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Abstract

More and more large-scale imaging genetic studies are being widely conducted to collect a rich set 

of imaging, genetic, and clinical data to detect putative genes for complexly inherited 

neuropsychiatric and neurodegenerative disorders. Several major big-data challenges arise from 

testing genome-wide (NC > 12 million known variants) associations with signals at millions of 

locations (NV ~ 106) in the brain from thousands of subjects (n ~ 103). The aim of this paper is to 

develop a Fast Voxelwise Genome Wide Association analysiS (FVGWAS) framework to e ciently 

carry out whole-genome analyses of whole-brain data. FVGWAS consists of three components 

including a heteroscedastic linear model, a global sure independence screening (G-SIS) procedure, 

and a detection procedure based on wild bootstrap methods. Specifically, for standard linear 

association, the computational complexity is O(nNV NC) for voxelwise genome wide association 

analysis (VGWAS) method compared with O((NC + NV)n2) for FVGWAS. Simulation studies 

show that FVGWAS is an effcient method of searching sparse signals in an extremely large search 

space, while controlling for the family-wise error rate. Finally, we have successfully applied 
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FVGWAS to a large-scale imaging genetic data analysis of ADNI data with 708 subjects, 193,275 

voxels in RAVENS maps, and 501,584 SNPs, and the total processing time was 203,645 seconds 

for a single CPU. Our FVG-WAS may be a valuable statistical toolbox for large-scale imaging 

genetic analysis as the field is rapidly advancing with ultra-high-resolution imaging and whole-

genome sequencing.
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Computational complexity; Family-wise error rate; Heteroscedastic linear model; Voxelwise 
genome wide association; Wild bootstrap

1. Introduction

With the advent of both imaging and genotyping techniques, many large biomedical studies 

have been conducted to collect imaging and genetic data and associated data (e.g., clinical 

data) from increasingly large cohorts in order to delineate the complex genetic and 

environmental contributors to many neuropsychiatric and neurodegenerative diseases, such 

as schizophrenia. Understanding such genetic and environmental factors is an important step 

for the development of urgently needed approaches to the prevention, diagnosis, and 

treatment of these complex diseases. Such studies and research projects include the 

Philadelphia Neurodevelopmental Cohort (PNC), the Alzheimer's Disease Neuroimaging 

Initiative (ADNI), and the Longitudinal Study of Early Brain Development (LSEBD), 

among others (NIH; Durston, 2010; Shen et al., 2010; Satterthwaite et al., 2014; Gilmore et 

al., 2010; Knickmeyer et al., 2014). These initiatives have generated many high-dimensional 

and complex data sets, referred to as big data, whose size is beyond the ability of commonly 

used software tools to capture, manage, and process data within a tolerable elapsed time. 

The real-time and proper analysis of such big data requires the development of fast and 

efficient data analysis methods.

There are three groups of methods for jointly analyzing imaging measurements and genetic 

variations. The first group focuses on candidate phenotypes and/or candidate genotypes 

using pre-screen methods or variable selection methods (Braskie et al., 2011). To adopt 

these approaches, one must have prior knowledge of the disease pathology in order to 

choose proper region of interest in imaging data or potential genetic variation of interest. 

The second group of methods performs voxel-wise genomic-wide association analysis that 

repeatedly fits a univariate model (e.g., linear regression model) to each voxel and single-

nucleotide polymorphism (SNP) (or gene) pair following with multiple comparison 

adjustment to control for false positive finding (Hibar et al., 2011; Shen et al., 2010; Ge et 

al., 2012a). The third group of methods is to fit a very big model accommodating all (or part 

of) genetic variation and imaging measurements (Vounou et al., 2010, 2012; Zhu et al., 

2014; Wang et al., 2012a,b). These methods use penalization-based method and sparse 

regression techniques, such as Lasso, to select putative genetic markers and a ected voxels. 

N-evertheless, this group of methods often cannot provide p-values and it usually results in a 

relatively small number of scattered voxels in imaging space.
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Running VGWAS poses significant computational challenges, including limited computer 

memory, finite CPU speed, and limited CPU nodes, since it usually runs genome-wide (NC 

~ 106 known variants) associations with signals at millions of locations (NV ~ 106) in the 

brain. It leads to a total of NCNV (~ 1012) massive univariate analyses and an expanded 

image×gene search space with NCNV elements (Medland et al., 2014; Thompson et al., 

2014; Liu and Calhoun, 2014). As demonstrated in Stein et al. (2010), it took 300 high 

performance CPU nodes running approximately 27 hours to perform VGWAS analysis 

based on simple linear models with only a few covariates to process an imaging genetic 

dataset with 448,293 SNPs and 31,622 voxels in the brain of each of 740 subjects. As 

demonstrated in Hibar et al. (2011), it took 80 high performance CPU nodes running 

approximately 13 days to perform VGWAS analysis based on simple linear models with 

only a few covariates to process an imaging genetic dataset with 18,044 genes and 31,622 

voxels in the brain of each of 740 subjects. One can imagine the computational challenges 

associated with VGWAS when the imaging genetics is advanced to the use of both ultra-

high-resolution imaging (NV ~ 107) and whole-genome sequencing (NC ~ 108). A critical 

question is whether any scalable statistical method can be used to perform VGWAS 

efficiently for both imaging and genetic big data obtained from thousands of subjects.

The aim of this paper is to develop a Fast Voxelwise Genome Wide Association analysiS 

(FVGWAS) framework to efficiently carry out voxel-wise genomic-wide association 

(VGWAS) analysis. A schematic overview of FVGWAS is given in Fig. 1. There are four 

methodological contributions in this paper. The first one is to use a heteroscedastic linear 

model, which does not assume the presence of homogeneous variance across subjects and 

allows for a large class of distributions in the imaging data. These features are desirable for 

the analysis of imaging measurements, because between-subject and between-voxel 

variability in the imaging measures can be substantial and the distribution of the imaging 

data often deviates from the Gaussian distribution (Salmond et al., 2002; Zhu et al., 2007). 

The second one is to develop an efficient global sure independence screening (GSIS) 

procedure based on global Wald-test statistics, while dramatically reducing the size of 

search space from NCNV to ~ N0NV, in which N0 << NC. The GSIS procedure extends the 

notorious sure independence screening method (Fan and Lv, 2008; Fan and Song, 2010) 

from univariate responses to ultra-high dimensional responses. The third one is to use wild-

bootstrap methods to testing hypotheses of interest associated with image and genetic data. 

