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Abstract

The segmentation of infant brain tissue images into white matter (WM), gray matter (GM), and 

cerebrospinal fluid (CSF) plays an important role in studying early brain development in health 

and disease. In the isointense stage (approximately 6–8 months of age), WM and GM exhibit 

similar levels of intensity in both T1 and T2 MR images, making the tissue segmentation very 

challenging. Only a small number of existing methods have been designed for tissue segmentation 

in this isointense stage; however, they only used a single T1 or T2 images, or the combination of 

T1 and T2 images. In this paper, we propose to use deep convolutional neural networks (CNNs) 

for segmenting isointense stage brain tissues using multi-modality MR images. CNNs are a type of 

deep models in which trainable filters and local neighborhood pooling operations are applied 

alternatingly on the raw input images, resulting in a hierarchy of increasingly complex features. 

Specifically, we used multimodality information from T1, T2, and fractional anisotropy (FA) 

images as inputs and then generated the segmentation maps as outputs. The multiple intermediate 

layers applied convolution, pooling, normalization, and other operations to capture the highly 

nonlinear mappings between inputs and outputs. We compared the performance of our approach 

with that of the commonly used segmentation methods on a set of manually segmented isointense 

stage brain images. Results showed that our proposed model significantly outperformed prior 

methods on infant brain tissue segmentation. In addition, our results indicated that integration of 

multi-modality images led to significant performance improvement.
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1. Introduction

During the first year of postnatal human brain development, the brain tissues grow quickly, 

and the cognitive and motor functions undergo a wide range of development (Zilles et al., 

1988; Paus et al., 2001; Fan et al., 2011). The segmentation of infant brain tissues into white 

matter (WM), gray matter (GM), and cerebrospinal fluid (CSF) is of great importance for 

studying early brain development in health and disease (Li et al., 2013a,b; Nie et al., 2011). 

It is widely accepted that the segmentation of infant brains is more difficult than that of the 

adult brains. This is mainly due to the lower tissue contrast in early-stage brains (Weisenfeld 

and Warfield, 2009). There are three distinct WM/GM contrast patterns in chronological 

order, which are infantile (birth), isointense, and adult-like (10 months and onward) (Paus et 

al., 2001). In this work, we focused on the isointense stage that corresponds to the infant age 

of approximately 6–8 months. In this stage, WM and GM exhibit almost the same level of 

intensity in both T1 and T2 MR images. This property makes the tissue segmentation 

problem very challenging (Shi et al., 2010b).

Currently, most of prior methods for infant brain MR image segmentation have focused on 

the infantile or adult-like stages (Cardoso et al., 2013; Gui et al., 2012; Shi et al., 2010a; 

Song et al., 2007; Wang et al., 2011, 2013; Weisenfeld and Warfield, 2009; Xue et al., 

2007). They assumed that each tissue class can be modeled by a single Gaussian distribution 

or the mixture of Gaussian distributions (Xue et al., 2007; Wang et al., 2011; Shi et al., 

2010a; Cardoso et al., 2013). This assumption may not be valid for the isointense stage, 

since the distributions of WM and GM largely overlap due to early maturation and 

myelination. In addition, many previous methods segmented the tissues using a single T1 or 

T2 images or the combination of T1 and T2 images (Kim et al., 2013; Leroy et al., 2011; 

Nishida et al., 2006; Weisenfeld et al., 2006a, b). It has been shown that the fractional 

anisotropy (FA) images from diffusion tensor imaging provide rich information of major 

fiber bundles (Liu et al., 2007), especially in the middle of the first year (around 6–8 months 

of age). The studies in Wang et al. (2014, 2012) demonstrated that the complementary 

information from multiple image modalities was beneficial to deal with the insufficient 

tissue contrast.

