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Abstract

Research on an early detection of Mild Cognitive Impairment (MCI), a prodromal stage of 

Alzheimer’s Disease (AD), with resting-state functional Magnetic Resonance Imaging (rs-fMRI) 

has been of great interest for the last decade. Witnessed by recent studies, functional connectivity 

is a useful concept in extracting brain network features and finding biomarkers for brain disease 

diagnosis. However, it still remains challenging for the estimation of functional connectivity from 

rs-fMRI due to the inevitable high dimensional problem. In order to tackle this problem, we utilize 

a group sparse representation along with a structural equation model. Unlike the conventional 

group sparse representation method that does not explicitly consider class-label information, 

which can help enhance the diagnostic performance, in this paper, we propose a novel supervised 

discriminative group sparse representation method by penalizing a large within-class variance and 

a small between-class variance of connectivity coefficients. Thanks to the newly devised 

penalization terms, we can learn connectivity coefficients that are similar within the same class 

and distinct between classes, thus helping enhance the diagnostic accuracy. The proposed method 

also allows the learned common network structure to preserve the network specific and label-

related characteristics. In our experiments on the rs-fMRI data of 37 subjects (12 MCI; 25 healthy 

normal control) with a cross-validation technique, we demonstrated the validity and effectiveness 

of the proposed method, showing the diagnostic accuracy of 89.19% and the sensitivity of 0.9167.
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1 Introduction

Alzheimer’s Disease (AD), characterized by progressive impairment of cognitive and 

memory functions, is one of the most prevalent neurodegenerative brain diseases in the 

elderly subjects. A recent research by Alzheimer’s Association reports that AD is the sixth-

leading cause of death in the United States, rising significantly every year in terms of the 

proportion of cause of death [1]. It is also indicated that 10 to 20 percent of people aged 65 

or older have Mild Cognitive Impairment (MCI), a prodromal stage of AD [1]. Although it 

is not clear why some people with MCI progress to AD and some do not, MCI is considered 

as an early stage of dementia in the particular form and it is estimated that approximately 

10% to 15% of individuals with MCI progress to AD in one year. Therefore, it has been of 

great importance for early detection of MCI and a proper treatment to prevent them from 

progressing to AD.

Researchers in many scientific fields have devoted their efforts to understand the underlying 

mechanism of causing the diseases and to identify pathological biomarkers for diagnosis by 

analyzing different types of imaging modalities such as Magnetic Resonance Imaging (MRI) 

[17, 28, 33, 34, 84], Positron Emission Tomography (PET) [43], Diffusion Tensor Imaging 

(DTI) [61, 75], functional MRI (fMRI) [23, 76], etc. However, it is still challenging to 

diagnose MCI due to its subtlety of the involved cognitive impairment compared to AD.

Among modalities, fMRI has become a successful investigative tool in basic and clinical 

neuroscience to explore brain functions based on the Blood Oxygenation Level-Dependent 

(BOLD) signal variation. The fMRI characterizes hemodynamic responses associated with 

the neural activity. Ever since Biswal et al.’s work [9], resting-state fMRI (rs-fMRI) has 

been widely considered to explore the intrinsic and spontaneous neuronal activities induced 

during the resting state [11, 19, 53]. The rs-fMRI has provided effective insights into the 

inter-connection of structurally segregated and functionally specialized brain regions in 

normal healthy subjects and also for understanding of the pathological changes that can 

cause various brain function disorders: AD [23, 29], MCI [53, 57, 70, 82], Schizophrenia 

[30, 85], depression [3, 15, 22], etc. From a clinical point of view, it is very advantageous to 

use rs-fMRI to investigate brain activations of the patients, who are not able to perform 

complicated tasks during scanning, since it does not require a subject to perform any 

cognitive functions.

Recent studies have witnessed that the functional connectivity, defined as the temporal 

correlations between spatially distinct brain regions [20], can be a useful tool in finding 

biomarkers for brain disease diagnosis. A large part of the literature has considered a 

correlation approach to model the functional connectivity in brain images [68, 74]. 

However, due to its pairwise computation and full connectedness, it is hard to interpret the 

resulting connectivity map in terms of group analysis.

Justified by the studies of the numerical characteristics of network connectivity in 

anatomical brain databases [58,59] and in functional brain images [12,63], it is a reasonable 

assumption that we could drastically reduce the number of connections, effectively 

restricting our attention to networks with sparse connectivity. To this end, some groups 
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utilized independent component analysis to lessen the full-connectivity problems that plague 

correlation-based method [22,78]. A sparse connectivity can be also constructed via the least 

absolute shrinkage and selection operator (lasso) [66], which penalizes a linear regression 

model with l1-norm. While lasso induces sparsity in the regression coefficients, it selects 

variables in a subject- or task-dependent manner and therefore has a limitation in inducing 

the group-wise information. Group analysis of brain connectivity has long been another 

challenging topic, since biomedical research is usually conducted at a group level to extract 

the population features. Efficient group analysis requires appropriate handling of expected 

inter-subject variability without destroying inter-group differences. Wee et al. proposed a 

constrained sparse functional connectivity network [77] via a group sparse representation 

[80] and earlier Ng and Abugharbieh applied the group sparse representation to fMRI brain 

decoding [46].

The main goal of the computer-aided AD/MCI diagnosis is to improve the classification 

performance with high sensitivity and specificity. In order for that, the previous methods in 

the literature utilized a regression method along with the sparse representation. Interestingly, 

while discrimination is the main goal of the computer-aided brain disease diagnosis, the 

optimization is based on a criterion to represent a target vector, without explicitly 

considering the actual discrimination task. Although these methods have proved their 

efficacy and validity on normal and AD/MCI classification in their own experiments, we 

believe that we can further enhance the classification performance by combining the 

regression model with a discriminative method in a unified framework.