In addition, the wild bootstrap methods do not involve repeated analyses of simulated 

datasets and therefore is computationally cheap. Moreover, the wild bootstrap method 

requires neither complete exchangeability associated with the standard permutation methods 

nor strong assumptions associated with random field theory. The fourth one is to reduce the 

computational complexity from O(nNV NC) for standard VGWAS in (Stein et al., 2010) to 

O((NC + NV)n2 for FVGWAS. When n << min(NC, NV), we have O((NC + NV)n2 = 

O(nNVNC)×( ), leading to a computational gain at the order of O(min(NC, 

NV)/n). Such computational gain makes it possible to run VGWAS on a single CPU. Finally, 

we will develop companion software for FVGWAS and release it to the public through 

http://www.nitrc.org/ and http://www.bios.unc.edu/research/bias.
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The paper is organized as follows. Section 2 describes the three components of FVGWAS 

including a heteroscedastic linear model in Section 2.1, a global sure independence 

screening (GSIS) procedure in Section 2.2, and a detection procedure based on wild 

bootstrap methods in Section 2.3. In Section 3, we evaluate the finite-sample performance 

and computational efficiency of FVGWAS by using simulation studies and a real data 

analysis. In Section 4, some conclusions and discussions are provided.

2. Method

Suppose we observe a set of imaging measurements, clinical variables, and genetic markers 

from n unrelated subjects. Let  be a selected brain region with NV voxels and v be a voxel 

in . Let  be the set of NC SNPs and c be a locus in . For each individual i (i = 1, . . . , 

n), we observe an NV × 1 vector of imaging measurements, denoted by Yi = {yi(v) : v ∈ }, 

a K × 1 vector of clinical covariates xi = (xi1, · · ·, xiK)T, and an L×1 vector zi(c) = (zi1(c), · · 

·, zi(c))T for genetic data at the c-th locus. For notational simplicity, only univariate image 

measurement (e.g. no tensors) is considered here.

The objective of this paper is to develop FVGWAS to efficiently carry out voxel-wise 

genomic-wide association analysis (VGWAS). As discussed above, since standard VGWAS 

consists of NVNC massive univariate analyses for all possible combinations of (c, v), it is 

computationally challenging and intensive to compute all NVNC test statistics and to store 

and manage all NC test statistic images in limited computer hard drive. To solve these 

computational bottlenecks, we propose FVGWAS with three major components including

• (I) a heteroscedastic linear model;

• (II) a global sure independence screening procedure;

• (III) a detection procedure based on wild bootstrap methods.

We elaborate on each of these components below.

2.1 FVGWAS (I): Heteroscedastic Linear Model

We consider a heteroscedastic linear model (HLM) consisting of a heteroscedastic linear 

model at each voxel and a very flexible covariance structure. At each voxel v in , yi(v) can 

be modeled as a heteroscedastic linear model given by

(1)

where β(v), = (β1(v), · · ·, βK(v))T is a K × 1 vector associated with non-genetic predictors, 

and γ(c, v) = (γ1(c, v), · · · , γL(c, v))T is an L × 1 vector of genetic fixed effects (e.g., additive 

or dominant). Moreover, ei(v) are measurement errors with zero mean and 

are independent across i. The spatial covariance structure of HLM assumes that 

 has zero mean and a heterogeneous covariance structure, that is, COV(ei) 

may vary across subjects. Since we do not impose any smoothness assumption on the 

covariance matrix of ei as a function of v, HLM should be desirable for the analysis of real-

world imaging measurements, which commonly have large variation across the image×gene 
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search space. Therefore, the assumptions of HLM are much weaker than those of random 

field theory (Hayasaka et al., 2004; Worsley et al., 2004; Hayasaka and Nichols, 2003).

Most GWAS focuses on the use of test statistics for a given phenotype to test the null 

hypothesis of no association at each loci. Here, we need to test

(2)

We introduce the standard Wald-test statistic as follows. Let Y(v) = (y1(v), · · ·, yn(v))T and 

PX = X(XTX)–1XT be the projection matrix of model (1), where X = (x1, · · ·, xn) is a K × n 

matrix. Similar to Zhu et al. (2007), we calculate an ordinary least squares estimate of γ(c, 

v), denoted by , given by

(3)

where In is an n × n identity matrix, Zc = (z1(c), · · ·, zn(c)) is an L × n matrix. Ignoring 

heteroscedasticity in model (1) leads to an approximation of  given by

(4)

where  is the variance of ei(v) under the homogeneous assumption of model (1). To 

test whether γ(c, v) = 0 or not, we calculate a Wald-type statistic as

(5)

Under the heterogeneity assumption of model (1), one may not use standard approximations 

based on the χ2(L) (or F) distribution to approximate the null distribution of W(c, v). As 

shown below, we can use the wild bootstrap method to approximate the null distribution of 

W(c, v) even under such assumption for model (1), which can be desirable for real-world 

imaging data.

Several big-data challenges arise from the calculation of W(c, v) as follows.

• (B1) Calculating  across all (c, v)s’ can be computationally intensive.

• (B2) Holding all W(c, v) in the computer hard drive requires substantial computer 

resources.

• (B3) Speeding up the calculation of W(c, v).

As shown below, the complexity of computing  is at the order of 

NCNVn2. Therefore, it is almost impossible to run a voxel-wise genome-wise association 

analysis in a single CPU.

To solve these computational bottlenecks, we propose two solutions as follows.
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• (S1) Calculate  under the null hypothesis H0(c, v) for each v and c.

• (S2) Develop a GSIS procedure to eliminate many ‘noisy’ loci based on a global 

Wald-type statistic.

By using (S1) and (S2), we are able to reduce the computational complexity from O(NCNVn) 

to O((NC + NV)n2).

The key idea of (S1) is to estimate  under the global null hypothesis γ(c, v) = 0, 

which is similar to the well-known score test statistic. Under H0(c, v), we compute an 

unbiased estimate of , denoted by , given by

(6)

Since  is invariant across all loci, we only need to calculate  at each voxel v 

and denote it as  from now on. The computational complexity of computing , is 

O(n), and thus the total complexity of computing all  equals O(NVn). Therefore, 

computing  is about min(NV, NC) times faster than estimating  under H1(c, 

v) for all possible (c, v). We will elaborate (S2) in the next subsection.

2. FVGWAS (II): A Global Sure Independence Screening Procedure

The key idea of (S2) is to extend the sure independence screening (SIS) procedure (Fan and 

Lv, 2008; Fan and Song, 2010; He and Lin, 2011). The key idea of GSIS is to first reduce 

the dimension from a very large scale to a moderate scale, and then select significant (c, v) 

pairs by using an approximation method. Specifically, we will use a global Wald-type 

statistic to eliminate many ‘noisy’ loci (no effect), since it is expected that only a small 

number of causal genetic markers contribute to the imaging phenotypic measures. The 

global Wald-type statistic at locus c is defined as

(7)

The statistic W(c) is an average of W(c, v) across all v ∈ V or an integration of W(c, v) over v 

∈ V. We choose W(c) since detecting widespread genetic effects is more powerful and 

meaningful than testing for focal effects in neuroimaging. At a given locus c,  can be 

decomposed as the union of a true genetic effect region, denoted by , and a false 

genetic effect region, denoted by , such that  and 

. If the volume of  is relatively large and signals in  are 

moderate, then the value of W(c) should be relatively large. Biologically, it is expected that 

important genetic markers should be associated with relatively large regions of interest 

(ROIs). However, a possible shortcoming of using W(c) is that we may miss some loci with 

moderate signals in a small genetic effect region . In contrast, observing large values 

of W(c, v) in an extremely small effect region can be primarily caused by various noise 
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components, such as stochastic noise, susceptibility artifacts, or misalignment, in imaging 

data.