To overcome the above-mentioned difficulties, we considered the deep convolutional neural 

networks (CNNs) in this work. CNNs (LeCun et al., 1998; Krizhevsky et al., 2012) are a 

type of multi-layer, fully trainable models that can capture highly nonlinear mappings 

between inputs and outputs. These models were originally motivated from computer vision 

problems and thus are intrinsically suitable for image-related applications. In this work, we 

proposed to employ CNNs for segmenting infant tissue images in the isointense stage. One 

appealing property of CNNs is that it can naturally integrate and combine multi-modality 

brain images in determining the segmentation. Our CNNs took complementary and 

multimodality information from T1, T2, and FA images as inputs and then generated the 
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segmentation maps as outputs. The multiple intermediate layers applied convolution, 

pooling, normalization, and other operations to transform the input to the output. The 

networks contain millions of trainable parameters that were adjusted on a set of manually 

segmented data. Specifically, the networks took patches centered at a pixel as inputs and 

produced the tissue class of the center pixel as the output. This enabled the segmentation 

results of a pixel to be determined by all pixels in the neighborhood. In addition, due to the 

convolution operations applied at intermediate layers, nearby pixels contribute more to the 

segmentation results than those that are far away. We compared the performance of our 

approach with that of the commonly used segmentation methods. Results showed that our 

proposed model significantly outperformed prior methods on infant brain tissue 

segmentation. In addition, our results indicated that the integration of multi-modality images 

led to significant performance improvement. Furthermore, we showed that our CNN-based 

approach outperformed other methods at increasingly large margin when the size of patch 

increased. This is consistent with the fact that CNNs weight pixels differently based on their 

distance to the center pixel.

2. Material and methods

2.1. Data acquisition and image preprocessing

The experiments were performed with the approval of Institutional Review Board (IRB). All 

the experiments on infants were approved by their parents with written forms. We acquired 

T1, T2, and diffusion-weighted MR images of 10 healthy infants using a Siemens 3T head-

only MR scanner. These infants were asleep, unsedated, fitted with ear protection, and their 

heads were secured in a vacuum-fixation device during the scan. T1 images having 144 

sagittal slices were acquired with TR/TE as 1900/4.38 ms and a flip angle of 7° using a 

resolution of 1 × 1 × 1 mm3. T2 images having 64 axial slices were acquired with TR/TE as 

7380/119 ms and a flip angle of 150° using a resolution of 1.25 ×1.25 ×1.95 mm3. 

Diffusion-weighted images (DWI) having 60 axial slices were acquired with TR/TE as 

7680/82 ms using a resolution of 2 × 2 × 2 mm3 and 42 non-collinear diffusion gradients 

with a diffusion weight of 1000s/mm2.

T2 images and fractional anisotropy (FA) images, derived from distortion-corrected DWI, 

were first rigidly aligned with the T1 image and further up-sampled into an isotropic grid 

with a resolution of 1 × 1 × 1 mm3. A rescanning was executed when the data was 

accompanied with moderate or severe motion artifacts (Blumenthal et al., 2002). We then 

applied intensity inhomogeneity correction (Sled et al., 1998) on both T1 and aligned T2 

images (but not for FA image since it is not needed). After that, we applied the skull 

stripping (Shi et al., 2012) and removal of cerebellum and brain stem on the T1 image by 

using in-house tools. In this way, we obtained a brain mask without the skull, cerebellum 

and brain stem. With this brain mask, we finally removed the skull, cerebellum and brain 

stem also from the aligned T2 and FA images.

To generate manual segmentation, an initial segmentation was obtained with publicly 

available infant brain segmentation software, IBEAT (Dai et al., 2013). Then, manual 

editing was carefully performed by an experienced rater according to the T1, T2 and FA 

images for correcting possible segmentation errors. ITK-SNAP (Yushkevich et al., 2006) 
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(www.itksnap.org) was particularly used for interactive manual editing. For each infant 

brain image, there are generally 100 axial slices; we randomly selected slices from the 

middle regions (40th – 60th slices) for manual segmentation. This work only used these 

manually segmented slices. Since we were not able to obtain the FA images of 2 subjects, 

we only used the remaining 8 subjects in this work. Note that pixels are treated as samples in 

segmentation tasks. For each subject, we generated more than 10,000 patches centered at 

each pixel from T1, T2, and FA images. These patches were considered as training and 

testing samples in our study.