In this work, we present a novel method of classifying AD/MCI and healthy Normal Control 

(NC) with sparse modeling in a supervised and discriminative manner. More specifically, 

we combine a group analysis with a class-discriminative feature extraction by extending the 

group lasso [80] with the introduction of a label-informed regularization term by penalizing 

a large within-class variance and a small between-class variance of connectivity coefficients. 

To our best knowledge, there has been no work on brain disease diagnosis and/or medical 

image analysis with the application of the sparse modeling that explicitly incorporates the 

discriminative approach into the regression model. We also show that the proposed 

optimization algorithm finds the group-consistent topological network as the conventional 

group lasso does and further jointly makes the connectivity coefficients to be similar within 

a class and distinct between classes. Therefore, we can say that the proposed method allows 

the learned functional connectivity to preserve the network specific and label-related 

characteristics.

Fig. 1 illustrates a schematic diagram of the proposed framework for MCI identification 

with rs-fMRI. Given a set of rs-fMRI images, we preprocess the images and parcellate a 

brain into ROIs based on an Automatic Anatomical Labeling (AAL) template. From each 

ROI, we compute a representative time series by averaging the intensity of voxels within a 

ROI. The ROI feature sequences are then bandpass filtered to remove physiological noise 

caused by cardiac and respiratory cycles. The bandpass filtered signals are then fed into the 

proposed supervised discriminative group sparse representation method to identify 

functional connectivities, whose network structures are consistent across subjects. Utilizing 

a graph theory, we compute clustering coefficients from the estimated functional 
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connectivities and perform feature selection with a combination of t-test, minimum-

Redundancy Maximum-Relevance (mRMR), and Recursive Feature Elimination with 

Support Vector Machine (SVM-RFE). A linear SVM is considered to classify features for 

MCI identification.

2 Method

2.1 Connectivity Construction with a Structural Equation Model

In this study, we assume that the brain activity of a ROI can be represented by a linear 

combination of the activity of the other ROIs, justified by the investigation that the neural 

activities in the brain can be thought of firing the activity of the neurons in a voxel based on 

the neural firings of the other neurons. Mathematically, this can be formulated as a 

“structural equation model” (SEM) [40], which has been widely used for a study of brain 

connectivity [48, 86], as follows

(1)

where y denotes a target response of a ROI, A is a predictor matrix composed of the 

responses of the other ROIs, w is a regression coefficient vector, and e is a zero-mean 

random error vector, which is Gaussian distributed and assumed to have independent and 

identically distributed (i.i.d) elements with a common finite variance. It is straightforward 

that since the trained regression coefficients in w indicate the relation between the target 

ROI and the predictor ROIs, we can consider the coefficients in w as a connectional strength 

or connectivity between the target ROI and the corresponding predictor ROI. Therefore, we 

can efficiently construct a connectivity map by concatenating the estimated coefficients into 

a matrix. Hereafter, we use regression coefficients and connectivity coefficients 

interchangeably.

2.2 Identification of class-discriminative brain connectivity model

Due to the curse of dimensionality in modeling with the practical fMRI data sets, it is known 

that the coefficients estimated by maximum-likelihood from the dataset are neither robust 

nor stable. However, thanks to the small network characteristics in brain functions [12, 63], 

we can efficiently restrict our attention to the sparse connectivity. Furthermore, it is also 

beneficial to investigate the connectional differences between NC and MCI under the same 

network structure. As studied by Wee et al. [77], the group lasso [80] can be useful as a nice 

technique to deal with these problems.

Here, we briefly describe the group lasso that can sparsely select subsets of predefined 

groups with non-zero weights assigned to all predictors for connectivity construction. 

Formally, it can be written as follows:

(2)
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where r and n denote, respectively, indices of an ROI and a subject, R is the number of 

ROIs,  and  are, respectively, a V-

length time series of the r-th target ROI and a predictor matrix concatenated by the time 

series of the other (R − 1) ROIs,  is a regression coefficient vector, 

, N is the number of subjects, and λ is a regularization 

parameter. The regularization term is defined as ‖Wr‖2,1 = ∑g ‖wr,g‖2 (Fig. 2(a)), i.e., l1-

norm of ‖wr,g‖2, where wr,g denotes the connectivity coefficients associated with the g-th 

predictor in , for n = 1, ⋯, N. The group lasso regularization ensures that all regression 

models at different subjects/groups share a common set of connections.

The justification for our assumption on the same connectional structure between diseased 

patients and healthy controls is that although, between-group analysis may identify disease 

induced network structure changes, it is limited at an individual level, particularly for the 

purpose of disease classification. In this study, rather than investigating group specific 

connection networks, which are, of course, unlikely to be the same for patients and healthy 

controls, we focus on constructing a common network structure, in which it is effective to 

distinguish patients from healthy controls. That is, by imposing the functional connectivity 

of subjects to have the same network structure, but different connectivity strengths, we can 

efficiently diagnose subjects at an individual level.

Although the main goal in brain disease diagnosis is to enhance the classification 

performance between normal subjects and patients, the group lasso is, however, a regression 

method based on the penalization that does not explicitly include the discrimination task in 

the framework. To this end, we propose a novel method of jointly learning common 

functional brain networks across subjects via group sparse representation and class-

discriminative coefficients with label-informed regularization terms.