The complexity of computing {W(c)} is at the order of (NC + NV)n2, since 

 is independent of c. In contrast, the complexity of computing 

{W (c, v)} is at the order of NCNVn. Therefore, computing {W(c)} is about NVNC/{(NV + 

NC)n} times faster than computing all {W(c, v)}.

Our GSIS consists of the following steps:

• Step (II.1). Calculate Σ1 = (XTX)–1 with the computational complexity of O(nK2).

•
Step (II.2). Calculate 

with the computational complexity of O(NVn2).

• Step (II.3). For the c–th locus, we do

– Calculate  with the computational complexity of O(L2n).

– Calculate  with the computational complexity of O(LKn).

– Calculate  with the 

computational complexity of O(L2K2).

– Calculate  with the computational complexity of O(L2n2).

– Calculate W(c) with the computational complexity of O(L2).

• Step (II.4). Repeat Step (II.3) for all loci and calculate the p—value of W(c), 

denoted by p(c), across all loci by using an approximation method. Specifically, as 

shown in (Zhu et al., 2011; Zhang, 2005, 2011; Zhang and Chen, 2007), if yi(v) are 

treated as functional responses, then W(c) asymptotically converges to a weighted 

χ2 distribution as n → ∞ when H0(c, v) holds for all (c, v) pairs. Let , 

, and be, respectively, the first three cumulants of W(c). Therefore, 

following the reasonings in (Zhang, 2005), W(c) can be approximated by a χ2–type 

random variable α1χ2(α2) + α3, where α1, α2, and α3 are, respectively, given by

(8)

We approximate  by using the sample cumulants of W(c) for k = 

1, 2, 3. Finally, the p–value of W(c) can be approximated by using 

. Note that the calculation of these p–values is not 

critical for the success of GSIS.

• Step (II.5). Sort the – log10(p)–values of all W(c)s’ (or the values of W(c)s’) 

according to their magnitudes and select the top N0 loci (e.g., N0 = 1000), denoted 
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by . From now on, we call  as a candidate significant locus 

set.

There are some rationales of choosing W(c) to determine  and setting a relatively large N0 

in GSIS. As shown in simulations, if the volume of  is relatively large and signal 

strength in  is moderate, then W(c) should put the c–th locus into  This feature 

distinguishes VGWAS from eQTL analysis in the genetic literature (Sun, 2012; Shabalin, 

2012). Moreover, we choose a relatively large N0 so that the probability of all true positive 

loci contained in  is relatively large. We will carry out simulations to evaluate such 

probability for different signal-to-noise ratios and sizes of .

The accuracy of the χ2–type approximation in Step (II.4) is not critical for the success of 

GSIS due to at least three reasons. First, since all loci share the same matrices PX and 

 W(c)s slightly di er from each other only in term of Zc. 

Moreover, when H0(c, v) holds for all v for the c-th locus, the expectation of W(c) is close to 

the dimension of zi(c) (or L). Second, since it is expected that only a small number of causal 

genetic markers contribute to the imaging phenotypic measures, most W(c) should roughly 

follow the same distribution and their empirical cumulants converge to  under some 

mild conditions. Third, in ADNI data analysis presented in Section 3, we have found that 

such approximation is not only computationally simple, but also practically important. 

Specifically, for the whole brain analysis, the quantile-quantile (QQ) plots of {p(c)} show a 

solid line matching expected=observed until it sharply curves at the end (representing the 

small number of true associations among thousands of unassociated SNPs). See Figs. 6 and 

7 for details.

2.3. FVGWAS (III): A Detection Procedure Based on Wild Bootstrap Methods

Our detection procedure consists of two wild bootstrap methods:

(III.1) The first one is to detect significant voxel-locus pairs.

(III.2) The second one is to detect significant cluster-locus pairs.

The first wild bootstrap method is to simultaneously detect significant (locus, voxel) pairs. 

Conditional on the candidate significant locus set  with the top N0 loci, we calculate a 

maximum statistic over all voxels for the top N0 loci as

(9)

The maximum statistic  plays a crucial role in controlling the family-wise error rate. 

The key idea of the first wild bootstrap method is to approximate the null distribution of 

 under that the null hypothesis H0(c, v) holds for all c ∈  and v ∈ .

We propose an efficient wild bootstrap procedure to detect significant  as 

follows:
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• Step (III.1.1). Calculate  for each pair  as

The computational complexity is O(NV nN0).

• Step (III.1.2). Calculate .

• Step (III.1.3). Apply the first wild bootstrap method to the set .

– Fit a linear model  to imaging data and calculate 

 for all i and v, where 

. Generate G bootstrap samples 

 for all i and v, where  are independently 

generated from a N(0, 1) generator. The key idea of this step is to generate 

imaging data from model (1) satisfying γ(c, v) = 0 for all , while 

asymptotically preserving the spatial correlation structure of imaging data. We 

can show that this data generating process can asymptotically preserve the spatial 

dependence structure among the imaging data under the null hypotheses. 

Specifically, the average conditional covariance between the residuals 

 at voxel v and the residuals  at v′ given the raw 

imaging data is given by

It follows from the law of large number that  converges to 

the spatial covariance between voxels v and v′.

– Let  and , we calculate 

 given by

(10)

for all , which leads to .

– For all , we calculate W(c)(g) = , where 

S(c) is given by
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(11)

– Sort all W(c)(g)s according to their magnitudes and select the top N0 loci to 

form . Calculate 

• Step (III.1.4). Calculate approximated Chi-squared distributions based on the 

bootstrapped samples  and calculate the uncorrected p–values 

of  across .

• Step (III.1.5). Calculate the family-wise error (FWE) corrected p–values of 

across all  based on the empirical distribution of 

. At given significance level α, we can detect significant 

 pairs in . Since the number of pairs NCNV in  is much larger 

than the sample size, we choose a significance level, say α = 0.5.

There are three key advantages of using the wild bootstrap method in (III.1). First, it is 

robust to several key assumptions of normal linear model, such as Gaussian noise and 

homogeneous variance. See extensive simulations in Zhu et al. (2007) for the evaluation of 

the wild bootstrap method at the voxel level. Second, it automatically accounts for spatial 

correlations among imaging data and those among genetic data. Then, based on all 

bootstrapped samples at each locus c0, we use the same approximation method in Step (II.4) 

to approximate the null distribution of the test statistic W(c, v). By using such parametric 

approximation, we are able to obtain p-values that are better behaved (i.e., that are not 

necessarily multiples of 1/G, as would be the case if  were used 

directly). Third, since S(c) is independent of η(g), it is computationally efficient to calculate 

W(c)(g) and sort them in order to compute .

