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Introduction

Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder affecting

approximately 1 of 3,500 newborn human males in whom absence of the protein dystrophin

causes progressive degeneration of skeletal and cardiac muscle [1-3]. No treatment halts or

reverses the fatal progression of DMD. Although cell and gene therapy have shown

tremendous potential in rescuing dystrophic progression, key questions must first be

addressed in relevant animal models. Golden retriever muscular dystrophy (GRMD) is a

spontaneous X-linked canine model of DMD. Unlike the dystrophin-deficient mdx mouse,

which remains relatively normal clinically [4], affected GRMD dogs develop progressive,

fatal disease strikingly similar to the human condition [5, 6]. Therefore, GRMD has been

increasingly used in therapeutic preclinical trials[7]. The current outcome measurements in

muscular dystrophy are suboptimal. Muscle biopsy is invasive and limited by specimen size.

Various functional and muscle strength assessments require subjective effort and are

susceptible to rater variation [8]. Magnetic resonance imaging (MRI) has been used

increasingly to provide meaningful data on the natural history and response to therapy of a

number of diseases, including DMD. Studies have also documented the value of MRI in

characterizing the GRMD model. Kobayashi et al [9] showed that certain T2-weighted pulse

sequences are sensitive in evaluation of skeletal muscle necrosis and/or inflammation.
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Thibaud et al [10] recently reported the most comprehensive longitudinal characterization of

MR imaging biomarkers in GRMD. MRI has also been used to track potential effects in

GRMD therapeutic preclinical trials [11, 12]. However, the use of MRI as an objective and

reliable surrogate biomarker is hampered by a lack of automated quantitative imaging

analysis methods. Our group recently published a semi-automated quantification method for

muscle MRI studies in GRMD dogs [13]. Here, we have used this method in a

comprehensive GRMD MRI natural history study that includes both traditional and novel

biomarkers. Moreover, we provide for the first time preliminary data from histopathologic

correlation.

2. Materials and methods

2.1. Animals and anesthesia

This study was covered by IACUC Protocol 09-011.0 [Natural History and Immunological

Parameters in the German Shorthaired Pointer Muscular Dystrophy (GSHPMD) Dog, PI Joe

Kornegay, DVM, PhD] at the University of North Carolina at Chapel Hill (UNC-CH)

funded by the Muscular Dystrophy Association. Phenotypic features, including MRI,

functional studies, muscle biopsies, were assessed longitudinally in GRMD, GSHPMD and

normal dogs produced in a colony at UNC-CH over the first year of life. MRI data from a

total of 10 GRMD dogs and 8 normal littermates are reported. Dogs were used and cared for

according to principles outlined in the National Institutes of Health Guide for the Care and

Use of Laboratory Animals. The genotype was initially determined based on elevation of

serum creatine kinase and confirmed by polymerase chain reaction (PCR) analysis. For all

studies requiring anesthesia, dogs were premedicated with acepromazine maleate (0.2 mg/

kg), butorphanol (0.4 mg/kg), and atropine sulfate (0.04 mg/kg), masked, and then intubated

and maintained with isoflurane. The proximal pelvic limbs of all dogs were scanned at

approximately 3 and 6 months of age. Additional imaging studies were completed at 9 to 12

months in half of each group of GRMD and normal dogs. Necropsy was performed in half

of these dogs at 6 months of age and in the remaining half after 9-12 months.

2.2. Histopathologic studies

At 6 months of age, the cranial sartorius and vastus lateralis muscles were sampled by either

an open surgical technique as previously described [14] or at necropsy. Frozen section

specimens were processed for histochemical evaluation using established techniques [15].

Hematoxylin and eosin (H&E), acidic (pH 4.3) and basic (pH 9.4) ATPase, and trichrome

stains were done. Semi-automated analysis was completed utilizing ImageJ software [16].

Type 1 and 2 fiber size was measured using minimal Feret's diameter [17] in the acidic

ATPase stained sample. Percent area of connective tissue in the specimens was assessed in

H&E stained samples. Necrotic and regenerated fibers were counted in a full cross section

specimen field, and presented as numbers of necrotic or regenerated fibers per 1000 muscle

fibers.

