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Abstract

Multi-atlas patch-based label fusion methods have been successfully used to improve 

segmentation accuracy in many important medical image analysis applications. In general, to 

achieve label fusion a single target image is first registered to several atlas images, after 

registration a label is assigned to each target point in the target image by determining the 

similarity between the underlying target image patch (centered at the target point) and the aligned 

image patch in each atlas image. To achieve the highest level of accuracy during the label fusion 

process it’s critical the chosen patch similarity measurement accurately captures the tissue/shape 

appearance of the anatomical structure. One major limitation of existing state-of-the-art label 

fusion methods is that they often apply a fixed size image patch throughout the entire label fusion 

procedure. Doing so may severely affect the fidelity of the patch similarity measurement, which in 

turn may not adequately capture complex tissue appearance patterns expressed by the anatomical 

structure. To address this limitation, we advance state-of-the-art by adding three new label fusion 

contributions: First, each image patch now characterized by a multi-scale feature representation 

that encodes both local and semi-local image information. Doing so will increase the accuracy of 

the patch-based similarity measurement. Second, to limit the possibility of the patch-based 

similarity measurement being wrongly guided by the presence of multiple anatomical structures in 

the same image patch, each atlas image patch is further partitioned into a set of label-specific 

partial image patches according to the existing labels. Since image information has now been 

semantically divided into different patterns, these new label-specific atlas patches make the label 

fusion process more specific and flexible. Lastly, in order to correct target points that are 
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mislabeled during label fusion, a hierarchically approach is used to improve the label fusion 

results. In particular, a coarse-to-fine iterative label fusion approach is used that gradually reduces 

the patch size. To evaluate the accuracy of our label fusion approach, the proposed method was 

used to segment the hippocampus in the ADNI dataset and 7.0 tesla MR images, sub-cortical 

regions in LONI LBPA40 dataset, mid-brain regions in SATA dataset from MICCAI 2013 

segmentation challenge, and a set of key internal gray matter structures in IXI dataset. In all 

experiments, the segmentation results of the proposed hierarchical label fusion method with multi-

scale feature representations and label-specific atlas patches are more accurate than several well-

known state-of-the-art label fusion methods.

Keywords

Patch-based labeling; multi-atlas based segmentation; multi-scale feature representation; label-
specific patch partition; sparse representation

1. Introduction

Many medical image analysis studies require an accurate segmentation of anatomical 

structures in order to measure structural differences across individuals or between groups 

(Aljabar et al., 2009; Hsu et al., 2002). For example, in connectome applications multiple 

brain regions, in hundreds of brain MR images, need to be automatically identified before 

constructing a brain connectivity network (Li et al., 2012; Liu and Ye, 2010) that describes 

network architecture of the human brain. Therefore, to improve segmentation accuracy the 

development of automatic ROI (region of interest) labeling methods have seen increased 

attention in the medical imaging field over the last several years (Aljabar et al., 2009; Coupe 

et al., 2011; Rousseau et al., 2011; Tong et al., 2012; Wang et al., 2012; Wang et al., 2011a, 

b; Warfield et al., 2004; Wu et al., 2014).

Multiple atlases with manually identified labels have proven to be very useful when used to 

detect and label ROIs in the target image that may show high structural variations in the 

population. The basic assumption behind multi-atlas based segmentation is the target image 

point should bear the same label as the atlas image point if the local tissue shape or 

appearance is very similar. All atlas images are required to be registered to a target image 

before label fusion. To alleviate possible registration errors, patch-based label fusion (Coupe 

et al., 2011; Rousseau et al., 2011) seeks multiple correspondence candidates using 

patchwise similarity measurements between the target image patch and the atlas image 

patches within a certain voxel neighborhood. Intuitively, if the calculated similarity 

measurement between a target image patch and a particular atlas image patch is very high, 

then the atlas label assigned to the target point is the correct one.

To accurately assess image patch similarity, the identification and selection of ideal image 

patches is a key component of patch-based label fusion methods. Most state-of-the-art 

methods simply use fixed size patches throughout the entire label fusion procedure. For 

example, 7×7×7 or 9×9×9 cubic patches are usually used in the literature (Coupe et al., 

2011; Rousseau et al., 2011; Tong et al., 2012; Wang et al., 2012). In order to make the label 

fusion robust to noise, image patches are required to be sufficiently large enough to capture 
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the intended image content. However, using a large image patch may create additional 

problems when labeling small anatomical structures, e.g. the patchwise similarity 

measurement could be dominated by other larger anatomical structures surrounding the 

smaller one in the image patch. In short, methods that use fixed-size patches lack of the 

discriminative power to characterize complex appearance patterns in the medical imaging 

data.

During last decade, many efforts have been made to improve the discrimination ability of 

image patches during label fusion. For instance, sparse dictionary learning is used in (Tong 

et al., 2013) to find the best feature representations prior to label fusion. Moreover, in (Wang 

et al., 2012) and (Wu et al., 2014) dependencies among atlas image patches have been 

investigated to improve labeling accuracy by iteratively inspecting incorrectly labeled 

patches that show similar labeling error patterns. However, these state-of-the-art approaches 

use patches with fixed size and therefore still suffer from this limitation.