2.2. Deep CNN for multi-modality brain image segmentation

Deep learning models are a class of machines that can learn a hierarchy of features by 

building high-level features from low-level ones. The convolutional neural networks 

(CNNs) (LeCun et al., 1998; Krizhevsky et al., 2012) are a type of deep models, in which 

trainable filters and local neighborhood pooling operations are applied alternatingly on the 

raw input images, resulting in a hierarchy of increasingly complex features. One property of 

CNN is its capability to capture highly nonlinear mappings between inputs and outputs 

(LeCun et al., 1998). When trained with appropriate regularization, CNNs can achieve 

superior performance on visual object recognition and image classification tasks (LeCun et 

al., 1998; Krizhevsky et al., 2012). In addition, CNN has also been used in a few other 

applications. In Jain et al. (2007); Jain and Seung (2009); Turaga et al. (2010); Helmstaedter 

et al. (2013), CNNs were applied to restore and segment the volumetric electron microscopy 

images. Ciresan et al. (2013, 2012) applied deep CNNs to detect mitosis in breast histology 

images by using pixel classifiers based on patches.

In this work, we proposed to use CNN for segmenting the infant brain tissues by combining 

multi-modality T1, T2, and FA images. Although CNN has been used for similar tasks in 

prior studies, none of them has focused on integrating and combining multi-modality image 

data. Our CNN contained multiple input feature maps corresponding to different data 

modalities, thus providing a natural formalism for combining multi-modality data. Since 

different modalities might contain complementary information, our experimental results 

showed that combining multi-modality data with CNN led to improved segmentation 

performance. Figure 1 showed a CNN architecture we developed for segmenting infant brain 

images into white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF).

2.3. Deep CNN architectures

In this study, we designed four CNN architectures to segment infant brain tissues based on 

multi-modality MR images. In the following, we provided details on one of the CNN 

architectures with input patch size of 13 × 13 to explain the techniques used in this work. 

The detailed architecture was shown in Figure 1. This CNN architecture contained three 

input feature maps corresponding to T1, T2, and FA image patches of 13 × 13. It then 

applied three convolutional layers and one fully connected layer. This network also applied 

local response normalization and softmax layers.

The first convolutional layer contained 64 feature maps. Each of the feature maps was 

connected to all of the three input feature maps through filters of size 5 × 5. We used a stride 
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size of one pixel. This generated feature maps of size 9 × 9 in this layer. The second 

convolutional layer took the output of the first convolutional layer as input and contained 

256 feature maps. Each of the feature maps was connected to all of the feature maps in the 

previous layer through filters of size 5 × 5. We again used a stride size of one pixel. The 

third convolutional layer contained 768 feature maps of size 1 × 1. They were connected to 

all feature maps in the previous layer through 5 × 5 filters. We also used a stride size of one 

pixel in this layer. The rectified linear unit (ReLU) function (Nair and Hinton, 2010) was 

applied after the convolution operation in all of the convolutional layers. It has been shown 

(Krizhevsky et al., 2012) that the use of ReLU can expedite the training of CNN.

In addition to the convolutional layers, a few other layer types have been used in the CNN. 

Specifically, the local response normalization scheme was applied after the third 

convolutional layer to enforce competitions between features at the same spatial location 

across different feature maps. The fully-connected layer following the normalization layer 

had 3 outputs that correspond to the three tissue classes. A 3-way softmax layer was used to 

generate a distribution over the 3 class labels after the output of the fully-connected layer. 

Our network minimized the cross entropy loss between the predicted label and ground truth 

label. In addition, we used dropout (Hinton et al., 2012) to learn more robust features and 

reduce overfitting. This technique set the output of each neuron to zero with probability 0.5. 

The dropout was applied before the fully-connected layers in the CNN architecture of Figure 

1. In total, the number of trainable parameters for this architecture is 5,332,995.

We also considered three other CNN architectures with input patch sizes of 9×9, 17×17, and 

22 × 22. These CNN architectures consisted of different numbers of convolutional layers 

and feature maps. Both local response normalization and softmax layers have been applied 

on these architectures. We also used max-pooling layer for the architecture with input patch 

size of 22 × 22 after the first convolutional layer. The pooling size was set to 2 × 2 and a 

stride size of 2 × 2 was used. The complete details of these architectures were given in Table 

1. The numbers of trainable parameters for these architectures are 6,577,155, 5,947,523, and 

5,332,995, respectively.

