of 100 

nl/min for the VTA/SN; 25nL/side, at a rate of 50 nL/min for the PVH; 200nL/side, at a rate 

of 50 nL/min for the ARC. After surgery, mice were returned to their cages for two to three 

weeks of recovery before behavioral or electrophysiological testing.

Slide preparation and Immunohistochemistry

Animals were deeply anaesthetized with an overdose of ketamine (400 mg/kg) xylazine (40 

mg/kg) and transcardially perfused with PBS (4 °C, pH 7.4) followed by 4% PFA in 0.1 M 

phosphate buffer (4 °C, pH 7.4). Brains were post-fixed overnight in 4% PFA, and 

subsequently cryopreserved in 30% sucrose in 0.1M phosphate buffer. For confocal image 

collection, tissue sections containing the VTA/SN were cut into 40 μm sections using a 

sliding microtome (Leica SM2010 R) and stored in an ethylene glycol/sucrose based 

cryoprotectant. For immunohistochemistry, tissue sections were washed in PBS (pH 7.4) 

three times, followed by 30 minutes of permeabilization in PBS with 0.3% Triton-X. Tissue 

sections were blocked in 5% normal donkey serum and PBS with 0.3% Triton-X for one 

hour, and incubated with 1:500 rabbit anti-HA (Cell-Signaling #3724) and 1:500 mouse 

anti-mCherry (abcam ab125096) for 48 hours at 4 °C). Subsequently, tissues were washed 

three times for 5 minutes in PBS with 0.3% Triton-X, and then incubated with Alexa 568 

donkey anti-mouse and Alexa 647 donkey anti-rabbit secondary antibodies (1:250) for 24 

hours at 4 °C. Tissue sections were washed three times for 5 minutes in PBS with 0.3% 

Triton-X, followed by two five-minute washes with PBS (pH = 7.4). A DAPI counterstain 

(300 nM) was applied in the first PBS wash step. Whole tissue sections were imaged with an 

epiflourescent slide scanner at the UNC translational pathology lab. Confocal images of 

infected midbrain GABAergic neurons were taken using a Fluoview FV1000 with a 40x 

(NA 1.3) oil objective. To show co-expression of mCitrine and the HA-tagged KORD, the 

same staining protocol was observed, substituting an anti-GFP antibody recognizing 

mCitrine.

Quantification of co-expression of M3- and KORDs—Three 40 μm sections 

containing the VTA/SN were taken from brains of three mice who had received multiplexed 

DREADD injections. In each section, a z-stack was collected in the VTA using a 40x oil 

objective (300 × 300 μm field of view). Co-expression of DREADDs were calculated by 

counting total transduced cells (either KOR or M3 positive), and calculating the relative 

percentages expressing KOR alone, M3 alone, or KOR/M3. Cell counts were averaged 

within each animal and data were analyzed using a student’s paired t-test.

Behavioral studies

Salvinorin B evaluation in control mice—The analgesic-like effect of KOR specific 

drugs was determined measuring the heat sensitivity of mice in a hot plate assay as 

previously described (White et al., 2015). The effect of such drugs on balance and motor 

coordination was assessed by the rotarod test (White et al., 2015). KOR activation has been 

strongly related to anhedonia (Todtenkopf et al., 2004); the anhedonic effects of KOR 

agonists were measured by intracranial self-stimulation (ICSS) in mice as previously 

described (Robinson et al., 2011). This operant behavioral method measures the value of 

electrical stimulation (brain stimulation reward or BSR) applied to the fibers of the medial 
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forebrain bundle (MFB) at the level of the lateral hypothalamus and can be used to assess 

the reward-potentiating or reward-devaluing effects of drugs.

Animals—Adult (at least post-natal day 50) male and female Slc32a1tm2(cre)Lowl/J (VGAT-

ires-Cre; provided by Dr. Bradford Lowell, Harvard University, Boston, MA) littermates 

were housed in a temperature- and humidity-controlled environment under a 12-hr light/dark 

cycle, and had free access to food and water. All procedures were approved by The 

Institutional Animal Care and Use Committee (IACUC) of the University of North Carolina 

at Chapel Hill or the National Institute on Drug Abuse, and were conducted according to the 

Guide for the Care and Use of Laboratory Animals (NIH publication No. 85-23, revised 

2011).