2.3. MRI acquisition

Dogs were scanned on a Siemens 3T Allegra Head-Only MRI scanner with a circular

polarization (CP) head coil or Siemens 3T Tim Trio Whole-Body MRI scanner with a 32-
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channel body coil at the UNC-CH Biomedical Research Imaging Center (BRIC). Dogs were

anesthetized, placed on an MRI gantry in the sternal (prone) position with the pelvic limbs

extended and positioned in the coil centered at the midpoint of the femur.

The imaging protocol for the MRI scans is listed in Table 1. T2-weighted image sequences

without (T2w) and with fat saturation (T2fs) were acquired using a variable-flip-angle turbo

spin echo (TSE) sequence. The time between the excitation pulse and the center of k-space

was 400 ms. Importantly, the contrast was not determined only by the TE (400 ms), but also

by the flip angle evolution scheme. Although a traditional TSE sequence would have very

little signal at 400 ms, the variable flip angle sequence is similar, in principle, to hyper-echo.

The hyper-echo reduces the specific absorption rate (SAR), while the variable flip angle

sequence allows long TE times [18, 19]. The entire proximal pelvic limbs were included in

the field of view. T2 mapping was acquired by obtaining a multi-spin-echo T2 (MSE-T2)

sequence that is a ten-echo Carr-Purcell-Meiboom-Gill sequence (Table 1). To make the

acquisition time manageable, the MSET2 only covered the mid-femur section of the

proximal pelvic limbs. MSE-T2 was used to calculate the values of T2 mapping, which is

further described in section 2.4.4.

2.4. Imaging analysis

Our biomarker quantification scheme is composed of three modules: muscle segmentation,

pre-processing, and biomarker analysis. As a prerequisite, we first segmented seven major

proximal pelvic limb muscles in the MRI images. Then, the process was continued with

several pre-processing steps and calculation of the MRI biomarker maps. Finally, regional

statistics of the MRI biomarkers, including statistical texture based biomarkers, were

calculated for each segmented muscle. These biomarkers were used to assess longitudinal

GRMD disease progression. Our detailed methodology has been published [20].

2.4.1. Muscle segmentation—In this study, we performed semi-automated full-length

segmentation of seven major proximal pelvic limb muscles: adductor magnus (AD), biceps

femoris (BF), cranial sartorius (CS), gracilis (GR), rectus femoris (RF), semitendinosus

(ST), and vastus lateralis (VL). These muscles were selected based on our prior studies [6,

21] to ensure a balanced representation of flexors and extensors, variable sizes, and different

histopathologic progression. Three coauthors (ZF, JW, and YS) manually delineated the

outlines of each muscle in every fifth slice using the ITK-SNAP software (www.itksnap.org)

[22]. Full length muscle volume was then determined using a straightforward volume

interpolation method. Briefly, values in the segment between two manually segmented slices

were determined by linearly combining the two manual segmentations and thresholding at

50% [20, 23, 24].

2.4.2. Pre-processing—The pre-processing includes intensity inhomogeneity correction,

image registration, calculation of T2 value map, and intensity calibration, as detailed [20,

25].

2.4.3. Texture analysis biomarkers—Gray level run length analysis was proposed as

an effective method to study visual texture a number of years ago [26]. While this method
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has been used to assess primary muscle diseases [27, 28], texture analysis was performed in

2D space and the regions of interest were determined manually. Our group modified this

method by automatically generating consecutive three-dimensional (3D) volumes of interest

(VOIs) and using full 3D run length matrix based texture features for the biomarker

quantification. These methods provided stable and sensitive measures that capture the

heterogeneous nature of dystrophic muscles lesions [24]. In this study, we utilized a first-

order intensity histogram texture feature (Entropy) and two high order run length matrix

features (short run emphasis and run length non-uniformity) for MRI biomarker

quantification (see supplementary method - Texture Analysis). Based on the mathematical

model, we refer to short run emphasis as the Small Lesion Index (SLI) and run length

nonuniformity as the Heterogeneity Index (HI). Both SLI and HI were derived from the run-

length matrix. Compared to histogram-based biomarkers that use intensity data only, the

run-length matrix method takes into account both the spatial distribution and intensity of the

voxels. A gray-level ‘run’ is defined as a set of consecutive voxels of similar intensity in a

given direction within a predefined similarity range, where a voxel is the smallest volume

unit of 3D space in the image. The MR signal in an imaging voxel is averaged from a 3D

volume unit on a regularly spaced, three-dimensional grid. A 3D gray-level run is intended

to detect lumps of MRI hyper-intensity that we anticipated would correlate to histologic

areas of patchy necrosis.