2.4. Model training and calibration

We trained the networks using data consisting of patches extracted from the MR images and 

the corresponding manual segmentation ground truth images. In this work, we did not 

consider the segmentation of background as this is clear from the T1 images. Instead, we 

focused on segmenting the three tissue types (GM, WM, and CSF) from the foreground. For 

each foreground pixel, we extracted three patches centered at this pixel from T1, T2, and FA 

images, respectively. The three patches were used as input feature maps of CNNs. The 

corresponding output was a binary vector of length 3 indicating the tissue class to which the 

pixel belonged. This procedure generated more than 10, 000 instances, each corresponding 

to three patches, from each subject. We used leave-one-subject-out cross validation 

procedure to evaluate the segmentation performance. Specifically, we used seven out of the 

eight subjects to train the network and used the remaining subject to evaluate the 

performance. The average performance across folds was reported. All the patches from each 

training subject are stored in a batch file separately, leading to seven batch files in total. We 
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used patches in these seven batches as the input of CNN consecutively for training. Note 

that patches in each batch file were presented to the training algorithm in random orders as 

was commonly used.

The weights in the networks were initialized randomly with Gaussian distribution N(0, 

1×10−4) (LeCun et al., 1998). During training, the weights were updated by stochastic 

gradient descent algorithm with a momentum of 0.9 and a weight decay of 4 × 10−4. The 

biases in convolutional layers and fully-connected layer were initialized to 1. The number of 

epochs was tuned on a validation set consisting of patches from one randomly selected 

subject in the training set. The learning rate was set to 1 × 10−4 initially.

Following Krizhevsky et al. (2012), we first used the validation set to obtain a coarse 

approximation of the optimal epoch by minimizing the validation error. This epoch number 

was used to train a model on the training and validation sets consisting of seven subjects. 

Then the learning rate was reduced by a factor of 10 twice successively, and the model was 

trained for about 10 epochs each time. By following this procedure, the network with a patch 

size of 13 × 13 was trained for about 370 epochs. The training took less than one day on a 

Tesla K20c GPU with 2496 cores. The networks with other patch sizes were trained in a 

similar way. One advantage of using CNN for image segmentation is that, at test time, the 

entire image can be used as an input to the network to produce the segmentation map, and 

patch-level prediction is not needed (Giusti et al., 2013; Ning et al., 2005). This leads to very 

efficient segmentation at test time. For example, our CNN models took about 50–100 

seconds for segmenting an image of size 256×256.

3. Results and discussion

3.1. Experimental setup

In the experiments, we focused on evaluating our CNN architectures for segmenting the 

three types of infant brain tissues. We formulated the prediction of brain tissue classes as a 

three-class classification task. For comparison purposes, we also implemented two other 

commonly used classification methods, namely the support vector machine (SVM) and the 

random forest (RF) (Breiman, 2001) methods. The linear SVM was used in our experiments, 

as other kernels yielded lower performance empirically. The performance of SVM was 

generated by tuning the regularization parameters using cross validation. An RF is a tree-

based ensemble model in which a set of randomized trees are built and the final decision is 

made using majority voting by all trees. This method has been used in image-related 

applications (Amit and Geman, 1997), including medical image segmentation (Criminisi and 

Shotton, 2013; Criminisi et al., 2012). In this work, we used RFs containing 100 trees, and 

each tree was grown fully and unpruned. The number of features at each node randomly 

selected to compete for the best split was set to the square root of the total number of 

features. We used the “randomForest” R package (Liaw and Wiener, 2002) in the 

experiments. We reshaped the raw training patches into vectors whose elements were 

considered as the input features of SVM and RF. We also compared our methods with two 

common image segmentation methods, namely the coupled level set (CLS) (Wang et al., 

2011) and the majority voting (MV) methods. Note that the method based on local 

dictionaries of patches proposed in Wang et al. (2014) requires the images of different 
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subjects to be registered, since a local dictionary was constructed by using patches extracted 

from the corresponding locations on the training images. We thus did not compare our 

methods with the one in Wang et al. (2014).