In order to incorporate the categorical or class-label information, we utilize a well-known 

discriminative information of “Within-Class-Variance” (WCV) fW (wr,g) and “Between-

Class-Variance” (BCV) fB(wr,g) [21] defined as follows:

(3)

(4)

where wr,g(n) denotes the n-th element of a vector wr,g, l(n) is a class-label of the n-th 

subject,  and . The functions 

fW(wr,g) and fB(wr,g) compute, respectively, WCV and BCV of the coefficients with regard 

to the g-th predictor in the estimation of the r-th ROI. The idea of exploiting WCV and BCV 

to extract class-discriminative features is similar to the Linear Discriminant Analysis (LDA) 

[38] that considers the Fisher criterion defined as the ratio of the above functions. Unlike 

LDA, in this paper, we take the difference of WCV and BCV for computational efficiency. 
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By injecting the functions of fW (wr,g) and fB(wr,g) into Eq. (2), we devise a new objective 

function formulated as follows:

(5)

where , and λ1 and λ2 are the regularization parameters. 

Through the two regularization terms in the parentheses, we penalize the high WCV and the 

low BCV. With the introduction of those two penalty terms, the connectivity coefficients for 

the subjects within a class are imposed to be similar to each other while those between 

classes to be distinct (Fig. 2(b)). We call this novel label-informed sparse model as 

‘Supervised Discriminative Group Lasso’ (SDGL).

Fortunately, we can simplify the variance related terms in Eq. (5) with appropriate algebraic 

operations as follows:

(6)

(7)

where D1 and D2 denote definitive matrices to compute WCV and BCV of the coefficients 

in Wr, respectively. Specifically, D1 is a composite matrix that computes the sum of the 

differences between the coefficients and their mean in each class, and D2 is a matrix that 

computes the difference between the mean of the coefficients of two different classes. Refer 

to Appendix 4 for deduction of these matrices.

Interestingly, from Eq. (6) and Eq. (7), we can see that WCV and BCV are represented as a 

square of the coefficients in the original group lasso multiplied by a definitive matrix. It is 

clear that the proposed SDGL is equal to the conventional group lasso by setting λ2 to zero. 

Replacing the two functions with matrix operations, we can rewrite the objective function in 

Eq. (5) as the following optimization problem:

(8)

2.3 Optimization Algorithm

Due to the non-smooth terms in the SDGL, it is challenging to solve the optimization 

problem directly. In order to tackle this optimization problem, we use the Accelerated 

Gradient Method (AGM) [45], in which the computation of the proximal operator with the 

composite of non-smooth penalties is one of the key steps. Here, we should note that the 

notations and explanations in the following paragraphs are based on Zhou et al.’s work [83] 

and from here on, we omit the subscript r for clarity.
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In our case, the proximal operator can be defined as

(9)

where W and V denote, respectively, the approximate solution and the search point during 

optimization in AGM [31]. It is clear that we can decompose Eq. (9) into a row-wise 

operation, and then what we need is to solve the optimization problem defined as

(10)

where vg and wg denote g-th rows of V and W, respectively.

Employing the decompositional property exhibited in [83], we can efficiently compute the 

proximal operator of Eq. (10) in two stages. The first stage is to estimate the coefficients in 

group lasso, which ensure that the brain networks across subjects to be consistent. In the 

second stage, we impose the group-constrained coefficients to be similar within a class and 

distinct between classes. That is, given an proximal operator defined in Eq. (10), we first 

solve the following optimization problem with the conventional group lasso

(11)

and then we tackle another proximal operator by taking the coefficients learned from the 

group lasso as the search point for class-discriminative learning as follows

(12)

Refer to Appendix 4 for proof. The complete and concise algorithm for the proximal 

operator in Eq. (10) is given in Algorithm 1. In our experiments, we used a SLEP toolbox1 

[32] to implement the algorithm.

We should note that the proposed method finds the brain networks that are consistent across 

subjects as the conventional group lasso does, and meanwhile it makes the coefficients to be 

similar within a class and distinct between classes. That is, it allows the learned functional 

connectivity to preserve the network specific and label-related characteristics 

simultaneously.

Algorithm 1

Proximal operator associated with the proposed Supervised Discriminative Group Lasso 

(SDGL)

Input: V ∈ ℝ(R−1)×N, D1 ∈ ℝN×N, D2 ∈ ℝN×N, λ1, λ2

1Available at ‘http://www.public.asu.edu/~jye02/Software/SLEP/index.htm’
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Output: Coefficient matrix W

for g to (R − 1) do

end

2.4 Functional Connectivity, Feature Selection, and Classifier Learning

The functional connectivity that represents inter-regional correlations in neuronal variability 

is estimated from the trained sparse connectivity coefficients W̄ = [w̄i]i=1, ⋯, R ∈ ℝR×R, 

where w̄i = [wi(1), ⋯, wi(i − 1), 0, wi(i + 1), ⋯, wi(R)]T and R denotes the number of ROIs. 

In order to obtain a functional connectivity representation, we take the average of the 

coefficient matrix and its transposed one, C = (W̄ + W̄T) /2. Fisher’s z transformation, Zij = 

[ln(1 + Cij) − ln(1 − Cij)] /2, where Cij denotes the (i, j)-th entry in C, is then performed to 

improve the normality of correlation coefficients. The functional connectivity is then 

represented by a z-map. Fig. 3 shows the sample functional connectivities of a NC subject 

and a MCI patient in five non-overlapping frequency bands.

It is natural to convert the z-map into a graph by considering each ROI as a node and the 

signed correlation coefficient as an edge. We extract features utilizing a graph theory. 

Specifically, the weighted Local Clustering Coefficient (wLCC), which quantifies the 

cliqueness of the nodes in a graph, is considered.