2.4.4. Definition of biomarkers—For sake of the nine biomarkers studied, the three

volume measurements were made on all seven muscles, while the intensity and texture

values were only assessed in the BF, CS, and ST muscles, as well as a mean “all” for the

seven muscles.

1). Volume: Muscle volume (mm3) was calculated from the muscle segmentation via voxel

counting. We anticipated that GRMD dogs would generally have reduced muscle volumes

compared to normal ones and that the degree of muscle atrophy would increase with age.

2). Vol/wt: Muscle volume corrected by body weight was defined as muscle volume in mm3

divided by the body weight in kg. This gave the relative muscle volume corrected for body

size.

3). Vol/FemL: Muscle volume corrected by femur length was defined as muscle volume in

mm3 divided by femur length in mm. This method, in principle, should provide a more

accurate correction for body size than values corrected by body weight in that muscle

atrophy/hypertrophy itself affects body weight.

*. Vol/FemA: Muscle volume corrected by mid-femur area was defined as muscle volume

in mm3 divided by mid-femur bone cross-sectional area in mm2. The mid-femur level is

determined by first identifying anatomical landmarks at the proximal limit of the femoral

head and the distal limit of the condyle, and then dividing the distance between these

landmarks in half. Vol/FemA largely tracked with Vol/wt and is only included in

supplementary table, not in the primary analysis.
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4). T2 mapping: The T2 values among different tissues vary normally and can be altered by

disease. T2 weighted images provide image contrast based on T2 values. Since the signal

intensity in T2 weighted images can vary greatly from patient to patient due to differences in

coil sensitivity and MR scanner electronic gains, T2 weighted images are considered

qualitative and have limited use for quantitative comparison. In contrast, T2 mapping can

provide MR-tissue-specific quantitative T2 values that are scanner independent, allowing

direct comparison of T2 values across different subjects. T2 mapping is also suitable for

longitudinal comparisons as it is designed for quantifying structural properties such as water

and fat. T2 mapping in this study was obtained by applying a MSE-T2 sequence. T2

mapping measurements were then derived by fitting an exponential decay curve to the signal

intensity of the corresponding voxels using a linear-least-squares curve-fitting algorithm

[29]. In MSE-T2, the intensity of a voxel as a function of echo time is fitted to a

monoexponential function f (TEi) = ln [Ii(x,y,z)], where i is an index corresponding to the i-

th TE of the MSE-T2 and Ii (x,y,z) is the image intensity for the voxel (x,y,z) in the i-th TE

of the MSE-T2. The monomial coefficient from the linear-least-square curve fit was

weighted inversely and assigned to each voxel of T2 value map. Because a value of T2

mapping is an inherent property of physical matter, it can be used for comparison across

time and subjects. We anticipated increased T2 mapping values in GRMD dogs.

5). Fat Map: We quantified the loss in intensity between intensity-calibrated T2w and T2fs

to compute an estimate of the fat signal in each voxel and thus create a Fat Map: Fat Map (x,

y, z) = IT2w (x, y, z) – IT2fs (x, y, z). There are limitations to the reliability and variability of

the calibration procedure as reported [12]. As an example, manual identification of

subcutaneous fat is subject to human rater error and large variability of the fat measures in

fat suppression-based MR protocols. Nonetheless, the calibrated Fat Map should reflect

gross effects of fat infiltration. We anticipated higher Fat Map values in GRMD dogs.

6). Water Map: Because the fat signals were suppressed in the T2fs, the water signal in

each voxel can be simply estimated from the intensity of the voxel in the intensity calibrated

T2fs image, allowing us to create a Water Map: Water Map (x, y, z) = IT2FS (x, y, z). The

Water Map has similar variability and stability issues as the Fat Map with respect to the

expected variance of the calibrated intensity measures [9]; however, it should reflect gross

effects of inflammation/edema. We anticipated higher Water Map values in GRMD dogs.