The second wild bootstrap method is to simultaneously detect significant cluster-locus pairs. 

In neuroimaging, cluster size inference has been widely used to assess the significance of all 

numbers of interconnected voxels greater than a given threshold, say αI = 0.005 or 0.001 

(Ge et al., 2012b; Salimi-Khorshidi et al., 2011; Smith and Nichols, 2009; Hayasaka et al., 

2004). For the c-th locus, let N(c, I) be the largest cluster size at a given threshold αI based 

on the p-values of . To detect significant (locus, cluster) pairs, we consider 

a maximum cluster size statistic and its approximation as

(12)

Given  and the definition of W(c) (Eq. (7)), it is expected that  is very close to 

 both in terms of both size and distribution.
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We propose an efficient wild bootstrap procedure to detect significant cluster-locus pairs as 

follows:

• Step (III.2.1). For a given αI, we use the wild bootstrap method in Step (I-II.1.3) to 

generate  and calculate 

for each wild bootstrap sample. For computational efficiency, we suggest to 

directly compare W(c, v)(g) with the 100(1 – αI)th percentile of the F distribution in 

order to determine clusters at each locus c.

• Step (III.2.2). For each locus , we calculate all possible clusters and their 

associated FWE-corrected p–values based on the empirical distribution of 

.

3. Simulation Studies and ADNI Data Analysis

In this section, we use Monte Carlo simulations and a real example to evaluate the finite-

sample performance of FVGWAS. All computations for these numerical examples were 

done in Matlab on a Dell C6100 server. The computation for FVGWAS is efficient even for 

large scale imaging genetic data and its computational time can be further reduced by using 

other computer languages, such as C++.

3.1. Simulation Studies

We simulated imaging data at NV = 3, 355 pixels in the brain region of a 128×128 image, 

which is a middle slice of a brain volume obtained from the public accessible data of the 

Alzheimer's Disease Neuroimage Initiative (ADNI). More information on the ADNI data 

used in the current study will be given in the ADNI Data Analysis Section. We assumed that 

the genetic e ect of SNPs is additive and homogeneous such that yi(v) were generated from:

(13)

where ei(v) ~ N(0, σ2), zi(cj) were simulated genetic data as described below, and xi = (1, 

xi1, . . . , xi9)T were designed to mimic the covariates used in ADNI data analysis and were 

generated from either U(0, 1) or the Bernoulli distribution with success probability 0.5. The 

true values of β(v) were set to be those of estimated β(v) by fitting model (1) without genetic 

covariates to real ADNI data set in the real data analysis section. The elements in γ(cj, v) 

corresponding to the pre-specified pairs of causal SNPs and e ected Regions Of Interest 

(ROI) were set to e ect magnitude γ*, zero otherwise. In addition, the e ected ROI associated 

with the causal SNPs was pre-fixed as a r × r region (Fig. 2).

We simulated genetic data zi(cj) as follows. We used Linkage Disequilibrium (LD) blocks 

defined by the default method (Gabriel, 2002) of Haploview (Barrett et al., 2005) and 

PLINK (Purcell et al., 2007) to form SNP-sets. To calculate LD blocks, n subjects were 

simulated by randomly combining haplotypes of HapMap CEU subjects. We used PLINK to 

determine the LD blocks based on these subjects. We randomly selected 2,000 blocks, and 
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combined haplotypes of HapMap CEU subjects in each block to form genotype variables for 

these subjects. We randomly selected 10 SNPs in each block, and thus we had NC = 20, 000 

SNPs for each subject. Moreover, we chose the first q SNPs as the causal SNPs. We set the 

sample size (n), the number of causal SNPs (q), the standard deviation of measurement error 

(σ), and the size of effected ROI (r × r) to be 1000, 100, 1, and 10×10, respectively. 100 

Monte Carlo realisations were used.

First, we evaluate the finite sample performance of the proposed GSIS for γ* = 0.005, 0.010, 

0.015, 0.020, 0.025, and N0's ranging between 200 and 2000. Moreover, we set q = 100. We 

measure the causal SNP rate, which is defined as the ratio of the number of causal SNPs in 

 over the total number of causal SNPs. Table 1 includes the causal SNP rates 

corresponding to different top N0 SNPs and γ* values. As expected, the causal SNP rate 

increases as the number of top N0 SNPs and γ* increase. However, the causal SNP rate is 

low for N0 = 100. One may use large N0 in order to increase the probability of including all 

causal SNPs in . Specifically, when N0 was set as 2000, almost all causal SNPs are 

included in the set C0 even for small γ*, such as γ* = 0.005. See Table 1 for more details.

Second, we evaluate the finite sample performance of FVGWAS in the detection of the 

causal SNPs and voxels in the a ected ROIs as N0 varies from 100, 500, to 1000. Moreover, 

parameter q was set to 100. The panels in the first row of Fig. 3 show Receiver Operating 

Characteristic (ROC) curves corresponding to different γ* and N0 values. As expected, large 

γ* values representing larger genetic effects lead to a higher probability of detecting the 

causal SNPs and their associated voxels in the effected ROIs. For γ* ≥ 0.015, the ROC 

curves maintain high true positive rates and low false positive rates when N0 = 1000. 

Moreover, a larger N0 usually leads to a higher true positive rate for different γ* values, 

whereas a larger N0 can lead to a higher false positive rate. Then, we set γ* to be 0.010, 

which is a moderate signal, in order to investigate the effects of different ROI sizes, σ, and n 

on signal detection. As expected, in the second row of Fig. 3, the true positive rate increases 

as the size of ROI increases; in the third row of Fig. 3, the true positive rate decreases as the 

value of σ increases; in the fourth row of Fig. 3, the true positive rate decreases with the 

sample size.

Third, we evaluate the finite sample performance of FVGWAS in detecting the causal SNP 

and cluster pairs. We set n = 1000, q = 100, σ = 1, γ* = 0.01, and r = 10. Moreover, we used 

an uncorrected 0.01 p-value threshold to identify clusters of contiguous supra-threshold 

pixels. If the pixels in a thresholded cluster overlaps with some pixels in the effected ROI at 

a causal SNP, we call these pixels as “true positive pixels”. If a thresholded cluster does not 

overlap with any pixels of the effected ROI at any causal SNP, we call a cluster as a “false 

positive” cluster. We summarized results by using the dice overlap ratio (DOR), the number 

of false positive clusters, and the size in the number of pixels in false positive clusters. DOR 

is the ratio between the number of true positive pixels over the size of the effected ROI. 

Thus, the higher DOR means the higher probability of detecting the effected ROI. As shown 

in Fig. 4, there is no false positive cluster is detected. These results further demonstrate that 

the GSIS procedure can effectively detect and localize relatively strong genetic effects. 