(13)

where Cr is the number of ROIs connected to the r-th ROI in Z, r is a sub-network 

composed of nodes directly connected to the r-th ROI, and Er,q is the connection coefficient 

between the r-th and the q-th ROIs. A feature vector is then constructed by stacking the set 

of clustering coefficients over all ROIs, i.e., F = [wLCC(1), ⋯, wLCC(R)]T ∈ ℝR. In our 

multi-spectrum approach, for which we divide the frequency band of interest into multiple 

non-overlapping sub-bands, we have multiple sets of the clustering coefficients, one for each 

frequency band. In that case, we further concatenate the feature vector of each frequency 

band into a single large one. For example, in our experiment, we decomposed a frequency 

band into five non-overlapping sub-bands. So the feature vector was defined as 

, where Fi denotes a feature vector constructed from the 

i-th sub-band.

Thanks to its efficacy and robustness proved in many fields, SVM is considered for 

classification [26, 49, 62, 76, 81]. The feature selection and the optimal parameter setting in 

classifier learning is another important issue to enhance classification performance. In this 
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study, a nested cross-validation technique is applied for the optimal parameter setting as 

well as performance evaluation.

Given training samples from N subjects, in our case we have one sample from each subject, 

we first leave one subject out for test, and consider the samples from the remaining N − 1 

subjects for feature selection and parameter setting for the optimal classifier learning. Since 

we employ a linear SVM for classification, there is one parameter that controls the relative 

importance of maximizing the margin and minimizing the amount of slack. From the N − 1 

training samples, we further leave out another sample from the remaining N − 1 for 

validation. We select features by applying three methods sequentially, i.e., t-test, mRMR 

[47], and SVM-RFE [50]. In order to find an optimal parameter for SVM, we adopt a grid 

search algorithm. The combination of features and a parameter that gives the best 

performance constructs the optimal SVM model to classify the test data.

3 Experimental Results and Discussion

3.1 Participants and diagnosis

The experimental protocols were approved by the institutional ethics board at Duke 

University Medical Center in compliance with the Health Insurance Portability and 

Accountability Act. In this study, we recruited 37 participants (12 MCI patients and 25 

socio-demographically matched normal healthy controls), who submitted a written consent 

on the experiment, by the Duke-UNC Brain Imaging and Analysis Center (BIAC), Durham, 

North Carolina, USA. The diagnosis of the participants was performed by the expert 

consensus panels at the Joseph and Kathleen Bryan Alzheimer’s Disease Research Center 

(Bryan ADRC) and the Department of Psychiatry at Duke University Medical Center. The 

diagnosis confirmation was made by consensus with the ultimate decision by a board-

certified neurologist in concert with data available from a battery of general neurological 

examination, neuropsychological assessment evaluation, collateral subject symptom and 

functional capacity reports. The considered neuropsychological battery was a revised 

Consortium to Establish a Registry for Alzheimer’s Disease (CERAD) [42] including 1) 

Mini-Mental State Examination (MMSE) [18]; 2) immediate and delayed verbal memory 

(Logical Memory subtest of the Wechsler Memory Scale-Revised [73]); 3) visual immediate 

memory (Benton Visual Retention Test [7]); 4) verbal initiation/lexical fluency (Controlled 

Oral Word Association Test from the Multilingual Aphasia Examination [8]); 5) attentional/

executive functions (Trail Making Test [51], Symbol Digit Modality Test [56], Digit Span 

sub-test of the Wechsler Adult Intelligence Scale-Revised [72], and a separate ascending 

Digit Span task modeled after the Digit Ordering Test [14]); 6) premorbid verbal ability 

(Shipley Vocabulary Test [55]); 7) Finger Oscillation [52] and Grooved Pegboard [39] 

Tests; and 8) Self Rating of Memory Function [60].

We conformed a subject as MCI if he or she met the following criteria: 1) age > 55 years 

and any race; 2) recent worsening of cognition, but still functioning independently; 3) 

MMSE score between 24 and 30; 4a) score ≤ −1.5 SD on at least two Bryan ADRC 

cognitive battery memory tests for single-domain amnestic MCI; or 4b) score ≤ −1.5 SD on 

at least one of the formal memory tests and score ≤ −1.5 SD on at least one other cognitive 

domain task (e.g., language, visuospatial-processing, or judgment/executive function) for 

Suk et al. Page 9

Neuroinformatics. Author manuscript; available in PMC 2016 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



multi-domain MCI; 5) 4 or lower for baseline Hachinski score; 6) does not meet the 

NINCDS-ADRDA [41] or DSM-IV-TR [2] criteria for dementia; 7) no psychological 

symptoms or history of depression; and 8) capacity to give informed consent and follow 

study procedures.

Similarly, the subjects meeting the following criteria were considered as normal healthy 

controls: 1) age > 55 years and any race; 2) adequate visual and auditory acuity to properly 

complete neuropsychological testing; 3) no self-report of neurological or depressive illness; 

4) shows no evidence of depression based on the Diagnostic Interview Schedule port of the 

Duke Depression Evaluation Schedule; 5) normal score on a non-focal neurological 

examination; 6) a score > −1 SD on any formal memory tests and a score > −1 SD on any 

formal executive function or other cognitive test; and 7) demonstrates a capacity to give 

informed consent and follow study procedures.

In order for safety purposes and minimizing biases, subjects were excluded from the study if 

they have: 1) any of the traditional MRI contraindications, such as foreign metallic implants 

or pacemakers; 2) a past head injury or neurological disorder associated with MRI 

abnormalities, including dementia, brain tumors, epilepsy, Parkinson’s disease, 

demyelinating diseases, etc.; 3) any physical or intellectual disability affecting completion of 

assessments; 4) documentation of other Axis I psychiatric disorders; and 5) any prescription 

medication (or nonprescription drugs) with known neurological effects. It is noteworthy that 

the diagnosis of all cases were made on clinical grounds without reference to MRI. 