In this paper, we address the above limitations by developing hierarchical and high-level 

feature representations to adequately describe image patches. We propose the following 

three contributions: First, a layer-wise multi-scale feature representation adaptively encodes 

image features at different scales for each image point in the image patch. In the proposed 

approach, feature representations near the center of the patch provide more detailed (fine-

scale) shape or appearance information, whereas feature representations near the edge of the 

patch provide less detailed (coarse-scale) shape or appearance information. Second, it's very 

common that the structure to be segmented, e.g. the hippocampus, is surrounded by other 

anatomical structures in the image patch. In such cases it becomes very difficult to correctly 

recognize the intended structure from the surrounding ones and mislabeling is likely to 

occur. In computer vision, object recognition algorithms address this limitation by 

attempting to separate the foreground pattern from background clutter (Li et al., 2010). In 

light of this research, a novel label-specific patch partition technique is proposed that splits 

each atlas patch into a set of new complementary label-specific (or structure-specific) image 

patches. To handle the increased number of label-specific image patches after the proposed 

patch splitting strategy a group sparsity constraint is included. As result, the discriminative 

power of each label-specific image patch is enhanced because it only contains the image 

information of the corresponding anatomical structure. To the best of our knowledge, this 

type of representation is rarely exploited in label fusion. Third, because existing label fusion 

methods typically use a fixed patch size, and label the entire target image in one pass, they 

are not given a chance to correct possible errors. To overcome this limitation the proposed 

method uses an iterative label-fusion procedure. Specifically, larger image patches are used 

in the beginning to increase the search range, however at each iteration the labeling result is 

evaluated and the size of the image patch is gradually reduced. To ensure spurious artifacts 

do not dominate the proposed label-fusion method, a sparsity constraint is included that only 

allows a small number of atlas patches to participate in the label fusion process.

It should be noted that this paper is an extension of our previous work in (Wu and Shen, 

2014). However, there are several differences, specifically: a group sparsity constraint is 

used instead of a weighting vector sparsity constraint, a more comprehensive validation of 

each contribution (i.e., multi-scale feature representation, label-specific patch partition, and 

Wu et al. Page 3

Neuroimage. Author manuscript; available in PMC 2016 February 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



iterative label fusion), and additional datasets are used to evaluate the performance of the 

proposed label fusion method.

Performance of the proposed label fusion method is compared to existing state-of-the-art 

patch-based labeling methods (Coupe et al., 2011; Rousseau et al., 2011) using several 

different datasets. Specifically, the datasets used to evaluate the proposed method are the 

MICCAI 2013 segmentation challenge dataset (Landman and Warfield, 2012) with 14 

manually labeled ROIs in the mid-brain, the LONI LBPA40 dataset (Shattuck et al., 2008) 

with 54 manually labeled ROIs at sub-cortical regions, and the IXI dataset with 83 manually 

labeled ROIs (Hammers et al., 2003; Hammers et al., 2007). Finally, we also include 

hippocampus segmentation experiments using the ADNI (Alzheimer’s Disease 

Neuroimaging Initiative) dataset and 7.0 tesla MR images (Cho et al., 2010). For each 

dataset the proposed method achieves a more accurate labeling result.

The remainder of the paper is organized as follows: In Section 2 we present our novel 

generative probability model for label fusion, in Section 3 we evaluate its performance by 

comparing it with conventional patch-based methods, and in Section 4 we provide a brief 

conclusion.

2. Method

Given the target image T, the goal of label fusion is to automatically determine the label 

map LT for the target image. We first register each atlas image, as well as the label maps, 

onto the target image space. We use I = {Is|s = 1, …, N} and L = {Ls|s = 1, …, N} to denote 

the N registered atlases and label maps, respectively. For each target image point x (x ∈ T), 

all the atlas patches‡ within a certain search neighborhood n(x), denoted as β⃑
s,y(β⃑

s,y ⊂ Is, y ∈ 

n(x)), are used to compute the patchwise similarities w.r.t. the target image patch α⃑T,x (α⃑
T,x 

⊂ T). We arrange each patch, β⃑
s,y and α⃑

T,x, into a column vector. We use the tuple b = (s,y) 

to denote both the atlas image index s and the location of the patch center point y, 

respectively. Thus, each atlas image patch β⃑
s,y can now be simplified to β⃑

b(b = 1, …, Q), 

where Q = N × |n(x)| is the total number of atlas image patches which are used to label the 

center point of the target image patch α⃑T,x. For clarity, we use only α⃑ to denote the 

underlying target image patch by dropping off the subscripts in α⃑T,x.

Label fusion methods such as non-local averaging (Coupe et al., 2011; Rousseau et al., 

2011), can be used to calculate the weighting vector w⃑ = [wb]b=1,…,Q for all atlas patches, 

each of which is denoted by βb⃑. As we will explain in Section 2.2, we adopt the sparsity 

constraint (Liu et al., 2009a, b; Tibshirani, 1996) in our method by regarding the label fusion 

procedure as the problem of finding the optimal combination among a set of atlas patches 

{β⃑
b} for the target image patch α⃑ (Tong et al., 2012; Zhang et al., 2012):

(1)

‡Some label fusion methods use patch pre-selection to discard the less similar patches.
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where the scalar λ controls the strength of sparsity constraint and B is a matrix built by 

assembling all column vectors {β⃑
b} in a columnwise manner. The image patch vectors are 

usually required to be normalized to the unit vector before optimizing over the sparse 

coefficients w⃑ (Wright et al., 2009). Assuming that we have M possible labels {l1, …, lm, …, 

lM} in the atlases, the label on target image point x can be efficiently determined by:

(2)

where Lb denotes the label in the center point of the atlas patch βb, and the Dirac function 

δ(Lb, lm) is equal to 1 when Lb = lm and 0 otherwise.

As we can see in Eq. 1, the image intensities in the entire image patch are used for label 

fusion. Since one image patch may contain more than one anatomical structure and the to-

be-segmented target ROI may have a complex shape/appearance pattern, the current patch-

based label fusion methods have a certain risk of being misled by the patchwise similarities 

computed using image patches of fixed size or scale. We address this issue by introducing 

the idea of adaptive scale that has the following three components. Firstly, we treat each 

element within the image patch differently w.r.t. the radial distance toward the patch center. 

Therefore, a single image patch can convey image information from multiple scales (Section 

2.1). Secondly, we treat the label information within the image patch separately, instead of 

as a whole. Specifically, we adaptively build label-specific atlas patches by using the 

existing label information in the atlases (Section 2.2). Thirdly, we dynamically reduce the 

patch size from large to small in order to hierarchically improve the label fusion accuracy in 

a coarse-to-fine manner (Section 2.3).