To evaluate the segmentation performance, we used the Dice ratio (DR) to quantitatively 

measure the segmentation accuracy. Specifically, let A and B denote the binary segmentation 

labels generated manually and computationally, respectively, about one tissue class on 

pixels for certain subject. The Dice ratio is defined as

where |A| denotes the number of positive elements in the binary segmentation A, and |A∩B| 

is the number of shared positive elements by A and B. The Dice ratio lies in [0, 1], and a 

larger value indicates a higher segmentation accuracy. We also used another measure known 

as the modified Hausdorff distance (MHD). Supposing that C and D are two sets of positive 

pixels identified manually and computationally, respectively, about one tissue class for a 

certain subject, the MHD is defined as

where d(C, D) = maxc∈Cd(c, D), and the distance between a point c and a set of points D is 

defined as d(c, D) = mind∈D||c − d||. A smaller value indicates a higher proximity of two 

point sets, thus implying a higher segmentation accuracy.

3.2. Comparison of different CNN architectures

The nonlinear relationship between inputs and outputs of a CNN is represented by its multi-

layer architecture using convolution, pooling and normalization. We first studied the impact 

of different CNN architectures on segmentation accuracy. We devised four different 

architectures, and the detailed configuration have been described in Table 1. The 

classification performance of these architectures was reported in Figure 2 using box plots. It 

can be observed from the results that the predictive performance is generally higher for the 

architectures with input patch sizes of 13 × 13 and 17 × 17. This result is consistent with the 

fact that networks with more convolutional layers and feature maps tend to have a deeper 

hierarchical structure and more trainable parameters. Thus, these networks are capable of 

capturing the complex relationship between input and output. We can also observe that the 

architecture with input patch size of 22 × 22 did not generate substantially higher predictive 

performance, suggesting that the pooling operation might not be suitable for the data we 

used. In the following, we focused on evaluating the performance of CNN with input patch 

size of 13 × 13. To examine the patterns captured by the CNN models, we visualized the 64 

filters in the first convolutional layer for the model with an input patch size of 13 × 13 in 

Figure 3. Similar to the observation in Zeiler and Fergus (2014), these filters capture 

primitive image features such as edges and corners.
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3.3. Effectiveness of integrating multi-modality data

To demonstrate the effectiveness of integrating multi-modality data, we considered the 

performance achieved by each single image modality. Specifically, the T1, T2, and FA 

images of each subject were separately used as the input of the architecture with a patch size 

of 13 × 13 in Table 1. The segmentation performance achieved using different modalities 

was presented in Tables 2 and 3. It can be observed that the combination of different image 

modalities invariably yielded higher performance than any of the single image modality. We 

can also see that the T1 images produced the highest performance among the three 

modalities. This suggests that the T1 images are most informative in discriminating the three 

tissue types. Another interesting observation is that the FA images are very informative in 

distinguishing GM and WM, but they achieved low performance on CSF. This might be 

because the anisotropic diffusion is hardly detectable using FA for liquids such as 

cerebrospinal fluid (CSF) in brain. In contrast, T2 images are more powerful for capturing 

CSF instead of GM and WM. These results demonstrated that certain modality is more 

informative in distinguishing certain tissue types, and combination of all modalities leads to 

improved segmentation performance.

3.4. Comparison with other methods

In order to provide a comprehensive and quantitative evaluation of the proposed method, we 

reported the segmentation performance on all 8 subjects using leave-one-subject-out cross 

validation. The performance of CNN, RF, SVM, CLS, and MV was reported in Tables 4 and 

5 using the Dice ratio and MHD, respectively. We can observe from these two tables that 

CNN outperformed other methods for segmenting all three types of brain tissues in most 

cases. Specifically, CNN could achieve Dice ratios as 83.55%±0.94% (CSF), 85.18%

±2.45% (GM), and 86.37% ± 2.34% (WM) on average over 8 subjects, yielding an overall 

value of 85.03% ± 2.27%. In contrast, RF, SVM, CLS, and MV achieved overall Dice ratios 

of 83.15% ± 2.52%, 76.95% ± 3.55%, 82.62% ± 2.76%, and 77.64% ± 8.28%, respectively. 

Meanwhile, CNN also outperformed other methods in terms of MHD. Specifically, CNN 

could achieve MHDs as 0.4354 ±0.0979 (CSF), 0.2482 ±0.0871 (GM), and 0.2894 ±0.0710 

(WM), yielding an overall value of 0.3243 ± 0.1161. In contrast, RF, SVM, CLS, and MV 

achieved overall MHDs of 0.4593 ± 0.2506, 0.6424 ± 0.2665, 0.4839 ± 0.1597, and 0.7076 

± 0.5721, respectively.