Locomotor studies—Locomotor activity was measured before and after treatment with 

vehicle (s.c. or i.p.), salvinorin B (Sal B; 1.0 – 17.0 mg/kg s.c.), or clozapine-N-oxidide 

(CNO; i.p.) in 28 × 28 cm plexiglass chambers containing two sets of 16 infrared 

photobeams (MedAssociates, St. Albans, VT). Data were collected with software (MED-PC 

v4.1; MedAssociates) that calculated the total distance traveled (cm) by measuring the 

position of the mouse every 60 ms. During test sessions mice were placed into the center of 

the chamber and locomotion was measured for 60 minutes. During single drug exposure 

sessions, mice were removed from the chambers, injected with drug (Sal B: 1 – 10.0 mg/kg; 

CNO: 3.0 mg/kg; or vehicle) and returned to the chamber for 60 minutes of testing. During 

two-drug exposure sessions, mice were removed from the chambers after a 60-minute 

baseline, injected with vehicle or 3.0 mg/kg CNO, returned to apparatus for 30 minutes, 

removed, injected with 17.0 mg/kg Sal B or vehicle, and returned to the chambers for an 

additional 30 minutes of testing. Mice were habituated to vehicle injections for two days 

before testing. Sal B was dissolved in DMSO and injected subcutaneously (s.c.) through a 

27 gauge needle at a volume of 1 uL/g body weight using a Hamilton GASTIGHT 250 uL 

syringe (Reno, NV). CNO was dissolved in 10% DMSO in saline and injected 

intraperitoneally (i.p.) through a 27 gauge needle at a volume of 10 uL/g body weight. Drugs 

were administered in counterbalanced order using a within-subjects design. Drug effects 

were determined by the total distance travelled during the 60-minute post-injection period or 

during each 30-minute post-injection period. Dose effects were analyzed with repeated 

measures ANOVA with post hoc Bonferroni t-tests when p < 0.05. Individual drug 

determinations were compared to vehicle using paired t-tests.

Mouse handling for feeding studies—Mice (10- to 12-week-old male mice) were 

singly housed for at least 2.5 weeks following surgery and handled for 10 consecutive days 

before the assay to reduce stress response. Feeding studies were performed in home cages 

with ad libitum food access. Home cages were changed every day during food intake 

measurements to eliminate residual food crumbs in the bedding. CNO was administered at 1 

mg per kg of body weight. Saline was delivered at the same volume as CNO to maintain 

consistency in the studies. Salvinorin B was administered at 10mg/kg, dissolved in DMSO. 

DMSO was delivered at the same volume as Salvinorin B to maintain consistency. Mice 

with ‘missed’ viral injections, incomplete ‘hits’ or expression outside the area of interest 
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were excluded from analysis after post hoc examination of mCherry and mCitrine 

expression.

Feeding studies in SIM1-cre mice—During the light cycle, animals (SIM1-cre, n=7; 

WT, n=6) were injected with either DMSO (s.c.) or SalB (10 mg/kg; s.c.) and food intake 

was measured 1 hour after injection. A full trial consisted of assessing food intake from the 

study subjects after they received injections of DMSO on day 1 and SalB on day 2. Animals 

received a day ‘off’ between trials before another trial was initiated. The food intake data 

from all days following DMSO/SalB injections were then averaged across 4 trials and 

combined for analysis.

Feeding studies in AGRP-ires-cre mice—Just before the onset of the dark cycle, 

animals (AGRP-ires-cre, n=6, WT, n=6) were injected with either DMSO (s.c.) or SalB (10 

mg/kg; s.c.) and food intake was measured 1 hour after injection. A full trial consisted of 

assessing food intake from the study subjects after they received injections of DMSO on day 

1 and SalB on day 2. Animals received a day ‘off’ between trials before another trial was 

initiated. The food intake data from all days following DMSO/SalB injections were then 

averaged across 3 trials and combined for analysis.

Feeding studies with multiplexed KOR and hM3Dq DREADD—During the light 

cycle, animals (AGRP-ires-cre, n=10) were injected with saline (i.p.), CNO (1mg/kg; i.p.), 

DMSO (s.c.) or CNO + SalB (10 mg/kg; s.c.) and food intake was monitored every 30 

minutes for 3 hours after s.c. injection. A full trial consisted of assessing food intake from 

the study subjects after they received injections of saline on day 1, CNO on day 2, DMSO 

on day 3, and CNO + SalB on day 4. Animals received 3 days ‘off’ between trials before 

another trial was initiated. The food intake data from all days were then averaged by 

condition across 3 trials and combined for analysis.

Whole-cell electrophysiology experiments

The ability of KORD to generate a SALB-induced hyperpolarization was tested using whole 

cell electrophysiology. Slices were checked for adequate expression of the target constructs 

via the mCitrine fluorescence, and those mice in which expression of constructs could not be 

identified were discarded. Using a potassium gluconate based internal recording solution, 

whole-cell electrophysiological experiments were conducted in current-clamp at the resting 

membrane potential (RMP) for each neuron. Following a five minute stable baseline, 100nM 

Salvinorin-B was bath-applied for ten minutes (VTA/SNVGAT), six minutes (PVHSIM1), or 

seven minutes (ARCAgRP) at a flow rate of 2mL per minute. Average RMPs before and after 

the application of SALB were calculated and results were presented as a shift from baseline 