2.1 Multi-scale Feature Representations

As demonstrated in our previous work (Wu et al., 2006), image points at different brain 

regions should use different image scales to precisely characterize the local anatomical 

information. However, in most patch-based label fusion methods, every point in the image 

patch contributes equally and uses just its own intensity value for computing the patchwise 

similarity. We overcome this limitation by allowing each point to use an adaptive scale for 

capturing local appearance characteristics. Specifically, we first partition the whole image 

patch into several nested non-overlapping layers, spreading from the center point to the 

boundaries of the image patch. Next, we capture the fine-scale features for the layer closest 

to the patch center since the label fusion procedure eventually aims at determining the label 

for the central point. We gradually use larger and larger scales to capture the coarse-scale 

information as the distance to the patch center increases. Although the image pyramid 

technique (Liu and Ye, 2010) can be applied for multi-scale feature representation, we 

choose the less computationally demanding solution of adaptively replacing the original 

intensity values with the convolved intensity values using different Gaussian filters.

Fig. 1 illustrates the procedure of how to integrate the multi-scale feature representation into 

the conventional image patch. In the following example, we use three non-overlapping 

layers. First, we deploy three Gaussian filters upon the original image patch separately and 
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obtain three smoothed image patches. Then, for each element in the image patch, we replace 

its original intensity value with the new value in the smoothed image at the same location. In 

this example, we replace the intensities in the inner most layer by the convolved intensity 

values smoothed via a Gaussian filter with the smallest kernel (in blue, in the right side of 

figure). For each point in the middle layer, we use the convolved intensity value from the 

smoothed image patch via a Gaussian filter with the medium kernel (in red). Similarly, we 

use the smoothed image patch via a Gaussian filter with the largest kernel as the feature 

representation for the image points in the third layer (in green). In this way, the image patch 

is now equipped with the multi-scale feature representations, as shown in the right of Fig. 1. 

Hereafter, α⃑ and β⃑
b denote the image patches after replacing the original intensities with the 

multi-scale feature representations.

The advantage of using multi-scale feature representation in patch-based label fusion is 

shown in Fig. 2. Specifically, we examine the discriminative power of two target image 

points, designated by red ‘+’ and red ‘Δ’ in Fig. 2. For clarity, we only use one atlas image 

in this example (bottom left of Fig. 2). The corresponding locations of the two target image 

points in the atlas image are designated with blue ‘+’ and blue ‘Δ’, respectively. For each 

candidate point in the search neighborhood (i.e., blue dash boxes in Fig. 2), we compare the 

patch-wise intensity similarity w.r.t the target image point by using small-scale image 

patches (3 × 3 × 3), large-scale image patches (17 × 17 × 17), and our proposed multi-scale 

image patches, respectively. Fig. 2 (a)–(c) shows the similarity maps obtained by comparing 

the target image patch and each candidate atlas image patch in the search neighborhood, 

where bright colors indicate high similarity, and dark colors indicates low similarity.

The principle behind patch-based label fusion methods is that two image patches should bear 

the same label if they have similar appearances. Therefore, the benefit of our multi-scale 

feature representation lies in its ability to recognize more reliable correspondences than the 

conventional image patches. As shown in Fig. 2 (a), when using conventional small-scale 

image patches many image regions from obviously different anatomical structures present 

high similarities. This is because the appearance information in the small-scale image patch 

is too limited to characterize the complex anatomical structures. This has the undesirable 

effect of introducing misleading labels in label fusion. On the other hand, using conventional 

large-scale image patches can alleviate this issue by incorporating global information, but at 

the expense of losing discriminative power. This can be seen in Fig. 2 (b), where a 

conventional large-scale image patch can approximately distinguish the atlas patches nearby 

the corresponding locations. However, a large number of atlas image patches belonging to 

different anatomical structures still present high similarities when using conventional large-

scale image patches. Our multi-scale image patch combines both local and global 

information, which leads to a more reasonable similarity map as shown in Fig. 2 (c). As we 

can see, our method can identify more accurate correspondences than using either small or 

large conventional patches. Thus, in the scenario of patch-based label fusion, the similarity 

map obtained by using our multi-scale image patch representation encourages assigning high 

weights to the true anatomical correspondences (with the correct labels) and also suppresses 

the atlas patches belonging to other structures (with incorrect labels).
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2.2 Label-specific Atlas Patch Partition

Since atlas image patches have label information, we can partition each atlas patch into a set 

of new label-specific atlas patches, thus separately encoding the image information for each 

individual label. Given the atlas image patch β⃑
b, we use γ⃑

b to denote its associated label 

patch. Suppose there are Mb (0 < Mb ≤ M) different labels in γ⃑
b. Then, the proposed label-

specific atlas patch set Pb consists of Mb label-specific atlas patches, i.e., 

, where  is a column vector. Each element u in  preserve the 

intensity value β⃑
b(u) if and only if γ⃑

b(u) has the label lm; otherwise, . 

Mathematically, we have  and , where δ(․,․) is 

the same Dirac function as used in Eq. 2.

Fig. 3 demonstrates the construction of the label-specific atlas patch partition. For clarity, 

we only use the original 3 × 3 image patch in this example, instead of the above multi-scale 

image patch. Suppose that we have three atlas image patches and there are two labels 

(hippocampus and non-hippocampus) in each patch, i.e., Mb = 2 (b = 1,2,3). Next, for each 

atlas patch β⃑
b, we split it into two partial patches  and , which are denoted in blue (non-

hippocampus) and red (hippocampus) in Fig. 3, respectively. Each label-specific atlas patch 

 preserve the intensity value only if the element bears the label lm. Otherwise, use zero to 

represent the elements with a different label in the particular partial patch .