7). Entropy (see supplemental methods for details): Entropy was calculated as follows:

, where M is the number of histogram bins and pi = fi/N,

where fi is the number of voxels with an intensity of i and N is the total number of voxels in

a volume of interest (VOI). For each feature, we computed the average of all VOIs for each

muscle. As Entropy is a histogram marker for heterogeneity, we anticipated higher Entropy

in GRMD dogs.

8) Small Lesion Index (SLI):
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The SLI is a marker for heterogeneity with 3D spatial information. SLI is a marker for

overall patchiness of hyper-intensities, such as scattered small areas of necrosis, and

indicates small lesion load. We predicted increased SLI in GRMD dogs.

9). Heterogeneity Index (HI): HI is another marker for heterogeneity with 3D spatial

information. HI is a marker for nonuniformity of run length. A higher value indicates more

variably sized, patchy hyper-intense areas. We anticipated increased HI in GRMD dogs.

2.4. Statistical analysis

To quantify the longitudinal characteristics of the seven MRI biomarkers in this natural

history study, we adopted a linear mixed model [30]. This model can be written as yij = β0 +

β1ageij + β2 groupi + β3ageij × groupi + γ0i + εij, where the subscripts i and j represent the ith

subject and the jth time of scan, respectively. We included age, group, and an interaction

between age and group as fixed effects and an intercept as a random effect in the model. The

yij is a feature of interest such as T2 mapping, ageij is age in days, and groupi is 0 for normal

dogs and 1 for affected dogs.

We carried out a likelihood ratio test to examine the significance of age and group effects.

After obtaining p-values from the likelihood ratio tests, we corrected for multiple

comparisons by using the false discovery rate (FDR) method [31]. In addition, we tested

whether two groups showed different patterns over time by testing slope differences to track

the longitudinal changes. Specifically, we considered models as the following: yij = β0 +

β1ageij + γ0i + εij for normal dogs and yij = (β0+β2) + (β1+β3)ageij + γ0i + εij for GRMD

dogs. Therefore, the slopes are β1 and β1+β3 for each group. To test slope difference, we

tested the null hypothesis that β3=0.

We used Mann-Whitney-Wilcoxon test [32] to compare normal and GRMD groups for each

individual age (at 3, 6, and 9-12 months). This method is more suitable for datasets that

contain outliers and does not require any distributional assumption.

Furthermore, we carried out a linear discriminant analysis (LDA) [33] to separate two

groups for each biomarker. More specifically, we used each biomarker, age, and an

interaction between biomarker and age as input variables, and the group (GRMD or normal)

indicator variable as a response. To examine which biomarker better discriminated the two

groups, we calculated sensitivity (probability of correctly identifying a dog as GRMD) and

specificity (probability of correctly identifying a dog as Normal). We then created Receiver

Operating Characteristic (ROC) curves and generated Area Under Curve (AUC) to

investigate the ability of each biomarker to discriminate normal and GRMD groups. For

more stable ROC analysis, we applied the bootstrap resampling method with 1000

replications.
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Finally, we computed Pearson correlation coefficients between histopathological indices and

MRI biomarkers in CS and VL muscles. Only five (3 GRMD and 2 normal) dogs were

assessed at 6 months in this preliminary analysis. We used R 3.0.1 software to fit models

and perform all analyses[34]. Specifically, we applied the ‘lme4’ package for a linear mixed

model and the ‘MASS’ and ‘ROCR’ packages for LDA and ROC analyses.

Results

A total of 45 scans from 10 GRMD dogs and 8 healthy control littermates were performed

over a one year period. One each scan from 3-month-old GRMD and control dogs were

excluded in data analysis due to technical concerns (T2w intensity was lower than T2fs in the

original images). Because outliers were noted in the data, the Wilcoxon test was used for

statistical analysis, without an assumption of sample distribution. Supplementary Table 1

includes raw data of eight biomarkers analyzed in seven full length muscles.

3.1 Observational assessment

The appearance of muscles on MRI scans of GRMD and normal dogs differed markedly.