Moreover, the average DOR of N0 = 500 is higher than that of N0 = 100.
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Fourth, we compared the proposed method with the Matrix eQTL method (Shabalin, 2012) 

for pixel-wise inference. For a fair comparison, we applied both the Matrix eQTL and 

FVGWAS to the same simulated data sets. We set γ* to be either 0.005 or 0.01. Fig. 5 

presents the ROC curves corresponding to different N0 and γ* values. The proposed method 

outperforms the Matrix eQTL method when γ* = 0.005, indicating that the proposed method 

is more capable than the Matrix eQTL method to detect small genetic effects. For γ* = 0.01, 

the true positive rates of the proposed method with N0 = 100 and N0 = 500 are lower than 

those of the Matrix eQTL method, whereas the true positive rates of the proposed method 

with N0 = 1000 are higher than those of the Matrix eQTL method. Specifically, the false 

positive rate of FVGWAS is lower than that of the Matrix eQTL method for diffrent N0 

andγ* values. This result is primarily attributed to the GSIS procedure used in FVGWAS.

Fifth, we set γ(c, v) = 0 for all (c, v) in order to assess the overall Type I error rates. We 

calculated the family-wise error rate (FWER) for the Type I error rates at both the voxel-

locus and cluster-SNP levels (Dudoit et al., 2003; Shaffer, 1995). The significance level was 

varied from 0.1 to 0.5, and 1000 replications were used to estimate FWERs. For a fixed α, if 

the FWER is smaller than α, then the test is conservative, whereas if the FWER is greater 

than α1, then the test is anticonservative, or liberal (Hayasaka and Nichols, 2003). 

Moreover, αI was set to 0.005. Table 2 lists the FWERs corresponding to different N0 α and 

values. For detecting significant SNP and voxel pairs, the rejection rates of the proposed 

method are accurate with large N0 and α values. Moreover, for relatively small α = 0.1, no 

significant SNP and cluster pairs are detected.

3.2. ADNI Data Analysis

To illustrate the usefulness of FVGWAS, we considered anatomical MRI data collected at 

the baseline by the Alzheimer's Disease Neuroimaging Initiative (ADNI) study. “Data used 

in the preparation of this article were obtained from the Alzheimer's Disease Neuroimaging 

Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched in 2003 by the 

National Institute on Aging (NIA), the National Institute of Biomedical Imaging and 

Bioengineering (NIBIB), the Food and Drug Administration (FDA), private pharmaceutical 

companies and non-profit organizations, as a $60 million, 5-year publicprivate partnership. 

The primary goal of ADNI has been to test whether serial magnetic resonance imaging 

(MRI), positron emission tomography (PET), other biological markers, and clinical and 

neuropsychological assessment can be combined to measure the progression of mild 

cognitive impairment (MCI) and early Alzheimer's disease (AD). Determination of sensitive 

and specific markers of very early AD progression is intended to aid researchers and 

clinicians to develop new treatments and monitor their effectiveness, as well as lessen the 

time and cost of clinical trials. The Principal Investigator of this initiative is Michael W. 

Weiner, MD, VA Medical Center and University of California, San Francisco. ADNI is the 

result of e orts of many coinvestigators from a broad range of academic institutions and 

private corporations, and subjects have been recruited from over 50 sites across the U.S. and 

Canada. The initial goal of ADNI was to recruit 800 subjects but ADNI has been followed 

by ADNI-GO and ADNI-2. To date these three protocols have recruited over 1500 adults, 

ages 55 to 90, to participate in the research, consisting of cognitively normal older 

individuals, people with early or late MCI, and people with early AD. The follow up 
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duration of each group is specified in the protocols for ADNI-1, ADNI-2 and ADNI-GO. 

Subjects originally recruited for ADNI-1 and ADNI-GO had the option to be followed in 

ADNI-2. For up-to-date information, see www.adni-info.org.”

The brain MRI data were provided by the ADNI database, which can be downloaded from 

http://adni.loni.usc.edu/. We considered 708 MRI scans of AD, MCI, and healthy controls 

(186 AD, 388 MCI, and 224 healthy controls) from ADNI1 in this data analysis. These 

scans on 462 males and 336 females (age 75.42 ± 6.83 years) were performed on a 1.5 T 

MRI scanners using a sagittal MPRAGE sequence. The typical protocol includes the 

following parameters: repetition time (TR) = 2400 ms, inversion time (TI) = 1000 ms, flip 

angle = 8°, and field of view (FOV) = 24 cm with a 256 × 256 × 170 acquisition matrix in 

the x–, y–, and z–dimensions, which yields a voxel size of 1.25 × 1.26 × 1.2 mm3.

We processed the MRI data by using standard steps including anterior commissure and 

posterior commissure correction, skull-stripping, cerebellum removal, intensity 

inhomogeneity correction, segmentation, and registration (Shen and Davatzikos, 2004). 

After segmentation, we segmented the brain data into four different tissues: grey matter 

(GM), white matter (WM), ventricle (VN), and cerebrospinal fluid (CSF). We used the 

deformation field to generate RAVENS maps (Davatzikos et al., 2001) to quantify the local 

volumetric group differences for the whole brain and each of the segmented tissue type 

(GM, WM, VN, and CSF), respectively. Moreover, we automatically labeled 93 ROIs on the 

template and transferred the labels following the deformable registration of subject images 

(Wang et al., 2011). We computed the volumes of all ROIs for all subjects.

We considered the 818 subjects’ genotype variables acquired by using the Human 610-Quad 

BeadChip (Illumina, Inc., San Diego, CA) in the ADNI database, which includes 620,901 

SNPs. To reduce the population stratification effect, we used 749 Caucasians from all 818 

subjects with complete imaging measurements at baseline. Quality control procedures 

include (i) call rate check per subject and per SNP marker, (ii) gender check, (iii) sibling 

pair identification, (iv) the Hardy-Weinberg equilibrium test, (v) marker removal by the 

minor allele frequency, and (vi) population stratification. The second line preprocessing 

steps include removal of SNPs with (i) more than 5% missing values, (ii) minor allele 

frequency smaller than 5% , and (iii) Hardy-Weinberg equilibrium p-value < 10−6. 

Remaining missing genotype variables were imputed as the modal value. After the quality 

control procedures, 708 subjects and 501,584 SNPs remained in the final data analysis.