Note that the number of image patches increases significantly after we partition each atlas 

patch into the label-specific atlas patch set. Thus, we propose to use the sparsity constraint in 

label fusion, in order to select only a small number of label-specific atlas patch  for 

representing the target image patch α⃑. By replacing each conventional atlas patch with the 

label-specific atlas patches, the matrix of atlas patches B in Eq. 1 now expands to P = 

[Pb]b=1,…,Q. Then, the new energy function for label fusion can be reformulated as:

(3)

where  is the weighting vector for each label-specific atlas patch  . Since the goal 

of Eq. 3 is to minimize the difference between the target image patch and its sparse 

representation of label-specific atlas patches, the padded zero values in each label-specific 

atlas patch  have no influence when optimizing Eq. 3.

Conventionally, each weight  in ξ⃑ is independently treated when optimizing Eq. 3. Here, 

we go one step further and enforce the group sparsity constraint on ξ⃑. Obviously, there are Q 

non-overlapping groups of label-specific atlas patches, where each group consists of a set of 

label-specific atlas patches split from β⃑
b. Supposing that  denotes the 

weights for all label-specific atlas patches within the original atlas image patch β⃑
b, the new 

energy function with group sparsity constraint is:
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(4)

where λ1 and λ2 control the strength upon non-overlapping groups and the entire weighting 

vector ξ⃑, respectively. The new energy function falls into the scenario of sparse group 

LASSO (Friedman et al., 2010; Vincent and Hanse, 2014) which encourages sparsity not 

only for the entire weighting vector ξ⃑ (as reflected by the third term in Eq. 4), but also for 

the number of selected groups (as reflected by the second term in Eq. 4). The optimization 

of Eq. 4 can be efficiently solved by using the SLEP (Sparse Learning with Efficient 

Projection) software package (Liu et al., 2009b; Liu and Ye, 2010).

Since each  is only related with a particular label lm, each element  in ξ⃑ represents the 

probability of labeling the center point x of the target image patch α⃑ with the label lm. 

Therefore, the labeling result on the target image point x can be obtained by:

(5)

The advantage of using label-specific atlas patches is demonstrated by a toy example in Fig. 

4, where we use red and blue to denote two different labels and we use numbers to represent 

the intensity values. For the sake of simplicity, we have only used two atlas patches in this 

example. Both the first atlas patch (i.e., the first column in B) and the target patch α⃑ belong 

to the same structure since their intensity values are in ascending order. If we estimate the 

weighting vector w⃑ based on the entire atlas patch by Eq. 1 (λ = 0.01), the weights for the 

first and second atlas patches are 0.43 and 0.49, respectively. According to Eq. 2, we have to 

assign the target point with the blue (incorrect) label. In our method, we first extend the 

matrix B to the label-specific atlas patch set P, as shown in the bottom of Fig. 4, and then 

solve the new weighing vector ξ⃑ by Eq. 4 (λ1 = 0.1 and λ2 = 0.1). According to Eq. 5, the 

overall weights for red and blue labels are 0.8194 (0.8094+0.0100) and 0.3329 

(0.2683+0.0646), respectively. Therefore, it is straightforward to correctly assign the target 

point with the red label. It is worth noting that, if only using the sparsity constraint on ξ⃑, the 

overall weights for the red and blue labels are 0.8850 (0.8000+0.0050) and 0.8004 

(0.6901+0.1103), respectively. As we can see, the vote for the red label is only slightly 

better than the blue label. This example demonstrates the benefits of both the label-specific 

patch partitions and of enforcing group sparsity.

2.3 Hierarchical Patch-based Label Fusion

In Section 2.1, we have presented the use of multi-scale image patch to adaptively treat each 

element in the image patch. As observed in Fig. 2, combining global and local information 

can significantly increase the robustness and discriminative power of the image patch in 

label fusion. Along the same lines, we further propose to dynamically adjust the patch size 

from large to small during the label fusion procedure. The idea is to initially resort to global 

information (i.e., using a large patch size) to discard the misleading candidate atlas patches 
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and then gradually use more local information (i.e., using smaller patch sizes) to refine the 

optimization of the energy function (in Eq. 4) based on the remaining atlas patches.

In the beginning of patch-based label fusion, we propose to use a large patch size in order to 

capture the global image information. Since we use the sparsity constraint for solving the 

weighing vector ξ⃑, only a small number of image patches are selected to represent the target 

image patch α⃑, since many elements in ξ⃑ are zero or almost zero. After discarding those 

unselected atlas patches, we can confidently reduce the patch size of those selected atlas 

patches and then repeat the whole label fusion procedure as described in Sections 2.1 and 

2.2 by using more detailed, local features. In this way, our label fusion method can 

iteratively improve the labeling results in a hierarchical way.

The advantage of our hierarchical patch-based label fusion is demonstrated in Fig. 5, where 

we aim to determine the label of the target image point x (red cross in Fig. 5) located near 

the boundary of the hippocampus (with ground-truth label corresponding to hippocampus). 

To determine the label for this target image point x, a set of candidate atlas image patches 

are examined in a 15 × 15 × 15 search neighborhood (i.e., blue dash boxes). After patch pre-

selection (Coupe et al., 2011), only around 2000 atlas patches are used in determining the 

label for target image point x. In order to explicitly show the advantage of our hierarchical 

patch-based label fusion scenario, we only use the original image patch, with neither multi-

scale representation nor label-specific partition. Moreover, only the sparsity constraint is 

used to seek for the label fusion weights (i.e., Eq. 3), instead of using the group sparsity 

constraint. In the first iteration, the patch size is set to 11 × 11 × 11. In Fig. 5 (a), we plot the 

sparse coefficients after solving Eq. 3. The red and blue plots correspond to the atlas patches 

with hippocampus label and non-hippocampus label, respectively. It is clear that a large 

number of atlas image patches with non-hippocampus labels are selected to represent the 

target image patch, which makes the selection of the underlying label somewhat arbitrary 

due to the fact that the overall weight for the non-hippocampus label is nearly the same as 

for the hippocampus. In the second iteration, we only focus on the remaining (selected) atlas 

patches by discarding the unselected atlas patches (with zero coefficients). At this point, we 

reduce the patch size from 11 × 11 × 11 to 7 × 7 × 7, in order to resort to the local image 

information to refine the sparse representation. Since a lot of misleading and noisy image 

patches have been removed, the task of sparse representation becomes relatively easier. As 

shown in Fig. 5 (b), the overall weight voting for hippocampus dominates the weight for 

non-hippocampus. However, we still can see some large sparse coefficients for some non-

hippocampus image patches. Thus, we finally repeat the same procedure with the patch size 

reduced to 3 × 3 × 3. It can be observed in Fig. 5 (c) that (1) only a few atlas patches are 

used to determine the label for the target image point x, and (2) all the selected atlas patches 

have the correct label w.r.t. the target image point x. It is worth noting that directly using the 