Muscles of GRMD dogs were generally smaller, more angular, and had greater signal

heterogeneity in both T2w and T2fs images. Differences were more pronounced at 6- and

9-12 months of age. Fig. 1 shows an example of progression over time and Fig. 2 shows the

marked heterogeneity inter- and intra-muscularly. Typical dystrophic changes were apparent

in GRMD dogs at 6 months (Fig. 3).

3.2 Quantitative assessment

In our previous methodology paper [25], we reported only the mean value of all muscles

taken together to provide proof-of-concept that these biomarkers could differentiate affected

from control groups. Longitudinal data from individual muscles was not reported in this

previous publication [25].

3.2.1. Volumetric biomarkers—Stunting of GRMD dogs could cause muscles to be

proportionally smaller. Thus, absolute muscle weights should ideally be corrected by some

variable. While body weight has traditionally been used, some reduction in overall body

weight also occurs due to the loss of muscle mass secondary to the dystrophic process.

Therefore, values corrected for body weight probably under-estimate the degree of muscle

involvement. We studied three correction factors for absolute muscle volume: Vol/Wt, Vol/

FemL, and Vol/FemA (Supplementary Table 2). Vol/FemA values tracked closely with

Vol/Wt, causing concerns that it might also overcorrect for the effects of muscle atrophy.

Vol/FemL correlated more consistently with the absolute muscle volumes than the other two

values (Supplementary Table 2). We included both Vol/Wt and Vol/FemL in all of our

biomarker analysis, but not Vol/FemA.

We analyzed the full length volume of seven muscles using an interpolated method (Fig. 2,

C and F). Five biomarkers (Volume, Vol/Wt, Vol/FemL, T2 and Water map) showed a

strong age effect (Table 2A). GRMD and control dogs had similar muscle volumes at 3

months of age; however, by 6 and 9-12 months, GRMD absolute volume (Fig. 4A and Table
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2B), Vol/wt (Fig. 4B and Table 2C) and Vol/FemL (Fig. 4C and Table 2B) were reduced in

all but the CS. The muscle volumetric changes were dynamic inter-muscularly and

longitudinally. When corrected by body weight, the VL was the only GRMD muscle with

significant atrophy at both 6- and 9-12 months; the BF and RF showed significant atrophy at

6-months but not 9-12 months (Fig 4B). On the other hand, all GRMD muscles except the

CS, were significantly atrophied at 6- and 9-months (Fig. 4C), when corrected by Vol/FemL.

The GRMD CS consistently had higher than normal volumetric measurements for all three

methods; all values reached significance at 6 months but only Vol/Wt was significantly

different at 9-12 months.

3.2.2. Signal intensity based biomarkers—We analyzed three mean intensity based

indices: T2 mapping, Fat Map and Water Map. All three indices reliably differentiated

GRMD and control muscles in our longitudinal model, except for fat map in CS and RF

(Table 2B). Most values for individual muscles were also higher in GRMD dogs at the three

different ages (Fig. 4D). Fat and water map values distinguished GRMD from normal dogs

more at 3 and 6 months versus 9-12 months of age. However, these indices did not

differentiate longitudinal progression in GRMD compared to control dogs. Notable trends

were seen in that T2 and Fat Map in BF and water map in GR and ST differed prior to

correction with false discovery rate (FDR) (Table 2C).

3.2.3. Texture analysis biomarkers—Like other indices, the three texture biomarkers

(Entropy, SLI and HI) generally distinguished GRMD from control dogs longitudinally

(Table 2B) and at the three ages (Fig. 4E). Values for GRMD dogs were typically higher,

especially at 6 months of age. The slope progression for all but HI in the AD, BF, RF and

ST muscles did not distinguish the two groups (Table 2C).

3.2.4. Histopathological analysis—Samples of CS and VL collected at 6 months were

analyzed in 3 GRMD and 2 control dogs (Table 3). GRMD dogs had evidence of muscle

fiber necrosis and regeneration, not seen in control samples. There was also type I fiber

preponderance and increased endomysial and perimysial connective tissue in GRMD

muscles. GRMD myofiber diameter (measured as minimal Feret's diameter) was increased

in CS and decreased in VL. Both GRMD muscles had increased fiber size variability. The

degree of fatty deposition was minimal in both groups.