We consider both ROI volumes and RAVENS maps to illustrate the wide applicability of 

FVGWAS. We carried out two different FVGWAS analyses: one is to use the volumes of 93 

ROIs as multivariate phenotypic vectors and the other is to use RAVENS maps as whole-

brain phenotypic vectors. In both analyses, we used model (1) and included an intercept, 

gender, age, whole brain volume, and the top 5 Principal Components scores in SNPs. Then, 

we tested the additive effect of each of 501,584 SNPs on either 93 ROI volumes or 

RAVENS maps. In particular, for RAVENS maps, with 708 subjects, 193,275 voxels, 

501,584 SNPs, and N0 = 1000, the total processing time was 203,645 s, of which 116 s was 

allotted for the GSIS procedure and 203,529 s was allotted for determining significant 
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voxel-locus and cluster-SNP pairs. Finally, as a comparison, we applied the Matrix eQTL to 

RAVENS maps to carry out VGWAS.

3.2.1. ROI Volumes—The Manhattan and QQ plots of GWAS for all volumes of 93 ROIs 

are shown in Fig. 6. In Fig. 6 (a), only SNP in TOMM40 in chromosome 19 passes the 

threshold 5 × 10−8 commonly used in GWAS. In the QQ plot (Fig 6 (b)), the observed p–

values fit the expected p–values from the null hypothesis well for most of the p–values. The 

p–values in the upper tail of the distribution do show a significant deviation suggesting 

strong associations between these SNPs and the univariate image measures. Fig. 6 (c) and 

(d) shows the number of significant SNP-ROI pairs with different numbers of top N0 SNPs. 

The number of significant SNP-ROI pairs decreases when the number of N0 increases. 

These results may indicate that more important information (significant SNP pairs) can be 

identified when N0 is small. Therefore, we can just select a small N0 value in the first screen 

step, which is a huge save of both computational time and memory.

To test the effect of SNPs on the volumes of 93 ROIs, we first set N0 as 1,000 and 2,000. In 

this case, we can only detect significant ROI-locus pairs by using Step (III.1). Specifically, 

we generated 1,000 bootstrapped samples  for g = 1, . . . , G = 1, 000 and then 

calculated the corrected p–values of  across all . By setting the 0.5 

significance level, we are able to detect 2 and 1 significant ROI-locus pairs for N0 = 1, 000 

and 2, 000, respectively. These 2 significant ROI-locus pairs are rs2075650(TOMM40) and 

hippocampal formation left and amygdala right, respectively.

We selected several ROIs that are known to be meaningful biomarkers for Alzheimer's 

disease: Hippocampus Left/Right (HL/HR) and Amygdala Left/Right (AL/AR). Then, we 

carried out GWAS for each of the four ROIs. The SNPs associated with volumes of ROIs 

are reported in Table 3, together with their corresponding chromosome numbers, genomic 

coordinates, and p–values. Among the identified SNP sets in Table 3, the famous ApoE and 

TOMM40 in chromosome (Chrs) 19 are known to be associated with Alzheimer's disease.

3.2.2. RAVENS Maps—Fig. 7 (a) and (b) shows the Manhattan and QQ plots of the 

GWAS results for RAVENS maps and Table 4 includes the top 30 SNPs associated with the 

whole brain. Fig. 8 (a) shows the density of the global Wild-type statistic and its Chi-

squared approximation for the whole brain. These two curves are very close to each other, 

indicating the accuracy of the χ2 approximation. At the 10−5 significance level, 21 SNPs 

were detected to be associated with the whole brain in the GSIS analyses. For instance, these 

21 SNPs include four SNPs in chromosome 10 (rs11815438, rs1060373, rs2480271, and 

rs2935713) and 2 SNPs (rs11891634 and rs13419007) in chromosome 2. Moreover, among 

the top N0 = 1, 000 SNPs, we able to detect several important SNPs including rs2480271 on 

gene GLRX3 (chr 10), rs1534446 on gene PCEF1 (chr6), rs12436472 on gene NOVA1 

(chr14), rs6116375 20 on gene PRNP (chr 20), rs4746622 on gene CTNNA3 (chr 10), 

rs4296809 on gene FGF10 (chr 5), rs439401 on gene APOE (chr 19), rs2075650 on gene 

TOMM40 (chr 19), rs3826810 on gene LDLR (chr 19), rs2679098 on gene NTRK3 (chr 

15), and rs6896317 on gene TRIO (chr 5). Gene PRNP, gene CTNNA3, and gene LDLR are 

related to the Alzheimer's desease (Golanska et al., 2009; Miyashita et al., 2007; Gopalraj et 
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al., 2005). Gene NOVA1 is associated with aging and neurodegeneration (Tollervey et al., 

2011). Gene NTRK3 is related to schizophrenia, bipolar disorder, and obsessive-compulsive 

disorder hoarding (Braskie et al., 2013). Gene TRIO is also related to schizophrenia (Stelzer 

et al., 2011). Further information about all top 1,000 SNPs will be available at http://

www.bios.unc.edu/research/bias.

In Step (III.1), we first calculated the raw p-values of W(c, v) in order to detect significant 

voxel-locus pairs. We set N0 as either 1,000 or 2,000 and then generated 1,000 bootstrapped 

samples  for g = 1, . . . , G = 1, 000. By using χ2 approximation, we calculated 

the raw p–values of  across all . At the 10−5 significance level, Fig. 7 

(c) and (d) show the number of significant voxel-locus pairs based on the raw p–values of 

 against the top N0 SNPs in .

Second, we calculated the corrected p-values of W(c, v) in order to detect significant voxel-

locus pairs by correcting for multiple comparisons. Fig. 8 (c) and (d) show the density plots 

of  for N0 = 1, 000 and N0 = 2, 000. It can be seen that these two densities are quite 

close to each other. Moreover, Fig. 8 (b) shows that the density plot of  for N0 = 1, 000 

is close to its Chi-squared approximation. Subsequently, we calculated the corrected p–

values of . Figures 7 (e) and (f) show the number of significant voxel-locus pairs 

based on the corrected p–values of  against the top N0 = 1, 000 SNPs at the 0.5 and 

0.8 significance, respectively. Table 5 includes 3 selected SNPs, who have the 3 largest 

numbers of significant voxel-locus pairs.

In Step (III.2), we set αI = 0.005 and then calculated all possible clusters and their associated 

p-values for the top N0 SNPs in order to detect significant voxel-cluster pairs. Fig. 9 (a) and 

(b) show the density plots of  for N0 = 1, 000 and N0 = 2, 000, 

respectively. Fig. 9 (c) and (d) show the numbers of significant voxel-locus pairs based on 

the corrected p–values of all clusters corresponding to the top N0 = 1, 000 and N0 = 2, 000 

SNPs. Table 5 includes 3 selected SNPs, who have the 3 largest numbers of significant 

cluster-locus pairs.