3 × 3 × 3 image patches from scratch does not result in good estimations, as indicated by the 

plot of sparse coefficients in Fig. 5 (d). The main reason is that the appearance information 

from small image patches is too local to deal with the complex anatomical structures present 

in the brain images. On the contrary, our hierarchical label fusion framework uses the global 

image information to gradually remove the misleading candidate atlas patches, thus ensuring 
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to obtain more accurate label fusion results when applying the small image patch size in the 

end.

3. Experiments

To evaluate label performance, the proposed label fusion method is compared to several 

existing state-of-the-art patch-based methods using publically available neuroimaging 

datasets. Specifically, the non-local weighting (Nonlocal-PBM) (Coupe et al., 2011; 

Rousseau et al., 2011), and the recently proposed sparse patch-based labeling method 

(Sparse-PBM) (Tong et al., 2012; Zhang et al., 2012) are tested. To assess label accuracy, 

the Dice ratio is used which measures the degree of overlap between two ROIs O_1 and O_2 

as follows:

(6)

where |·| means the volume of the particular ROI.

As shown in Table 1, an iterative process that uses varying configurations is implemented. 

In general, a configuration defines several partition layers defined within the patch. For 

instance, if the label fusion method initially starts with a 9×9×9 patch it will be partition into 

three layers. From the center point of the patch the [1,1,2] setting describes the width of each 

partition. For this particular setting, the width of the first two layers is 1 voxel and the width 

of the third layer is 2 voxels. Lastly, the [0.5, 1, 2] setting controls the kernel width that is 

used for smoothing. Likewise for this setting, 0.5 is the kernel width for the first layer, 1 is 

the kernel width for second layer, and 2 is the kernel width for the third layer. The above 

process is executed for two additional iterations that gradually reduce the patch size to 

3×3×3. These parameters are fixed throughout all the experiments. For the other counterpart 

methods, we report the results using the parameters that result in the best performance. 

Lastly, The values of λ1 and λ2 are both set to 0.1 for all experiments.

The remainder of this section is organized as follows: In Section 3.1 a comprehensive 

evaluation of the proposed label fusion method is performed using the ADNI dataset, then in 

Section 3.2 the parameters are fixed and the proposed method is used to segment the 

hippocampus in 7.0 tesla MR images. In Section 3.3, the proposed method is evaluated 

using the 14 mid-brain structures in the SATA MICCAI 2013 segmentation challenge 

dataset, and in Section 3.4 the proposed method is evaluated using 54 manually labeled sub-

cortical regions in the LONI LBPA 40 dataset (Shattuck et al., 2008). For a fair comparison, 

the Nonlocal-PBM and Sparse-PBM parameter settings reported in (Coupe et al., 2011) and 

(Zhang et al., 2012) respectively, are used.

3.1 Experimental Result of Hippocampus Labeling on the ADNI Dataset

In many neuroscience studies, accurate delineation of hippocampus is very important for 

quantifying the inter-subject anatomical difference and subtle intra-subject longitudinal 

changes, since the structural change of hippocampus is closely related with dementias, such 

as Alzheimer’s disease (AD). In this experiment, we randomly select 23 normal control 
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(NC) subjects, 22 MCI (Mild Cognitive Impairment) subjects, and 21 AD subjects from the 

ADNI dataset§. The following three pre-processing steps have been performed to all subject 

images: (1) Skull removal by a learning-based meta-algorithm (Shi et al., 2012); (2) N4-

based bias field correction (Tustison et al., 2010); (3) intensity standardization to normalize 

the intensity range (Madabhushi and Udupa, 2006). Semi-automated hippocampal volumetry 

was carried out using a commercial high-dimensional brain mapping tools (Medtronic 

Surgical Navigation Technologies, Louisville, CO), which has been validated and compared 

to manual tracing of the hippocampus (Hsu et al., 2002). In this experiment, we regard the 

hippocampal segmentations from ADNI as the ground truth.

A leave-one-out strategy is used to compare the label performance of Nonlocal-PBM, 

Sparse-PBM, and proposed label fusion method. In each leave-one-out experiment, affine 

registration is first performed by FLIRT in the FSL toolbox (Smith et al., 2004) with 12 

degrees of freedom and the default parameters (i.e., normalized mutual information 

similarity metric, and a search range of ±20mm in all directions). Then after the affine 

registration, a deformable registration is performed using the diffeomorphic Demons 

(Vercauteren et al., 2009) method and the default registration parameters (i.e., smoothing 

sigma 1.8, and iterations in low, middle, and high resolutions as 20 × 10 × 5).

To evaluate the contribution of each component in the proposed label fusion method, we 

compare our method with the three degraded versions of our method: Degraded_1: our 

method using only the multi-scale feature representation (with patch size of 9 × 9 × 9), 

Degraded_2: our method using only the label-specific atlas patches (with patch size of 9 × 9 

× 9), and Degraded_3: our method using only the hierarchical labeling mechanism.