3.2.5. Finding the most sensitive and specific biomarkers—All nine biomarkers

studied had fairly good sensitivity and specificity to detect group differences (corrected by

age affect) between GRMD and normal dogs, with AUC values ranging from 0.599 to 1.000

(Table 4A). For tracking differential longitudinal progression, volume and HI performed

best, with changes being most pronounced in the BF and ST (Table 4B, Fig. 5). Tables 5A

and 5B show the correlation for MRI biomarkers and histological indices. Notably, the

power of the correlation of MRI and histologic biomarkers was limited by the low number

of samples assessed in this preliminary study, the fact that only the CS and VL were studied

histologically, and the inherently small sample of tissue obtained at biopsy. Several

histologic and MRI biomarkers correlated. The highest levels of correlation occurred

between volumetric biomarkers and the values for myofiber necrosis and regeneration.
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Importantly, the correlation was positive for the CS and negative for the VL, reflecting the

role that underlying disease has in hypertrophy and atrophy, respectively, in these two

muscles. We expected that the intensity and texture biomarkers generally would correlate

positively with the histopathologic indices of necrosis and regeneration. However, only the

water map values correlated, presumably consistent with inflammation/edema associated

with necrosis.

Discussion

This study focused on defining the natural history of objective MRI changes in muscles of

GRMD dogs. We were particularly motivated to identify biomarkers that could be used to

distinguish efficacy in preclinical trials over the 3 to 9 month period. Consistent with prior

phenotypic studies, pelvic limb conformation seen with MRI was quite different in GRMD

dogs because of differential muscle atrophy and hypertrophy. With regard to objective

measurements, as reported previously [13], serial interpolation over the entire length of the

muscle more accurately predicted effects than mid-muscle belly analysis. Consistent with

our prior pathologic studies [35], GRMD dogs showed markedly progressive absolute

muscle volume loss in six of the seven muscles studied, with the only exception being the

CS, which undergoes paradoxical hypertrophy in CS [21] (Fig. 4A). With regard to a

correction factor to account for GRMD stunting, values corrected for femur length most

consistently tracked with absolute muscle weights. Body weight and femur cross sectional

area corrections tracked closely and did not correlate as well with absolute values. We

believe these two correction methods may over correct for the effects of muscle size, given

that atrophy likely contributes to the reduction in body weight and may also influence cross

sectional femur area.

GRMD muscles were also distinguished by areas of increased hyperintensity on T2fs

images. This change probably reflects edema associated with inflammation. GRMD dogs

demonstrate remarkable deterioration over the 3 to 6 month period, as reflected by marked

functional and pathologic changes [7]. While MRI changes identified in this study were

dynamic across time within and among muscles, they were more prominent in the BF and

ST. Yokota et al showed that T2w intensities were increased in GRMD versus normal dogs

and restored with exon skipping treatment [11]. Walter et al also showed that T2 values are

normalized after gene therapy in murine models of muscular dystrophy [36]. While T2

values clearly distinguished GRMD from normal dogs in our study, they also declined with

age in both groups. Thus, this age effect must be considered when designing future

therapeutic trials. In principle, higher T2 values could occur due to either increased water

acutely or fat more chronically. We anticipated that Fat Map and Water Map derived from

T2w and T2fs sequences would allow us to define the relative contributions of these

corresponding histopathologic changes. However, the instability of the necessary intensity

calibration limits their usefulness in tracking longitudinal changes [20]. Texture analysis

adds 3D spatial information to intensity properties; SLI and HI capture different features of

heterogeneity, as shown schematically in Fig. 6. These markers could be of particular value,

given the known heterogeneity of dystrophic changes inter- and intra- muscularly. Other

markers rely on mean values, which cancel out the range of intensities that occur with lesion
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heterogeneity. HI showed promise as a biomarker to track disease progression, particularly

in the BF, ST, AD and RF muscles (Table 2C).

We were especially interested in finding changes that could be tracked longitudinally in the

context of preclinical trials. Some of the MRI biomarkers in this study showed more

pronounced group and age differences at 6 versus 9-12 months of age. This was also noted

by Thibaud et al [10] and is in keeping with more severe disease progression over the 3 to 6

month period. While changes at 9 months are inherently more chronic, dogs are still too

young to show marked fibrosis and fatty change that would be reflected on MRI. Taken

together, our findings suggest MRI can be used as an outcome parameter to document

longitudinal disease progression or response to therapy over the 3 to 6 month window that

we have previously used for preclinical studies [7].