Figure 10 shows some selected slices maps of – log10(p) values for significant clusters 

corresponding to a selected SNP (rs2480271). Inspecting significant clusters in Figure 10 

shows symmetric clustering across the left and right hemispheres. Since brain structures are 

highly symmetric between hemispheres, at least for most brain regions, it may be 

biologically plausible to observe symmetric associations for the SNPs and clusters. Several 

major clusters include major ROIs including superior temporal gyrus, inferior temporal 

gyrus, anterior cingulate gyrus, hippocampus, putamen, and fusiform. Among them, the 

superior temporal gyrus is an essential structure involved in auditory processing, in social 

cognition processes, as well as in the function of language. The inferior temporal gyrus is 

one of the higher levels of the ventral stream of visual processing. The anterior cingulate 

gyrus is involved in rational cognitive functions, such as reward anticipation, decision-

making, empathy, impulse control, and emotion. The hippocampus is known to be 
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associated with memory and cognition. The fusiform is associated with color recognition, 

word and body recognition and the putamen is associated with motor skills.

We used the Matrix eQTL to carry out VGWAS by calculating the raw p–values of standard 

t statistics based on the normal linear model across all voxel-locus pairs. We selected those 

voxel-locus pairs, whose raw p–values are smaller than 10−7, and then calculated their 

corresponding FWE corrected p–values by using the first wild bootstrap method described 

in Steps (III.1.1)-(III.1.5). Fig. 11 (a) shows the raw – log10(p)-values of all selected voxel-

locus pairs corresponding to our method and the standard t test. It can be seen that the – 

log10(p)-values of our method are approximately proportional to those of the standard 

method, indicating an agreement between our proposed method and the standard method. 

However, for all selected pairs, the – log10(p)-value of our method is smaller than that of the 

standard t test. It may indicate that some of key assumptions (e.g., homogeneous variance) 

for the normal linear model is problematic in these voxels.

Similar the FVGWAS results presented in Fig. 7 and Table 5, we used the FWE corrected 

p–value 0.5 as the significant level to determine important voxel-locus pairs obtained from 

the Matrix eQTL results. Note that each SNP may have multiple voxels with their raw p–

values smaller than 10−7. Fig. 11 (b) shows the number of significant voxel-locus pairs 

corresponding to all unique SNPs obtained from the Matrix eQTL results at the 0.5 

significant level. Then, for each voxel-locus pair, whose FWE corrected p-value is smaller 

than 0.5, we took its 3 × 3 × 3 neighborhood in the image space and then calculated the 

percentage of neighboring voxels, whose raw p–values were smaller than 10−5. We found 

that such percentage of neighboring voxels is 0 for all voxel-locus pairs, which indicates that 

these significant voxels are isolated in the image space. Such isolated voxel-locus pairs may 

be biologically meaningless.

Subsequently, we selected all SNPs with more than 20 significant voxel-locus pairs based on 

the Matrix eQTL results in order to detect the significant cluster-locus pairs. For each of 

such SNPs, we used the same setting for the cluster-locus pairs used for FVGWAS. Figs. 11 

(c) and (d) show the maximum cluster size for each SNP and its corresponding corrected p–

value. From Fig. 11 (d), two significant cluster-locus pairs are detected at the 0.5 significant 

level. These two SNPs are rs11815438 and rs7001339, which are included in our detected 

significant cluster-locus pairs listed in Table 5. This result demonstrates that our proposed 

method may be able to identify important significant cluster-locus pairs.

4. Conclusion and Discussions

We have developed a FVGWAS pipeline for efficiently carrying out whole-genome 

analyses of whole-brain data. Our FVGWAS consists of a heteroscedastic linear model, a 

global sure independence screening (GSIS) procedure, and a detection procedure based on 

wild bootstrap methods. Two key advantages of using FVGWAS include a much smaller 

computational complexity O((NC + NV)n2) for FVGWAS compared with O(nNVNC) for 

VGWAS and GSIS for screening many noisy SNPs. We have used simulations to evaluate 

the finite sample performance of each component of FVGWAS. Finally, we have 

successfully applied FVGWAS to imaging genetic data of ADNI study. Our FVGWAS may 
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be a valuable statistical toolbox for fast large-scale imaging genetic analysis particularly 

when the field is rapidly advancing with ultra-high-resolution imaging and whole-genome 

sequencing.

Many important issues need to be addressed in future research. First, the heteroscedastic 

linear model in FVGWAS is a standard voxel-wise method. However, as discussed in (Li et 

al., 2011; Polzehl et al., 2010), the voxel-wise methods are not optimal since they ignore a 

spatial feature of imaging data. Imaging data are spatially correlated in nature and contain 

spatially contiguous regions with rather sharp edges due to the inherent biological structure 

and function of objects. Such spatial information can be important for accurate estimation 

and prediction. Although it is common to use Gaussian smoothing with a prefixed 

bandwidth, it may introduce substantial bias in the statistical results (Li et al., 2012, 2013). 

Although several multi-scale adaptive regression models (MARMs) have been developed 

for the group analysis of imaging data (Li et al., 2011; Skup et al., 2012; Li et al., 2012; 

Polzehl et al., 2010), these methods are not computationally feasible even for thousands of 

SNPs. It is critically important to develop some novel methods to explicitly incorporate the 

spatial feature of the imaging data in FVGWAS, while achieving computational efficiency 

for ultra-high-resolution imaging and whole-genome sequencing.

Second, the effectiveness of GSIS strongly depends on the behavior of the global Wald-type 

statistics {W(c)}c. Although, as shown in simulations, GSIS can perform reasonably well for 

moderate and strong signals, we expect that it can su er some difficulties in the detection of 

weak genetic effects on ROIs. We may consider two strategies. One is to explicitly 

incorporate the spatial feature of the image data as discussed above. The other is to propose 

other global statistics to increase the power of detecting weak genetic effects on ROIs 

(Zhang et al., 2014; Chen and Qin, 2010; Sun et al., 2015).

Third, FVGWAS is still a single SNP analysis framework (Hibar et al., 2011; Shen et al., 

2010). However, it is well known that the power of genome-wide association studies 

(GWAS) for mapping complex traits with single SNP analysis may be undermined by 

modest SNP effect sizes, unobserved causal SNPs, correlation among adjacent SNPs, and 

SNP-SNP interactions (Tzeng et al., 2011). It has been shown that alternative approaches for 

testing the association between a single SNP-set and individual phenotypes are promising 

for improving the power of GWAS (Schaid et al., 2002; Vounou et al., 2010; Ge et al., 

2012a; Thompson et al., 2013). Therefore, it is definitely interesting and important to extend 

FVGWAS to carry out marker-set and whole-brain association mapping. We expect many 

challenging issues arising from such development.
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Highlights

• Develop a FVGAWS for adaptive analysis of large-scale imaging genetic data.