Using all 66 leave-one-out cases, the mean and standard deviation of the Dice ratios from th 

hippocampus label results are calculated and reported in Table 2. A few important 

observations can be made. Compared to the five other methods, the proposed label fusion 

method with no degradation achieves the highest Dice ratio results, obtaining approximately 

a 1.9% and 1.2% improvement over the Nonlocal-PBM and Sparse-PBM methods, 

respectively. Each component in the proposed label fusion method improves labeling 

accuracy as seen by the 0.6%, 0.9%, and 0.3% Dice ratio increases over Degraded_1, 

Degraded_2, and Degraded_3, tests respectively. The computation times by the 6 label 

fusion methods are also reported in the last row of Table 2. The computation environment of 

our experiments is 8 CPUs @ 3.0GHz and 16G RAM.

Since the improvement in label fusion is usually obtained around the boundary of 

hippocampus, it is interesting to examine the label results at the hippocampus surface. To 

perform this experiment we first construct ground-truth hippocampus surface mask and an 

estimated hippocampus surface mask. Then the distance at each vertex between two surfaces 

is computed. Table 3 shows the values of the averaged surface-to-surface distance and the 

maximum surface-to-surface distance by Nonlocal-PBM, Sparse-PBM, Degraded_1, 

Degraded_2, Degraded_3, and the proposed method with no degradation. We further 

perform the paired t-tests upon the surface distances. We observe that all degraded methods 

§http://adni.loni.ucla.edu/.
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and the proposed method with no degradation have significant improvement (p<0.05) over 

Nonlocal-PBM, the Degraded_1, Degraded_2, and the proposed method with no degradation 

have significant improvement (p<0.05) over Sparse-PBM.

3.2 Experimental Result on the 7.0 Tesla MR Images

With the advent of 7.0-tesla MR imaging technology (Cho et al., 2010) the achievement of 

high signal-to-noise ratio (SNR), as well as a dramatic increase in tissue contrast compared 

to the 1.5- or 3.0-tesla MR images, is possible. A visual comparison in provided in Fig. 6, 

which shows a typical brain image slice produced by a 7.0-tesla scanner with resolution of 

0.35 × 0.35 × 0.35mm3 next to slice from a 1.5-tesla scanner with a resolution of 1 × 1 × 

1mm3. These high-resolution images enable researchers to clearly observe fine brain 

structures with sub-milimetric precision. We believe that the 7.0-tesla MR imaging 

technique has the potential to become the standard technique for discovering the 

morphological patterns in the human brain in the near future.

For the 7.0-tesla scanner (Magnetom, Siemens), an optimized multichannel radiofrequency 

(RF) coil and a 3D fast low-angle shot (Spoiled FLASH) sequence were utilized, with 

TR=50ms, TE=25ms, flip angle 10°, pixel band width 30Hz/pixel, field of view (FOV) 

200mm, matrix size 512 × 576 × 60, 3/4 partial Fourier, and number of average (NEX) 1. 

The image resolution of the acquired images is isotropic, e.g., 0.35 × 0.35 × 0.35mm3. The 

hippocampi were manually segmented by neurologists (Cho et al., 2010). All images were 

pre-processed by the following steps: 1) inhomogeneity correction using N4 bias correction 

(Tustison et al., 2010); 2) intensity normalization for making image contrast and luminance 

consistent across all subjects (Madabhushi and Udupa, 2006); 3) affine registration to the 

selected template by FSL.

Using 7.0–tesla MR imaging technology, the proposed label fusion method is used to 

segment the hippocampus from twenty-one 7.0-tesla MR brain images. Unfortunately, 

existing state-of-the-art deformable image registration methods that are developed for 1.5-

tesla or 3.0-tesla MR images do not perform well when used on 7.0-tesla MR images. In 

general, this is primarily due to the severe intensity inhomogeneity in 7.0-tesla MR images, 

the richer texture information in 7.0-tesla MR images (as seen in Fig. 6(b)), and that only a 

small segment of the brain covering the hippocampus is scanned, instead of whole brain.

Since we have the manually labeled hippocampus for each 7.0-tesla MR image, we can 

quantitatively measure label fusion accuracy using a leave-one-out cross validation strategy. 

The mean and standard deviation of the Dice ratios on hippocampus are (77.42 ± 3.44)% by 

Nonlocal-PBM, (79.29 ± 2.46)% by Sparse-PBM, and (82.65 ± 1.37)% by the proposed 

method. Furthermore, in Table 4 we list the average and maximum surface distances 

between the manually segmented and the automatically estimated hippocampus masks by 

three different label fusion methods. Fig. 7 shows the mappings of the surface distances on 

three typical 7.0-tesla MR images.
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3.3 Experimental Result on the SATA MICCAI 2013 Challenge Dataset

Using the SATA dataset, provided by MICCAI 2013 segmentation challenge workshop 

(https://masi.vuse.vanderbilt.edu/workshop2013/index.php/Main_Page), 35 training samples 

(atlas images and labels) as well as a collection of 12 testing images are provided. There are 

14 ROIs that cover accumbens area, amygdala, caudate, hippocampus, pallidum, putamen, 

and thalamus on both hemispheres. Since the organizers have provided all registered atlas 

images to each target image to be labeled, no registration is needed for this experiment. 

After the proposed label fusion method generates the label results, they are submitted to the 

workshop organizer that returned the quantitative results shown in Table 5. The Dice ratios 

in all ROIs by the three label fusion methods are shown in Fig. 8. It worth noting that the 

proposed method (named “UNC IDEA SuperMAS”) is currently ranked the topmost label 

fusion method in this challenge (http://masi.vuse.vanderbilt.edu/submission/

leaderboard.html).

3.4 Experimental Result on the LONI LPBA40 Dataset

Here we evaluate the performance of label fusion using the LONI LBPA 40 dataset 

(Shattuck et al., 2008) that includes 40 brain images, and each brain image has 54 manually 

labeled ROIs. We randomly select 20 images as atlases and another 20 as target images. To 

label each target image, we first apply affine registration by FLIRT in the FSL toolbox 

(Smith et al., 2004) with 12 degrees of freedom and the default parameters (i.e., using the 

normalized mutual information similarity metric, and the search range ±20 in all directions). 