Demographic and clinical information of the participants is summarized in Table 1.

3.2 Data Acquisition

Our data were acquired on a 3.0T GE scanner (Signa EXCITE, GE Healthcare) using a 

SENSE inverse-spiral pulse sequence with the following parameters: Repetition Time 

(TR)=2,000 ms; Echo Time (TE)=32 ms; flip angle=77°; 64×64 acquisition matrix with a 

rectangular Field Of View (FOV) of 256×265 mm2; 34 axial slices parallel to the anterior 

commissure-posterior commissure plane, with voxel size of 4×4×4mm3. In total, 150 rs-

fMRI volumes were acquired per scan for each subject. The T1-weighted anatomical MRI 

images were also acquired on the same scanner with the following parameters: TE=2.976 

ms; TR=7.460 ms; flip angle=12°; 256×224 acquisition matrix with a rectangular FOV of 

256×256 mm2; slice thickness of 1mm. In total, 216 slices were acquired using the FSPGR 

ASSET sequence.

During scanning, all the subjects were asked to keep their eyes open and to fixate on a 

crosshair in the middle of the screen. The experiment lasted for 5 minutes with no change of 

the stimulus, which allows the neural excitation related to the stimulus to vanish quickly. 

This procedure also prevents a subject from falling in sleep and unavoidable saccade eyes’ 

movement that may occur with eyes closed.

3.3 Preprocessing

Since there were not dummy scans at the beginning, we discarded the first 10 fMRI image 

volumes of each subject for magnetization equilibrium. In order to remove extraneous 
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sources of variation and to isolate the fMRI signals, the remaining 140 fMRI images were 

preprocessed by applying the typical procedures of slice timing, motion correction, and 

spatial normalization using SPM82. In this study, we realigned images with TR/2 as a 

reference time point to minimize the relative errors across TRs. In the head motion 

correction step, we realigned images to the first volume across the subjects.

In this study, the global signal regression was not considered since it is still controversial in 

the fields if regressing out the global signals is meaningful [19, 35, 44, 63]. However, in 

order to reduce the effects of CerebroSpinal Fluid (CSF), ventricles, and White Matter 

(WM), and to focus on the signals of Gray Matter (GM), we regressed out the nuisance 

signals caused from these regions along with those of the six head-motion profiles. Then we 

considered only the signals in GM for further processing by minimizing the physiological 

noises caused by cardiac and respiratory cycles from WM and/or CSF [69].

In the spatial normalization, the fMRI images of each subject were coregistered to their own 

T1-weighted structure image to avoid the unfavorable smoothness effect that can limit the 

ability of the normalization procedures to match precisely the corresponding anatomical 

regions across subjects [5]. The fMRI brain space was then parcellated into 116 ROIs based 

on the AAL template [67]. In order for the parcellation, we warped the AAL template into 

the subject naive space with the deformation fields estimated by HAMMER [54]. The 

representative mean time series of each ROI was computed by averaging the intensity of all 

voxels in a ROI. Therefore, we had a set of time series  where N is 

the number of subjects, and R and V denote, respectively, the number of ROIs (=116) and 

the number of volumes (=140).

It is well investigated that the Low Frequency Fluctuation (LFF) in rs-fMRI is a dominant 

characteristic observed in the resting state brain signals [9]. In order to utilize the LFF 

features in rs-fMRI, we performed a temporal band-pass filtering with a frequency interval 

of 0.025≤ f ≤0.100 Hz on X. It has been shown that frequency range between 0.025 and 0.06 

or 0.07 is reliable for test-retest experiment [36]. Based on Wee et al.’s work [74], we 

further decomposed this frequency interval into five equally spaced non-overlapping 

frequency bands (0.025–0.03929 Hz, 0.03929–0.05357 Hz, 0.05357–0.06786 Hz, 0.06786–

0.08214 Hz, 0.08214–0.100 Hz). We can perform frequency-specific analysis of brain 

features with the frequency-decomposed signals. Finally, the bandpass-filtered regional 

fMRI time series were used to learn the coefficient matrix Wr in Eq. (5) over all ROIs, i.e., r 

∈ {1, ⋯, R}, for each subject.

3.4 Finding Functional Connectivity

In terms of learning a classifier, there are in general two methods: supervised and semi-

supervised learning. In supervised learning, we construct a classification model from the 

labeled training samples, each of which consists of an input feature vector and the 

corresponding target label. Meanwhile, semi-supervised learning takes both labeled and 

unlabeled samples into account in building a model. That is, the semi-supervised method 

2Available at ‘http://www.fil.ion.ucl.ac.uk/spm/software/spm8/’
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first extracts general information from the samples available, regardless of the availability of 

label information, and then builds a classifier with only the labeled samples. In the real 

world, there exist a lot of unlabeled data available and from a practical point of view, it can 

be informative to utilize the unlabeled data to extract meaningful information and thus to 

build a robust classifier.

In our case of MCI diagnosis, we exploit the concept of the semi-supervised learning and 

benefit from the brain functional information of the test subject in finding functional 

connectivity. That is, in order to obtain a robust network structure from a larger number of 

samples, we use both the training and test samples in optimization of the proposed SDGL. 

Here, we should emphasize that the label information of the test samples is never used. This 

approach can also be classified into online learning since it utilizes the information of a new 

sample in learning a model as time goes by. Although it is inevitable for the computational 

burden due to the increasing number of samples, we believe that it is still acceptable to 

spend more time to get a more accurate diagnostic result in the clinic.