Ideally, MRI changes should correlate with histopathological changes. We are

systematically assessing our histopathologic data through another study in which additional

functional biomarkers will be correlated. Here, we present for the first time, preliminary

correlative histopathologic data from GRMD dogs. Notably, our ability to correlate MRI and

histologic biomarkers was limited by the low number of dogs assessed in this preliminary

study, the fact that only the CS and VL were studied histologically, and the inherently small

sample of tissue obtained at biopsy. With this said, the histopathologic data presented here

provide a valuable glimpse at the ability of MRI to correlate with underlying lesions. In

general, the multifocal histopathologic lesions of necrosis and regeneration, fibrosis, and

type 1 fiber preponderance seen in GRMD dogs of this report are similar to those reported

previously and in keeping with changes seen DMD [27,28]. Most muscles were atrophied,

with the notable exception of the CS, which undergoes paradoxical hypertrophy. Fatty

change was much less pronounced in GRMD than in DMD, in part because of the dogs’

relatively young age of 6 months. The high correlation between volumetric biomarkers and

values for myofiber necrosis and regeneration probably reflects the broad impact of muscle

disease on muscle size. This was borne out by the fact that the correlation was positive for

the CS and negative for the VL, in keeping with the atrophy and hypertrophy, that occur in

these muscles at 6 months of age [21]. Water map and necrosis indices correlated

significantly, most likely reflecting edema associated with necrosis. The somewhat

surprising lack of correlation between texture analysis biomarkers and histological features

probably reflects fundamental scale differences. Texture analysis is done at the macro level

(minimal unit of voxel is 1×1×1 mm3), while histopathological data are micro (in the scale

of ~50 um for fiber diameter). Thus, each pixel of 1x1 mm2 holds ~ 400 myofibers in cross

section. We believe that MRI biomarkers and histopathologic biomarkers are

complimentary; MRI biomarkers may be capable of detecting macro scale pathological

changes non-invasively, while histologic assessment offers microscopic scale information

reflecting underlying pathogenesis at the cellular level. We are now conducting much larger

scale histopathologic analysis on muscle whole mounts from necropsy samples and believe

these values will better correlate with texture features.

This study and the field, in general, are hampered by lack of automated muscle segmentation

methods. The interpolation method utilized in these dogs facilitated collection of data more

representative of the whole muscle than traditional mid-muscle analysis. We are also
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working on an automated segmentation method that should substantially advance muscle

MRI assessment.

5. Conclusions

MRI biomarkers are able to consistently differentiate group differences and some also track

with differential longitudinal progression in GRMD. These MRI biomarkers have the

potential to be used as non-invasive, objective surrogate biomarkers for future therapeutic

trials. The best biomarkers should both distinguish disease group differences and also track

differential longitudinal changes adjusted for age effect. In this study, we found that muscle

volume and HI best distinguished longitudinal progression between GRMD and normal

dogs; the BF, ST and CS muscles had the most consistent changes; and longitudinal changes

over the 3 to 6 month period were more pronounced than those from 6 to 9 months. Our

ongoing research is directed at extending these results via further histopathological

validation and functional correlation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
Examples of the mid-femur transverse view of T2 weighted fat suppresed images in a

control dog (upper panel) and in a GRMD dog (lower panel) at 3, 6 and 9 months of age.

The images are displayed in the same scale, reflecting relative size. The GRMD dog has

limited muscle volume growth and muscles are angulated. There are areas of marked

intramuscular heterogenenous hyperintensity in GRMD dogs. The arrows indictate severely

afffected muscles such as the GR (gracilis), BF (biceps femoris) and ST (semitendinosus).
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Fig. 2.
Examples of greater heterogenous hyperintensity on T2 images (without and with fat

saturation) in a 9-month-old GRMD dog (lower panel) compared to a control 9-month-old

dog (upper panel). BF shows marked intramuscular heterogenity (red arrows) which would

be captured only if a full length segementation were used. C and F show the manual

segmentation of every 5th slide, which are then interpolated to a full length segmentation