Then after the affine registration, a deformable registration is performed using the 

diffeomorphic Demons (Vercauteren et al., 2009) method and the default registration 

parameters (i.e., using the smoothing sigma 2.0, and iterations in low, middle, and high 

resolutions as 20 × 10 × 5).

The Dice ratio mean and standard deviation measures for the 54 ROIs are provided in Table 

6. The proposed method achieves a 3.15% and 1.51% improvement compared the Nonlocal-

PBM and Sparse-PBM methods, respectively. Fig. 9 shows the Dice ratio in each ROI found 

by the Nonlocal-PBM (blue), Sparse-PBM (green), and the proposed method (red). The 

proposed label fusion method shows a significant improvement in 34 of 54 ROIs when 

compared to Nonlocal-PBM (‘+’ denoting significant improvement according to a paired t-

test (p < 0.05)), and in 29 of 54 ROIs when compared to Sparse-PBM (‘*’ denoting 

significant improvement according to a paired t-test (p < 0.05)).

3.5 Comparison with other State-of-the-art Methods on the IXI Dataset

Recently, many multi-atlas based label fusion methods (Artaechevarria et al., 2009; Asman 

and Landman, 2012; Cardoso et al., 2013; Sabuncu et al., 2010a) have been developed to 

segment anatomical structures in medical images. STEPS (Similarity and Truth Estimation 

for Propagated Segmentations) (Cardoso et al., 2013) is one the most recent label fusion 

method that integrates image appearance information into the classic STAPLE algorithm 

(Warfield et al., 2004). Specifically, STEPS has achieved better segmentation results than 

other existing label fusion methods including (Asman and Landman, 2011; Asman and 

Landman, 2012; Sabuncu et al., 2010b; Yushkevich et al., 2010).
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Here we compare segmentation performance of the proposed label fusion method with 

STEPS, Nonlocal-PBM, and Sparse-PBM using the IXI dataset (Hammers et al., 2003; 

Hammers et al., 2007)**. The IXI dataset contains 30 subjects, each with 83 manually 

labeled ROIs. For the sake of comparison, we report the Dice ratios for same 7 ROIs 

(Hippocampus, Amygdala, Caudate Nucleus, Nuc. Accumbens, Putamen, Thalamus, Globus 

pallidus) originally reported in (Cardoso et al., 2013). Similarly to (Cardoso et al., 2013), we 

run Nonlocal-PBM, Sparse-PBM, and the proposed label fusion methods on all 30 subjects 

using a leave-one-out cross validation strategy. Table 7 shows the mean Dice ratio value for 

the 7 ROIs found by the different label fusion methods under test. As we can see, the 

proposed method achieves the best (i.e. greatest value) Dice ratio.

4. Discussion

Linear vs Deformable Image Registration

In (Rousseau et al., 2011), the authors propose the strategy that combines non-local label 

fusion with deformable image registration. According to their conclusions, accurate 

correspondences derived from deformable image registration could further improve non-

local label fusion performance, especially when the intensity contrast is low. Since the 

overall goal of our paper is to improve labeling accuracy. In light of this, the proposed label 

fusion method was applied after deformable registration (using diffeomorphic demons) to 

map the labels from the atlas images to the target image. However, after several experiments 

we observed some interesting label fusion results that used linear registration instead of a 

non-linear one. In particular, Table 8 shows the mean and standard deviation of Dice ratios 

when segmenting the hippocampus using a 66 leave-one-out cross validation experiment. As 

shown in this table, we compared the Nonlocal-PBM, Sparse-PBM, Degraded_1, 

Degraded_2, Degraded_3, and our full label fusion method. Furthermore, the same dataset 

in Section 3.1 was used with one exception: all the label fusion methods under test were 

executed after linear registration. Compared to the Dice ratios in Table 2, the segmentation 

of the proposed method are more accurate when linear registration is performed, and is less 

accurate when a deformable image registration is performed. Moreover, in hippocampus 

dataset, label fusion results after deformable image registration are more accurate than after 

linear registration (87.9% by linear registration vs 88.5% by deformable registration), but at 

the expense of longer computational time (i.e., 20 minutes by linear registration vs 55 

minutes by deformable registration).

Overlapping vs Non-overlapping Layers in the Multi-Scale Feature Representation

In Section 2.1, the image patch was partitioned into non-overlapping layers that may present 

blockness problems across different layers. In order to evaluate how this potential problem 

effects label fusion performance the two additional tests were evaluated: Include 

overlapping layers with a 1 image point overlap between two layers, and increase the 

number of layers in each image patch. For each additional test, the label fusion method was 

rerun with non-overlapping layers and with overlapping layers on the hippocampus dataset. 

After performing a 66 leave-one-out cross validation, the mean and standard deviation of the 

**The IXI dataset can be downloaded at http://biomedic.doc.ic.ac.uk/braindevelopment/index.php?n=Main.Datasets.
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Dice ratios achieved by the proposed label fusion method, with non-overlapping layers, and 

with overlapping layers, were 87.91±3.04 and 87.95±2.96, respectively. Paired t-test 

indicates no significant statistical difference between when non-overlapping or overlapping 

layers are used. However, in our implementation there is a significant difference in 

computation time. Specifically, the time required when overlapping is used requires 

significantly more time when non-overlapping layers is used.

Limitations and Future Work

In order to efficiently obtain the multi-resolution feature representation at each point, we 

experimentally partition the image patch into several nested non-overlapping layers and 

assign each layer with a pre-determined Gaussian Kernel. However, as we demonstrated in 

our previous work (Wu et al., 2006b), each image point should have its own best scale to 

describe the local characteristics of the anatomical structure. Thus, one of our future works 

is to develop an adaptive method to use the best image patch size and the best set of 

smoothing kernels for each point. To further increase the computational efficiency of the 

proposed method, GPU processing using the CUDA programming technique can be used to 

exploit parallel patch operations. Lastly, the integration of the proposed label fusion method 

into a open-source stand-alone software package, like MARS (Multi-Atlas Robust 

Segmentation) that is hosted at NITRC (http://www.nitrc.org/projects/mars), would give 

other researchers direct access to the software developed in this manuscript.