• An efficient global sure independence screening

• Develop companion software for FVGWAS
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Fig. 1. 
Schematic overview of FVGWAS
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Fig. 2. 
Simulation settings: the dark, gray, and white regions in each panel, respectively, represent 

background, brain region, and the effected ROI associated with the causal SNPs. From the 

left to the right, the sizes of the effected ROI are, respectively, set as 5 × 5, 10 × 10, and 20 

× 20.
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Fig. 3. 
Simulation results for the association between SNPs and voxels: the first row contains ROC 

curves with varying  values (corresponding to the causal SNPs’ effect magnitude) and the 

number of the top N0 SNPs included in the selection procedure. Parameters r, σ2, and n are 

set to 10, 1, and 1000, respectively. The second row contains ROC curves with different 

ROIs. Parameters , σ2, and n are set to 0.01, 1, and 1000, respectively. The third row 

contains ROC curves with varying σ. Parameters , r, and n are set to 0.01, 10, and 1000, 

respectively. The fourth row contains ROC curves with varying n. Parameters , σ2, and r 

are set to 0.01, 1, and 10, respectively.
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Fig. 4. 
Simulation results for the association between SNPs and clusters: (a) the size in the number 

of pixels of false positive clusters in each causal SNP; (b) number of false positive clusters 

in each causal SNP; and (c) dice overlap ratio (DOR) in each causal SNP. Parameters , σ2, 

n, and r are set to 0.01, 1, 1000, and 10, respectively.
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Fig. 5. 
Simulation results for comparisons between FVGWAS and the Matrix eQTL in identifying 

significant voxel-locus pairs: ROC curves of the proposed method with N0 = 100, 500, and 

1, 000, and the Matrix eQTL method at  = 0.005 and  = 0.01. Parameters σ2, n, and r are 

set to 1, 1000, and 10, respectively.
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Fig. 6. 
ADNI ROI volume GWAS: (a) Manhattan plot; (b) QQ plot; and the numbers of significant 

SNP-ROI pairs based on the corrected p–values of W(c, v) at the 0.5 significance level 

corresponding to the top (c) N0 = 1, 000 and (d) N0 = 2, 000 SNPs;
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Fig. 7. 
ADNI whole-brain GWAS: (a) Manhattan plot; (b) QQ plot; the numbers of significant 

voxel-locus pairs based on the raw p–values of W(c, v) at the 10−5 significance level 

corresponding to the top (c) N0 = 1, 000 and (d) N0 = 2, 000 SNPs; the numbers of 

significant voxel-locus pairs based on the corrected p–values of W(c, v) at the (e) 0.5 or (f) 

0.8 significance level corresponding to the top N0 = 1, 000 SNPs.
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Fig. 8. 
ADNI whole-brain GWAS: (a) the density plot of W(c) and its χ2 approximation; (b) the 

density plot of  and its χ2 approximation; the density plots of  for N0 = 1, 000 (c) 

and N0 = 2, 000 (d).

Huang et al. Page 31

Neuroimage. Author manuscript; available in PMC 2016 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 9. 

ADNI whole-brain GWAS: density plots of  for N0 = 1, 000 (a) and N0 = 

2, 000 (b); the numbers of significant voxel-locus pairs based on the corrected p–values of 

W(c, v) at the 0.5 significance level corresponding to the top N0 = 1, 000 (c) and N0 = 2, 000 

(d) SNPs.
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Fig. 10. 
ADNI whole-brain GWAS: selected slices of – log10(p) for significant clusters 

corresponding to a SNP (rs2480271).
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Fig. 11. 
ADNI FVGWAS versus VGWAS: (a) raw – log10(p)-values of all selected voxel-locus pairs 

corresponding to our method and the standard t test; (b) number of significant voxel-locus 

pairs at the 0.5 significant level; (c) maximum cluster sizes of all selected SNPs obtained 

from the Matrix eQTL results; (d) the p–values of the maximum clusters corresponding to 

all selected SNPs.
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Table 2

Percentage of times of significant voxel and SNP pairs or cluster and SNP pairs at different thresholds (total 

times of significant pairs/repeat times).

N 0 α 

0.1 0.2 0.3 0.4 0.5

voxel and SNP pairs
500 0 0.04 0.12 0.24 0.74

1000 0.06 0.1 0.17 0.48 0.52

cluster and SNP pairs
500 0 0.575 1 1 1

1000 0 0 0.38 0.94 1
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Table 3

ADNI ROI volume GWAS: selected top SNPs associated with volumes of HL/HR - Hippocampus left/right 

and AL/AR - Amygdala left/right.

ROI Best SNP CHR BP p–value Gene

HL rs2075650 19 45395619 1.4E-07 TOMM40

rs6896317 5 142949513 5.5E-05 TRIO

rs439401 19 45414451 7.6E-04 APOE

HR rs2075650 19 45395619 2.7E-07 TOMM40

rs6896317 5 142949513 5.5E-05 TRIO

rs439401 19 45414451 1.2E-03 APOE

AL rs2075650 19 45395619 1.5E-05 TOMM40

rs6896317 5 142949513 5.8E-05 TRIO

rs405509 19 45408836 1.4E-03 APOE

AR rs2075650 19 45395619 1.4E-08 TOMM40

rs6896317 5 142949513 4.7E-07 TRIO

rs405509 19 45408836 1.1E-03 APOE
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Table 4

ADNI whole-brain GWAS: selected top 30 SNPs associated with the whole brain

SNP CHR BP p–value SNP CHR BP p–value

rs11815438 10 62501737 6.5E-08 rs17182599 14 22051519 5.8E-06

rs11891634 2 65926939 1.9E-07 rs11717277 3 54220871 5.9E-06

rs1060373 10 62554500 3.8E-07 rs971752 4 103224534 6.5E-06

rs2480271 10 132061197 5.6E-07 rs11872654 18 2164155 6.7E-06

rs10402592 19 11256887 1.4E-06 rs2935713 10 123432188 7.6E-06

rs12001550 9 120672883 1.5E-06 rs4129156 18 25437752 8.1E-06

rs13419007 2 145043653 1.7E-06 rs10261484 7 22583326 1.0E-05

rs2834077 21 34422738 2.0E-06 rs522793 6 10802955 1.2E-05

rs9645752 12 12544266 2.0E-06 rs14067 13 114110660 1.2E-05

rs5994978 22 34988594 2.0E-06 rs2443568 8 99254045 1.2E-05

rs4924156 15 37688630 2.5E-06 rs1448575 2 6386393 1.4E-05

rs2514323 8 99236899 3.3E-06 rs2697880 8 37337905 1.5E-05

rs1852755 11 13996686 3.9E-06 rs9382934 6 14040480 1.5E-05

rs7001339 8 69855507 4.8E-06 rs472276 1 244112606 1.5E-05

rs1528663 11 13967222 5.4E-06 rs1767282 1 112357101 1.5E-05
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Table 5

RAVENS map GWAS: significant voxel-locus pairs at the 0.5 significance level (left) and significant cluster-

SNP pairs at the 0.5 significance level (right)

SNP number of voxel-locus 
pairs

SNP number of cluster-SNP 
pairs

max cluster size p–value of the max 
cluster

rs2075650 (TOMM40) 23 rs11815438 1 7906 0.11

rs9490103 4 rs2480271 1 7365 0.23

rs2244634 2 rs7001339 1 6864 0.45
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