Mathematically, since we do not have the label information for the test samples, the 

composite matrices of D1 and D2 cannot be defined, and thus the optimization problem in 

Eq. (9) cannot be solved in its current form. To this end, we defined composite matrices D̂
1 

and D̂
2 by concatenating zero-vectors to D1 and D2 in Eqs. (6) and (7) as follows:

(14)

where i ∈ {1, 2}, and K and L denote, respectively, the total number of training and test 

samples. Here, it is assumed that the last L samples are for test without loss of generality. By 

setting the row and column vectors zero, which corresponds to the test samples, and solving 

the optimization problem of Eq. (9) with the replacement of D1 and D2 with D̂
1 and D̂

2, we 

can find the network structures consistent across the training and test samples, and the 

connectivity coefficients to be similar within a class and distinct between classes. Note that 

we used the label information of only the training samples. We should further note that 

while both the training and test samples are utilized in learning the connectivity coefficients, 

the feature selection and classifier learning were performed with only the samples of the 

training subjects.

3.5 Classification Performance

Since the group Independent Component Analysis (ICA) is one of the most widely used 

method for rs-fMRI analysis [13,28,65], we considered group ICA-based feature extraction, 

linked with a linear SVM, as a baseline method. Specifically, we applied a temporal 

concatenation approach, so called spatial group ICA [13], which decomposed fMRI data 

into spatial maps of neuronal activation and their respective time courses. For the group 

ICA, we applied a fast ICA algorithm [25] in a GIFT toolbox3. Regarding the number of 

independent components, we set it to 30 by following Li et al.’s work [28]. After performing 

3Available at ‘http://www.nitrc.org/projects/gift’.
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group ICA, for each subject, we computed the correlation coefficients of every pair of time 

courses and then used them as features to train a linear SVM. A feature selection described 

in Section 2.4 is also applied for dimension reduction before the SVM learning.

In order for obtaining the optimal regularization parameters in Eq. (5), we considered λ1 ∈ 

{0.05,, 0.1, 0.15, 0.2, 0.5} and λ2 ∈ {0.05,, 0.1, 0.15, 0.2, 0.5}, and further performed a grid 

search. For the t-test in the feature selection step, p-values of {0.001, 0.005, 0.01, 0.05} 

were considered.

Let TP, TN, FP, and FN denote, respectively, true positive, true negative, false positive, and 

false negative. In this work, we consider the following quantitative measurements to validate 

the effectiveness of the proposed method by comparing with the competing group lasso [80].

– Accuracy (ACC) = (TP+TN) / (TP+TN+FP+FN)

– Sensitivity (SEN) = TP / (TP+FN)

– Specificity (SPEC) = TN / (TN+FP)

– Receiver operating characteristic (ROC) curve

– Area under the ROC curve (AUC)

– F-Score = 2 × SPEC × SEN / (SPEC+SEN)

– Youden’s index (YI) = SEN − (1−SPEC)

– Balanced accuracy (BAC) = (SEN+SPEC) / 2

The most direct comparison between two methods can be the accuracy, which counts the 

number of correctly classified samples in a test set. Table 2 presents that the proposed 

method outperforms both the simple group ICA and the conventional group lasso in both 

single- and multi-spectrum approaches with the performances of 86.49% and 89.19% in 

single- and multi-spectrum, respectively. It is noteworthy that the proposed method with a 

single-spectrum approach outperformed the conventional group lasso with a multi-spectrum 

approach. That is, the proposed method can produce a higher accuracy with a smaller 

computational cost. Here, we should also note that the accuracy of the group lasso in multi-

spectrum is lower than the one reported by Wee et al. [77]. The main reason for that comes 

from the difference in preprocessing. In this work, we regressed out the nuisance signals 

from the regions of CSF and WM as done in [77], but we further considered the six head-

motion profiles in our regression. From a signal processing point of view, the regression step 

allows us to acquire more noise-free signals to be analyzed and the application of the six 

head-motion profiles to regression is helpful for robustness to noises. Henceforth, we 

believe that the result from our experiment is more faithful. For reference, the performances 

obtained from the data, which followed the same preprocessing in Wee et al.’s work, i.e., 

without using head-motion profiles in regression, are also presented in Table 2.

Regarding the sensitivity and specificity, the higher the sensitivity, the lower the chance of 

mis-diagnosing MCI patients, and the higher the specificity, the lower the chance of mis-

diagnosing normal subjects to MCI. Although the specificity of the proposed method is 

similar or slightly better than the other methods, the proposed SDGL in multi-spectrum 
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overwhelms the competing methods, reporting a sensitivity of 0.9167. Clinically, it is much 

more beneficial to have a high sensitivity, i.e., correct identification of MCI patients.

One of the most effective methods of evaluating the performance of diagnostic tests in brain 

disease as well as other medical areas is the Receiver Operating Characteristic (ROC) curve, 

which is defined as a plot of test true positive rate versus its false positive rate. We 

illustrated the ROC curve along with the partest graph of the multi-spectrum SDGL in Fig. 

4, which produced the highest accuracy. In accordance with the ROC, the Area Under the 

ROC Curve (AUC), a combined measure of sensitivity and specificity, is also widely 

considered for performance measurement. The AUC can be thought as a measure of the 

overall performance of a diagnostic test. The larger the AUC, the better the overall 

performance of the diagnostic test. The AUC of the multi-spectrum SDGL is 0.9567, which 

also outperforms the other methods.

Youden’s Index (YI) [79], which equally weights the performance of a method on positive 

and negative samples, evaluates the ability of a method to avoid failure in diagnosis. The 

higher the value of YI, the better the ability to avoid failure in diagnosis. Based on the YIs in 

Table 2, we can say that the diagnosis result from the proposed method along with multi-

spectrum, whose YI is 0.7967, is much more reliable than the competing methods.