To assess the statistical significance of the performance differences, we performed one-sided 

Wilcoxon signed rank tests on both Dice ratio and MHD produced by the 8 subjects, and the 

p-values were reported in Table 6. When considering the Dice ratio, we chose the left-sided 

test with the alternative hypothesis that the averaged performance of CNN is higher than that 

of either RF, SVM, CLS or MV. The right-sided test was considered for MHD. We can see 

that the proposed CNN method significantly outperformed SVM, RF, CLS and MV in most 

cases. These results demonstrated that CNN is effective in segmenting the infant brain 

tissues as compared to other methods.

In addition to quantitatively demonstrating the advantage of the proposed CNN method, we 

visually examined the segmentation results of different tissues for two subjects in Figures 4 

and 5. The original T1, T2, and FA images were shown in the first row and the following 
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three rows presented the segmentation results of human experts, CNN, and RF, respectively. 

It can be seen that, the segmentation patterns of CNN are quite similar to the ground truth 

data generated by human experts. In contrast, RF generated more defects and fuzzy 

boundaries for different tissues. These results further showed that the proposed CNN method 

was more effective than other methods.

In order to further compare results by different methods, the label difference maps that 

compare the ground-truth segmentation with the predicted segmentation were also 

presented. In Figures 6 and 7, the original T1, T2, FA images and the ground-truth 

segmentations for two subjects were shown in the first rows. The false positives and false 

negatives of CNN and RF were given in the second and third rows, respectively. We also 

showed the segmentation results in these two figures. We can see that the CNN 

outperformed RF in both the number of false pixels and the performance of tissue boundary 

detection. For example, RF generated more false positives around the surface of brain, and 

also more false negatives around hippocampus for white matters on Subject 2. We can also 

observe that most of the mis-classified pixels are located in the areas having large tissue 

contrast, such as cortices consisting of gyri and sulci. This might be explained by the fact 

that our segmentation methods are patch-based, and patches centered at boundary pixels 

contain pixels of multiple tissue types.

To compare the performance between CNNs and RF when the patch size varies, we reported 

the performance differences between CNNs and RF averaged over 8 subjects for different 

input patch sizes in Figure 8. We can observe that the performance gains of CNNs over RF 

are generally amplified for an increased input patch size. This difference is even more 

significant for the results of CSF and WM, which have more restricted distributions than 

GM. This is because of the fact that RF treated each pixel independently, and therefore, did 

not leverage the spatial relationships between pixels. In comparison, CNNs weighted pixels 

differently based on their spatial distance to the center pixel, enabling the retaining of spatial 

information. The impact of this essential difference between CNNs and RF is expected to be 

more significant with a larger patch size, since more spatial information is ignored by RF. 

This difference probably also explains why CNNs could segment the boundary pixels with a 

higher accuracy, which was shown in Figures 4 and 5.

4. Conclusion and future work

In this study, we aimed at segmenting infant brain tissue images in the isointense stage. This 

was achieved by employing CNNs with multiple intermediate layers to integrate and 

combine multi-modality brain images. The CNNs used the complementary and 

multimodality information from T1, T2, and FA images as input feature maps and generated 

the segmentation labels as output feature maps. We compared the performance of our 

approach with that of the commonly used segmentation methods. Results showed that our 

proposed model significantly outperformed prior methods on infant brain tissue 

segmentation. Overall, our experiments demonstrated that CNNs could produce more 

quantitative and accurate computational modeling and results on infant tissue image 

segmentation.
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In this work, the tissue segmentation problem was formulated as a patch classification task, 

where the relationship among patches was ignored. Some prior work has incorporated 

geometric constraints into segmentation models (Wang et al., 2014). We will improve our 

CNN models to include similar constraints in the future. In the current experiments, we 

employed CNNs with a few hidden layers. Recent studies showed that CNNs with many 

hidden layers yielded very promising performance on visual recognition tasks when 

appropriate regularization was applied (Krizhevsky et al., 2012). We will explore CNNs 

with many hidden layers in the future as more data become available. In the current study, 

we used all the patches extracted from each subject for training the convolutional neural 

network. The number of patches from each tissue type is not balanced. The imbalanced data 

might affect the prediction performance. For example, we might use sampling and ensemble 

learning for combating this imbalance problem, although this will further increase the 

training time. The current work used 2D CNN for image segmentation, because only 

selected slices have been manually segmented in the current data set. In principle, CNN 

could be used to segment 3D images when labeled data are available. In this case, it is more 

natural to apply 3D CNN (Ji et al., 2013) as such models have been developed for 

processing 3D video data. The computational costs for training and testing 3D CNNs might 

be higher than those for training 2D CNNs, as 3D convolutions are involved in these 

networks. We will explore these high-order models in the future.
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Highlights

• We study the segmentation of isointense infant brain images.