Finally, although we address the limitation of existing label fusion methods that use fixed 

size image patches, many other works are aimed at improving label fusion performance 

from different perspectives. For example, Ta et al (Ta et al., 2014) introduced a new patch-

based method using the ‘PatchMatch’ algorithm that provides competitive segmentation 

accuracy in near real-time. Results showed that their label fusion method can segment the 

hippocampus from MR images in less than 1 second. From the application point of view, the 

non-local based method has been adapted to multiple medical imaging studies, such as 

intracranial cavity extraction (Eskildsen et al., 2012; Manjón et al., 2014) and extraction of 

hippocampus structural features for early detection of AD (Coupé et al., 2012a; Coupé et al., 

2012b). In our future work, we plan to evaluate our proposed label fusion method in other 

imaging-based studies (Chen et al., 2009; Liu et al., 2012; Verma et al., 2005).

5. Conclusion

In this paper, new techniques are used to improve multi-atlas patch-based label fusion 

performance. Specifically, each atlas patch is assigned a multi-scale feature representation; 

atlas image patches are partitioned into several label-specific patches based on existing label 

information; and a hierarchical label fusion mechanism that iteratively improves the labeling 

result by gradually reducing patch size. Label fusion performance is evaluated using the 

ADNI dataset, 7.0-tesla MR image dataset, SATA MICCAI 2013 segmentation challenge 

dataset, LPBA40, and IXI dataset. Compared to publically available state-of-the-art label 

fusion methods, the proposed method has demonstrated the best label performance for each 

dataset. Lastly, it is worth noting that the proposed method has achieved the highest ranking 

in the SATA segmentation challenge.
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Research Highlight

1. Integrate the multi-scale feature representation into conventional image patch in 

label fusion.

2. Adaptively treat multiple anatomical structures within the image patch.

3. Hierarchically improve the label fusion accuracy by dynamically changing the 

patch size.
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Fig. 1. 
Construction of the multi-scale image patch by adaptively replacing the intensity values with 

the convolved intensity values via multiple Gaussian filters.
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Fig. 2. 
The advantages of using the multi-scale patch representation in patch-based label fusion. 

Each marker (“+” or “Δ”) denotes a pair of corresponding points in the atlas and target 

images, respectively. We show the advantages of using the multi-scale patch representation 

by examining the patch-wise similarity maps for a particular target image point w.r.t. each 

atlas image point. Compared with the similarity maps by using a small-scale image patch (a) 

and a large-scale image patch (b), our multi-scale image patch (c) can identify the 

corresponding locations in the atlas image domain more accurately. This can be noted by the 

fact that the similarity maps have high values (bright red) around the corresponding location 

and comparatively lower values (dark blue) elsewhere.
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Fig. 3. 
The construction of a label-specific atlas patch partition.
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Fig. 4. 
The advantage of enforcing the group sparsity constraint in label fusion.
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Fig. 5. 
The advantage of using hierarchical label fusion with dynamic patch sizes.
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Fig. 6. 
The hippocampus shown by (a) 1.5-tesla and (b) 7.0-tesla MR scans. The 1.5-tesla image 

has been enlarged to match the size of the 7.0-tesla image for visual comparison purposes.

Wu et al. Page 24

Neuroimage. Author manuscript; available in PMC 2016 February 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 7. 
Surface distance renderings obtained by Nonlocal-PBM, Sparse-PBM and our proposed 

label fusion method on 7.0-tesla MR images.
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Fig. 8. 
Dice ratios for each ROI obtained by Nonlocal-PBM, Sparse-PBM, and the proposed label 

fusion method.
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Fig. 9. 
Dice ratio for each ROI found by Nonlocal-PBM (blue), Sparse-PBM (green), and the 

proposed label fusion method (red). Symbols ‘+’ and ‘*’ indicate significant improvement 

(p<0.05) with respect to Nonlocal-PBM and sparse-PBM, respectively.
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Table 1

Example multiple layer configuration

Patch size Number of layers Layer width Gaussian Kernel size

9 × 9 × 9 3 [1,1,2] [0.5,1.0,2.0]

5 × 5 × 5 2 [1,1] [0.5,1.0]

3 × 3 × 3 1 [1] [0.5]
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Wu et al. Page 31

Table 4

Dice ration mean, standard deviation, and maximum surface distance results found by Nonlocal-PBM, sparse-

PBM, and the proposed label fusion method when used to label the hippocampus in 7.0-tesla MR image (unit: 

mm).

Nonlocal-PBM Sparse-PBM Our method

Mean 1.91±0.41 1.43±0.32 0.86±0.16

Max 7.07 5.20 4.69
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Table 6

Mean Dice ratio and standard deviation results found by Nonlocal-PBM, Sparse-PBM, and the proposed 

method using the LONI LPBA40 dataset.

Nonlocal-PBM Sparse-PBM Proposed Method

Mean and standard deviation 78.31±3.52 79.95±3.38 81.46±2.25
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Wu et al. Page 34

Table 7

Mean Dice ratio results found by STEPS, Nonlocal-PBM, Sparse-PBM, and the proposed method using the 

IXI dataset.

STEPS Nonlocal-PBM Sparse-PBM Proposed Method

Hippocampus 84.2 82.3 84.0 84.6

Amygdala 80.5 78.2 79.5 81.5

Caudate Nucleus 89.2 88.5 88.9 89.5

Nuc. Accumbens 69.5 68.9 69.1 70.6

Putamen 89.1 87.4 88.8 89.2

Thalamus 89.4 87.8 89.2 89.5

Globus Pallidus 79.8 78.1 79.5 80.3
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