Based on the measurements mentioned above, it is obvious that the proposed SDGL method 

clearly outperforms both the simple group ICA and the conventional group lasso. With 

respect to the spectrum analysis, the multi-spectrum approach showed better performance in 

both the proposed SDGL and the conventional group lasso. However, the proposed method 

showed an improvement of 10% in both single- and multi-spectrum approaches. We believe 

that since the main goal of the application of the group lasso to rs-fMRI is to find out the 

underlying functional network itself, not discrimination between classes, it fails to extract 

class-discriminative features from the bandpass-filtered signals. Meanwhile, since the 

proposed SDGL considers both the group-constrained representation and the class-

discriminative characteristics simultaneously, it succeeded in correctly identifying MCI 

patients in both single- and multi-spectrum approaches.

3.6 Discussion

In order to see which ROIs are discriminative for MCI identification, we presented the 

distribution of the ROIs selected by the proposed SDGL in Fig. 5. It should be noted that 

each frequency band in the multi-spectrum approach shows different distributions. Here, we 

define the Most Discriminant ROIs (MDRs) and the Second most Discriminant ROIs 

(SDRs) based on the following rules:

– MDRs = {r : Fi(r) > μi + 2σi, ∀i}

– SDRs = {r : μi + σi < Fi (r) < μi + 2σi, ∀i}

where Fi (r) is the frequency of the r-th ROI to be selected in the i-th frequency band, 

 and  denote, respectively, the mean and the 

standard deviation of the frequencies.
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To sum up, the selected ROIs coincide with the studies on the MCI and/or AD in the 

literature. The MDRs are marked in Fig. 6(a): Left Posterior Cingulate Gyrus (35) [4, 63], 

Left Postcentral Gyrus (57) [71], Left Putamen (73) [24], Left Lobule IV, V of Cerebellar 

Hemisphere (97), Left Lobule VI of Cerebellar Hemisphere (99), and Lobule VI of Vermis 

(112) [64]. The SDRs are marked in Fig. 6(b): Right Anterior Cingulate Gyrus (32) [16], 

Right Amygdala (42) [6], Left Fusiform Gyrus (55) [10], Left Pallidum (75) [63], Left Crus 

I of Cerebellar Hemisphere (91), Right Lobule IV, V of Cerebellar Hemisphere (98), Right 

Lobule IX of Cerebellar Hemisphere (106), and Lobule VII Vermis (113) [64]. The number 

in a parenthesis denotes an index of an ROI in an AAL template.

The functional connectivity maps estimated from the multi-bandpass filtered signals with the 

proposed SDGL and the conventional group lasso are presented in Fig. 7. Although they are 

not exactly the same, there exists the similarity between the methods in terms of the network 

structure, which means that the proposed SDGL holds the group constraint characteristic 

across subjects as the group lasso does. Meanwhile, it is clear that they show different 

connectivity coefficients in each frequency range. Based on the performances obtained in 

our experiments, we can say that the coefficient differences resulted from the proposed 

label-informed regularization terms in Eq. (5) help enhance the classification accuracy.

For a detailed representation of the functional connectivity in terms of brain areas, lobes, 

and hemispheres, we also created a connectogram using Circos [27] in Fig. 8. We should 

note that since the connection weights between ROIs vary across subjects regardless of the 

classes of NC and MCI, we cannot directly visualize them in a single graph. We 

circumvented this issue as follows. First, we count the number of valid connections between 

two ROIs over all subjects, in which any connection was considered as valid if and only if 

its absolute value of the connectivity coefficient is larger than the mean of the absolute 

coefficients in a subject. We accumulated the counts over experiments, i.e., cross-validation, 

and then normalized it.

From the figure, we can see that the connectivity varies across decomposed frequency bands 

(Fig. 8(b) – Fig. 8(f)). Interestingly, the connections are the densest in the frequency band of 

[0.025–0.03929], which means that a huge amount of the network connections occur in the 

low frequency range. There is a tendency for the connections to concentrate on a small 

number of ROIs in the higher frequency ranges: Posterior Cingulate Gyrus Left (35) and 

Heschl Gyrus Left (79) in [0.03929–0.05357], Vermis 9 (115) in [0.05357–0.06786], 

Posterior Cingulate Gyrus Left (35) and Pallidum Left (75) in [0.06786–0.08214], and 

Temporal Pole: Superior Temporal Gyrus Right (84) in [0.08214–0.1].

Meanwhile, although it is sparser, the functional connectivity estimated from a single-

spectrum approach is similar to that of the lowest frequency band in a multi-spectrum 

approach. Based on the similarity of those functional connectivities as well as the similar 

classification accuracy of the proposed method with single- and multi-spectrum approaches 

in Table 2, we hypothesize that the discriminative information between NC and MCI is 

mostly involved in the connectivities commonly observed in Fig. 8(a) and Fig. 8(b). The 

functional connectivities shown in Figs. 8(c)–8(f) are supplementary to further improve the 

accuracy of 2.7%. Therefore, we believe that it would be interesting to further analyze the 
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functional connectivities commonly observed in Fig. 8(a) and Fig. 8(b), which we would 

like to leave as our forthcoming research issue.

Note that since we applied leave-one-out cross-validation, the functional connectivity of a 

subject estimated in different cross-validation trials could be different. In this regard, we 

measured the variability of the networks by computing the standard deviation of the 

functional connectivities by different cross-validation trials and further visualized the 

respective connectivity variation maps in Fig. 9. In the map, each element denotes the 

standard deviation of functional connectivity between the corresponding ROIs. From the 

maps, we can see that the maximal standard deviation is less than 0.5, implying that the 

network structures, i.e., functional connectivity, obtained with the proposed method are 

stable.