RMP. Miniature IPSCs were recorded in the presence of tetrodotoxin (500 nM) and 

kynurenic acid (3 mM) to block AMPA and NMDA receptor–dependent postsynaptic 

currents. Neurons were held at −70 mV across all voltage-clamp recordings and recording 

electrodes were filled with (in mM) 70 KCl, 65 potassium gluconate, 5 NaCl, 10 HEPES, 2 

QX-314, 0.6 EGTA, 4 Na-ATP, 0.4 Na-GTP, pH 7.25, 290–295 mOsm. After a 6-minute 

stable baseline, SALB (100 nM) was bath applied for 15 minutes and recordings were 
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continued during a 20-minute washout period. mIPSCs were detected using ClampFit, and 

the frequency and amplitude of events were normalized to baseline.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Rational design and in-vitro characterization of KORD
SALB was initially validated as a DREADD ligand by demonstrating its apparent 

pharmacologic inertness in vivo using behavioral tests by comparing with MOM-SALB via 

(A) hot plate test and (B) impairment of motor performance using the rotarod test. In both 

tests SALB effects (red) were compared to vehicle (white) and a stabilized variant of SALA 

(MOM-SALB - black). (C) The lack of production of a KOR-like anhedonic states was 

tested using ICSS and compared to the effects of SALA. (D) We characterized the KORD 

comparing the Gi-mediated response of different KOR mutants and demonstrate an 

increased potency of SALB at D138N containing mutants. (E) The effect of receptor 

expression levels on SALB potency of WT KOR (gray) and KORD (red). As can be seen, 

DNA concentration is directly related in both WT-KOR and KORD to agonist potency 

yielding a right shift in potency of 1–2 orders of magnitude. Average Gi response of WT-

KOR (F) and KORD (G) to classic KOR ligands Dynorphin A (DYNA, black), SALA 

(green), and the inert compound SALB (red) is shown. (H) Competition binding isotherms 
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of WT and KORD for DYNA (1-13) (pKi values: 8.50 ± 0.12 and 5.79 ± 0.06 respectively) 

and SALB (pKi values: 5.53 ± 0.08 and 6.98 ± 0.13 respectively). An examination of a 

model of KORD docked with SALB (I) suggests that the DREADD mutation (D138N) 

eliminates unfavorable interactions between D138 and SALB. In WT KOR, D138 is turned 

away from the ligand binding site (cyan) while N138 in KORD (white) is interacting 

directly with the ligand. E297 in both models models assumes the same conformation 

reflecting the fact that it has no effect on DREADD activity. Deacetylation at position 2 of 

SALA results in SALB (J). Asterisk indicates p < 0.05.
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Figure 2. Validation of KORD in vivo in VTA/SNVGAT neurons
(A) Schematic showing the AAV8 (hSyn-DIO-hKORD-IRES-mCit-WPRE-PolyA-R-ITR) 

construct used and its recombination under the control of Cre-recombinase. (B) Location for 

viral infusion of Cre-expressing VTA/SNVGAT neurons. (C) Representative low-power field 

of VTA/SNVGAT neurons. (D) Shift from baseline resting membrane potential (RMP) in 

VTA/SNVGAT neurons transduced with KORD or mCherry (control) constructs. (E) 

Baseline mIPSC frequency in non KORD expressing neurons in KORD infected mice and 

control neurons from naïve mice controls and the effects of SALB on miniature IPSC 
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frequency and amplitude in uninfected VTA/SNVGAT and naïve control VTA/SN neurons. 

(F) Locomotor responses for graded doses of SALB. Asterisk indicates p < 0.05.
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Figure 3. Validation of KORD in vivo in PVHSIM1 and ARCAgRP expressing neurons
(A) Location for viral infusion of PVHSIM1 Cre-expressing neurons. (B) Representative 

immunofluorescent photomicrographs demonstrating expression of mCitrine expression in 

virally-transduced neurons. (C) Effects of SALB on food intake in AAV-hSyn-DIO-KORD-

injected SIM1-Cre and WT mice. (D) Shift from baseline resting membrane potential (RMP) 

in KORD-transduced neurons in the PVHSIM1. (E–F) Location of viral infusion and 

expression of mCitrine (green) and HA-hKORD (red) in ARCAgRP neurons. (G) 

Suppression of food intake by SALB. Asterisk indicates p < 0.05. (H) Shift from baseline 

resting membrane potential (RMP) in KORD-transduced neurons in the ARCAgRP.
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Figure 4. Multiplexed bidirectional chemogenetic control of behavior
(A) Representative immunofluorescent confocal micrographs wherein hM3Dq and KORD 

were co-expressed in VTA/SNVGAT neurons with co-localization data summarized in (Fig 