(not shown here). AD, adductor, in blue; BF, biceps femoris, ingreen; GR, gracilis, in pink.
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Fig. 3.
Muscle biopsy samples of cranial sartorius (CS) and vastus lateralis (VL) of a control dog

(A through D) and A GRMD dog (E through H) at 6-months. H&E stains show typical

dystrophic lesions in the affected dog (E and G): rounding of fibers, increased perimysial

and endomysial connective tissue, increased fiber size variation, and necrotic fibers invaded

by macrophages (yellow arrows), in comparison to normal muscle (A and C). Acidic

ATPase stain (ATPase at pH 4.3) shows abnormal type I fiber predominance (darkly stained

fibers) in the affected dog (F and H), compared to the normal checkerboard pattern of type 1

and type 2 fiber types in control dog (B and D). Myofiber diameters are larger in the CS

versus VL GRMD muscles. All images were captured with the same magnification.
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Fig. 4A.
Time course of full-length muscle volume change in GRMD and control dogs. GRMD dogs

(shaded boxes) have limited muscle mass growth over time; the difference widens in all

muscles except CS (C) that shows paradoxical hypertrophy. This difference is also evident

when the ratio of CS/RF is plotted (H). AD, adductor magnus; BF, biceps femoris; CS,

cranial Sartorius; GR, gracilis; RF, rectus femoris; ST, semitendinosus and VL, vastus

lateralis.

* Denotes statistical significance for group difference ( p<0.05 corrected by multiple testing)
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Fig. 4B.
Muscle volume corrected by body weight (Vol/Wt). Muscles show differential growth

patterns: in GRMD dogs, three muscles (BF, RF, VL) have slower volume growth (B, E and

G), three muscles (AD, GR and ST) have similar volume growth (A, D and F), and one

muscle (CS) has increased volume growth (C and H) over time. Each muscle volume (mm3)

is divided by body weight (kg). AD, adductor magnus; BF, biceps femoris; CS, cranial

sartorius; GR, gracilis; RF, rectus femoris; ST, semitendinosus and VL, vastus lateralis.

* Denotes statistical significance for group difference ( p<0.05 corrected by multiple

testing).
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Fig. 4C.
Muscle volume corrected by femur length (Vol/FemL). Vol/FemL showes more significnat

group and logitudianl differences than Vol/wt. in four muscles: AD (A), BF (B), GR (D) and

ST (F). These four muscles are generally quite atrophied in GRMD dogs.
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Fig. 4D.
Intensity based biomarkers in BF, CS and ST (other four muscles are not shown, raw data

included in Supplementary Table 1). T2 value consistently differentiates GRMD from

control dogs at all three time points and in all muscles (A, B, D) except in CS (B) which

undergoes parodoxical hypertrophy. Fat map (E and G) and water map (I and K) values for

GRMD and normal dogs were distinghuished more at 3 and 6 months than 9 months of age.

BF, biceps femoris; CS, cranial Sartorius; ST, semitendinosus, and all that includes seven

muscles.

* Denotes statistical significance for group difference ( p<0.05 corrected by multiple

testing).
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Fig. 4E.
Texture biomarkers in three muscles and average of all seven muscles (other four individual

muscle data are not shown, but included in Supplementary Table 1). HI best distinguished

GRMD and normal dogs longitudinally in two severely affected muscles: BF (I) and ST (K),

but not in CS that has paradoxical hypertrophy in GRMD dogs.

All, average of all seven muscles; BF, biceps femoris; CS, cranial Sartorius; HI,

Heterogeneity Index, SRI, Small Lesion Index and ST, semitendinosus.

* Denotes statistical significance for group difference (p<0.05 corrected by multiple testing).
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Fig. 5.
ROC curve for differential longitudinal progression in GRMD and control dogs. BF, biceps

femoris; CS, cranial sartorius; ROC, Receiver Operating Characteristic, and ST,

semitendinosus. The biomarkers that have higher ROC values were chosen for graph.
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Fig. 6.
Diagram for texture heterogeneity markers: SLI and HI.

SLI is intended to detect small lumps of voxels with similar signal intensity. HI is intended

to reflect the variable sizes of lumps of voxels with similar signal intensity. Both are

calculated in 3D matrix
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