4 Conclusion

Since it is reported that a large portion of MCI patients progresses to AD [1], there has been 

great interest in many scientific fields for early detection of MCI and a proper treatment. In 

this paper, we proposed a novel method of identifying MCI with group sparse representation 

in a supervised and discriminative manner. Specifically, in order to reflect the categorical or 

class-label information in the model, we utilized a well-known discriminative information of 

the within-class-variance and the between-class-variance [21] for penalization. We also 

devised an efficient algorithm to optimize our objective function using the accelerated 

gradient method. It is noteworthy that the proposed method jointly learns the coherent brain 

network structures across subjects regardless of the classes, while imposing similar 

connectional coefficients within a class and distinct coefficients between classes, but still 

maintaining individual network characteristics.

Our experimental results on rs-fMRI data validated the effectiveness of the proposed method 

with the classification accuracy of 89.19% and the sensitivity of 0.9167 in a multi-spectrum 

approach. The class-discriminative ROIs selected in our framework coincide with those 

reported in the studies on MCI and AD in the literature. It is also observed that the 

functional connectivities vary across the frequency ranges, showing the densest 

connectivities in the low frequency range of [0.025–0.03929].

Some studies have shown that sub-regions within larger rs-fMRI networks can be different 

in different disease or behavioral states [37]. From this perspective, artificially limiting the 

connectome to the coarse AAL template can be limitation of this study. It would be an 

interesting issue to verify the performance of the proposed method on a finer brain 

parcellation scale with higher resolution images and more number of ROIs. Finally, 

although we demonstrated and validated the superiority of the proposed method in our 

experiments, the sample size of the rs-fMRI images was very limited and unbalanced.
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Appendix A

Derivation of the Definitive Matrices

(15)

where Nc is the number of training samples of the class c ∈ {+, −}, wr,g(n) denotes the n-th 

element of a vector wr,g,  is an N-dimensional unit vector 

with the n-th element 1 if l(n) = c, 0 otherwise, I is a square diagonal matrix with  if 

l(n) = c, 0 otherwise, Mc is a square matrix with the columns set to 

, and  if l(n) = c, otherwise 0. 

.
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(16)

(17)

where D2 = (m+ − m−).

Appendix B

Proof of Two Stage Proximal Operator

Given a target proximal operator of

(18)

we can decompose it into two proximal operators as follows:

(19)

(20)

Then it holds that

(21)
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The necessary and sufficient optimality conditions for Eq. (18), Eq. (19), and Eq. (20) can 

be written as

(22)

(23)

(24)

where the partial derivatives are defined as

(25)

and

(26)

It follows from Eq. (24) and Eq. (26) that if π1(v) = 0 then π2 (π1(v)) = 0. That is, the group 

sparsity π1(v) via the group lasso still holds for π2 (π1(v)). Therefore, we have

(27)

Since Eq. (18) has a unique solution, we can get Eq. (21) from Eq. (22) and Eq. (27). Note 

that thanks to the matrix multiplication of  in the partial derivative of Eq. (26), there is 

no need to explicitly decompose the matrix K̂ in Eq. (16).
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Fig. 1. 
A schematic diagram of the proposed framework for MCI classification. (AAL: Automated 

Anatomical Labeling, ROI: Region Of Interest, mRMR: minimum-Redundancy Maximum-

Relevance, SVM: Support Vector Machine, RFE: Recursive Feature Elimination).

Suk et al. Page 25

Neuroinformatics. Author manuscript; available in PMC 2016 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
Pictorial illustration of the concept and the regularization term(s) in an objective function of 

the conventional group lasso and the proposed supervised discriminative group lasso.
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Fig. 3. 
Sample functional connectivities of normal control and mild cognitive impairment estimated 

by the proposed method.
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Fig. 4. 
A receiver operating characteristic (ROC) curve and a partest graph of the proposed 

supervised discriminative group lasso with a multi-spectrum approach.
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Fig. 5. 
Distributions of the selected ROIs in the proposed supervised discriminative group lasso. 

The y-axis denotes a frequency of a ROI being selected in classification. For the multi-

spectrum case, the upper five small graphs are from each of the decomposed frequency 

bands.
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Fig. 6. 
The most and second most discriminative ROIs selected by the proposed supervised 

discriminative group lasso. Refer to the text for the meaning of the most and second most 

discriminative ROIs. (SD: Standard Deviation)
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Fig. 7. 
Comparison of the functional connectivities of a normal control subject and a mild cognitive 

impairment patient estimated by the proposed Supervised Discriminative Group Lasso 

(SDGL) and the conventional Group Lasso (GL). For a clear view, refer to the electronic 

version.
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Fig. 8. 
Connectogram of the functional connectivities. (FRO: FROntal, INS: INSula, TEM: 

TEMporal, PAR: PARietal, OCC: OCCipital, LIM: LIMbic, SBC: SuBCortical, CER: 

CERebellum, VER: VERmis)
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Fig. 9. 
Connectivity variation maps. Each element in a map denotes the standard deviation of the 

functional connectivity between the corresponding ROIs estimated by the proposed method 

over cross-validation trials.
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Table 1

Demographic and clinical information of the participants. (The p-value was obtained by a paired two-sample t-

test.)

Group MCI NC p-value

Number of subjects (Male/Female) 12 (6/6) 25 (9/16) -

Age (Mean±SD) 75.0±8.0 72.9±7.9 0.3598

Years of education (Mean±SD) 18.0±4.1 15.8±2.4 0.0491

MMSE (Mean±SD) 28.5±1.5 29.3 ±1.1 0.1201
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