S3). (B) Comparison of the effects of CNO and SALB on spontaneous locomotor activity of 

dual DREADD expressing mice (right panel; Mice expressing both hM3Dq and KORD in 

VTA/SNVGAT neurons) or control mice (mCherry, left panel). CNO inhibits spontaneous 

locomotor behavior and SALB augments locomotor behavior on different testing days (right 

panel). CNO and SALB did not affect behavior in mice that expressed mCherry in the same 

brain region. (C) Bidirectional manipulation of locomotor behavior: the locomotor activity 

of dual DREADD expressing mice was inhibited by CNO (CNO injection at 60 min). The 

locomotor depression was reversed by SALB injection (SALB injection 30 min after CNO 

injection) (D) Summary data of locomotor activity experiments using multiplexed 

DREADDs. (E) Demonstration that SALB inhibits food intake induced by CNO-mediated 

activation of hM3Dq when both are expressed in ARCAgRP neurons; these effects show 

transient effects of SALB versus the persistent effects of CNO. Asterisk indicates p < 0.05.
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Table 1

KORD is insensitive to endogenous opioid peptides and is potently activated by salvinorin B.

hKOR KORD

EC50(nM)
pEC50 ± SEM

Emax (%) EC50(nM)
pEC50 ± SEM

Emax (%)

β-Endorphin (1-27) (β-Endor1-27) 
YGGFMTSEKSQTPLVLFKNAIIKNAY

700
6.15 ± 0.22

100 NA NA

β-Endorphin (1-31) (β-Endor1-31) 
YGGFMTSEKSQTPLVLFKNAIIKNAYKKGE

706
6.15 ± 0.17

100 NA NA

Leu-enkephalin (Leu-Enk) YGGFL NA NA NA NA

Met-enkephalin (Met-Enk) YGGFM 2099
5.68 ± 0.12

79 NA NA

Met-enkephalin-Arg-Phe (MERF) YGGFMRF 1344
5.87 ± 0.14

99 NA NA

Metorphamide YGGFMRRV-NH2 108
6.99 ± 0.07

97 NA NA

BAM 12 YGGFMRRVGRPE 101
6.99 ± 0.07

99 NA NA

BAM 18 YGGFMRRVGRPEWWMDYQ 85
7.07 ± 0.09

97 NA NA

BAM 22 YGGFMRRVGRPEWWMDYQRYG 93
7.03 ± 0.07

95 NA NA

Peptide E YGGFMRRVGRPEWWMDYQRYGGFL 65
7.18 ± 0.07

95 NA NA

Dynorphin A(1-6) (DynA1-6) YGGFLR 227
6.64 ± 0.24

86 NA NA

Dynorphin A(1-7) (DynA1-7) YGGFLRR 107
6.97 ± 0.04

97 NA NA

Dynorphin A(1-8) (DynA1-8) YGGFLRRI 122
6.91 ± 0.06

94 NA NA

Dynorphin A(1-9) (DynA1-9) TGGFLRRIR 127
6.89 ± 0.07

93 NA NA

Dynorphin A(1-13) (DynA1-13) YGGFLRRIRPKLK 19
7.71 ± 0.06

94 NA NA

Dynorphin A(1-17) (DynA1-17) YGGFLRRIRPKLKWDNQ 13
7.87 ± 0.09

100 NA NA

Dynorphin B(1-13) (DynB1-13) YGGFLRRQFKVVT 120
6.91 ± 0.08

100 NA NA

Leumorphin YGGFLRRQFKVVTRSQEDPNAYYEELFDV 21
97.68 ± 0.06

92 NA NA

α-Neoendrophin (α-neo-End) YGGFLRKYPK 64
7.19 ± 0.07

95 NA NA

Endomorphin-1 YPWF NA NA NA NA

Endomorphin-2 YPFF NA NA NA NA

Nociceptin FGGFTGARKSARKLANQ 1007
5.99 ± 0.07

81 NA NA

U69593 3.16
8.5 ± 0.1

100 >10,000 NA

Salvinorin B (Low expression) 2045
5.68 ± 0.18

80 160
6.79 ± 0.13

94
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hKOR KORD

EC50(nM)
pEC50 ± SEM

Emax (%) EC50(nM)
pEC50 ± SEM

Emax (%)

Salvinorin B (High expression) 248
6.6 ± 0.1

100 11.8
7.98 ± 0.09

100

Salvinorin A (Low expression) 19.8
7.71 ± 0.08

100 0.12
9.91 ± 0.08

100

Salvinorin A (High expression) 1.05
8.96 ± 0.08

0.04
10.35 ± 0.08

100

NA: No activation at 10 μM. Data represent mean EC50 and mean pEC50 ± Standard Error of the Mean (SEM) of N=3 separate 16-point dose-

response experiments each performed in triplicate. hKOR=human k-opioid receptor; KORD=k-opioid receptor DREADD
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