• We integrate multi-modality images.

• We employ deep convolutional neural networks.

• Integration of multi-modality images improves performance.

• Deep convolutional neural networks outperform other methods.
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Figure 1. 
Detailed architecture of the convolutional neural network taking patches of size 13 × 13 as 

inputs.
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Figure 2. 
Box plots of the segmentation performance achieved by CNNs over 8 subjects for different 

patch sizes. Each plot in the first column uses Dice ratio to measure the performance for 

each of the three tissue types, and four different architectures are trained by using different 

patch sizes of 9 × 9, 13 × 13, 17 × 17, and 22 × 22, respectively. The performance is 

evaluated using leave-one-subject-out cross validation and 8 test results are collected for 

each patch size of each plot. The central mark represents the median, the edges of the box 

denote the 25th and 75th percentiles. The whiskers extend to the minimum and maximum 

values not considered outliers, and outliers are plotted individually. The plots in the right 

column are the results measured by MHD using the same configuration.
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Figure 3. 
Visualization of the 64 filters in the first convolutional layer for the model with an input 

patch size of 13 × 13.
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Figure 4. 
Comparison of the segmentation results with the manually generated segmentation on 

Subject 1. The first row shows the original multi-modality data (T1, T2 and FA), and the 

second row shows the manual segmentations (CSF, GM, and WM). The third and fourth 

rows show the segmentation results by CNN and RF, respectively.
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Figure 5. 
Comparison of the segmentation results with the manually generated segmentation on 

Subject 2. The first row shows the original multi-modality data (T1, T2 and FA), and the 

second row shows the manual segmentations (CSF, GM, and WM). The third and fourth 

rows show the segmentation results by CNN and RF, respectively.
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Figure 6. 
Label difference maps of the results generated by CNN and RF on Subject 1. The first row 

shows the original images and manual segmentation (T1, T2, FA, and manual 

segmentation). The second and third rows show the results by CNN and RF (CSF, GM, 

WM, segmentation result). In each label difference map, dark blue color indicates false 

positives and the dark green color indicates false negatives.
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Figure 7. 
Label difference maps of the results generated by CNN and RF on Subject 2. The first row 

shows the original images and manual segmentation (T1, T2, FA, and manual 

segmentation). The second and third rows show the results by CNN and RF (CSF, GM, 

WM, segmentation result). In each label difference map, dark blue color indicates false 

positives and the dark green color indicates false negatives.
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Figure 8. 
Comparison of performance differences between CNNs and RF averaged over 8 subjects for 

patch sizes of 9 × 9, 13 × 13, 17 × 17, and 22 × 22, respectively. The performance 

differences were obtained by subtracting the performance of RF from that of CNNs. The left 

and right figures show the results of Dice ratio and MHD, respectively.
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Table 6

Statistical test results in comparing CNN with RF, SVM, CLS, and MV, respectively. We calculated the p-

values by performing one–sided Wilcoxon signed rank tests using the performance reported in Tables 4 and 5. 

We performed the left-sided test for the Dice ratio, and the right-sided test for the MHD.

CSF GM WM

Dice ratio

CNN vs. RF 3.30E-03 1.55E-04 4.02E-04

CNN vs. SVM 2.55E-05 2.51E-09 1.87E-04

CNN vs. CLS 6.59E-02 8.88E-02 8.37E-04

CNN vs. MV 6.22E-06 2.50E-03 1.71E-05

MHD

CNN vs. RF 2.30E-03 2.72E-01 2.16E-02

CNN vs. SVM 1.39E-04 3.67E-04 7.99E-04

CNN vs. CLS 5.75E-02 1.85E-02 5.57E-04

CNN vs. MV 1.09E-05 4.30E-03 1.52E-02
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