
Multiscale Adaptive Generalized Estimating Equations for
Longitudinal Neuroimaging Data 1

Yimei Lia, John H. Gilmoreb, Dinggang Shenc,e, Martin Stynerb, Weili Linc,e, and Hongtu
Zhud,e

aDepartment of Biostatistics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place
Memphis, TN 38105-3678
bDepartment of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599,
USA
cDepartment of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599,
USA
dDepartment of Biostatistics and, University of North Carolina at Chapel Hill, Chapel Hill, NC
27599, USA
eBiomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill,
NC 27599, USA

Abstract
Many large-scale longitudinal imaging studies have been or are being widely conducted to better
understand the progress of neuropsychiatric and neurodegenerative disorders and normal brain
development. The goal of this article is to develop a multiscale adaptive generalized estimation
equation (MAGEE) method for spatial and adaptive analysis of neuroimaging data from
longitudinal studies. MAGEE is applicable to making statistical inference on regression
coefficients in both balanced and unbalanced longitudinal designs and even twin and familial
studies, whereas standard software platforms have several major limitations in handling these
complex studies. Specifically, conventional voxel-based analyses in these software platforms
involve Gaussian smoothing imaging data and then independently fitting a statistical model at
each voxel. However, the conventional smoothing methods suffer from the lack of spatial
adaptivity to the shape and spatial extent of region of interest and the arbitrary choice of
smoothing extent, while independently fitting statistical models across voxels does not account for
the spatial properties of imaging observations and noise distribution. To address such drawbacks,
we adapt a powerful propagation–separation (PS) procedure to sequentially incorporate the
neighboring information of each voxel and develop a new novel strategy to solely update a set of
parameters of interest, while fixing other nuisance parameters at their initial estimators.
Simulation studies and real data analysis show that MAGEE significantly outperforms voxel-
based analysis.
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1. Introduction
Many large-scale longitudinal neuroimaging studies including the Alzeimer’s disease
neuroimaging initiative and the NIH magnetic resonance imaging study of normal brain
have been or are being widely conducted to better understand the progress of
neuropsychiatric and neurodegenerative diseases or normal brain development (Evans and
Group., 2006; Almli et al., 2007; Petersen et al., 2010; Skup et al., 2011; Meltzer et al.,
2009; Kim et al., 2010). The primary goal of longitudinal neuroimaging studies is to
characterize individual change in neuroimaging measurements (e.g., volumetric and
morphometric measurements) over time, and the effect of some covariates (or predictors) of
interest, such as diagnostic status and gender, on the individual change (Petersen et al.,
2010; Evans and Group., 2006). A distinctive feature of longitudinal neuroimaging data is
that neuroimaging data have a temporal order. Imaging measurements of the same individual
usually exhibit positive correlation and the strength of the correlation decreases with the
time separation. Ignoring temporal correlation structure in imaging measures would likely
influence subsequent statistical inference, such as increase in false positive and negative
errors, which may lead to misleading scientific inference (Diggle et al., 2002; Fitzmaurice et
al., 2004). However, the analysis of longitudinal imaging data has been hindered by the lack
of advanced tools, which effectively integrate advanced image processing and statistical
tools for analyzing complex and correlated imaging data along with behavioral and clinical
data.

Standard software platforms have several major limitations. Standard neuroimaging
software platforms including statistical parametric mapping (SPM) (www.fil.ion.ucl.ac.uk/
spm/) and FMRIB Software Library (FSL) (www.fmrib.ox.ac.uk/fsl/), among many others,
cannot accurately model longitudinal data when there are more than two visits (repeated
measurements) (Nichols and Waldorp, 2010). Specifically, FSL can only accommodate a
univariate measure at the second level (e.g., comparing visit 2 - visit 1) and SPM, even
though it models the correlation among repeated measures, unrealistically assumes that the
correlation is equal over the whole brain. In contrast, proper longitudinal modeling is
available in standard statistical software platforms including proc MIXED and proc GEE in
SAS and lme4 and nlme in R. Recently, analysis of functional neuroImages (AFNI)
(afni.nimh.nih.gov/afni/) adopts the linear mixed effects modeling packages nlme (Pinheiro
et al., 2011) and lme4 (Bates et al., 2011) in R for longitudinal functional magnetic
resonance imaging data. Moreover, the Freesurfer implements the linear mixed effects
modeling in the Freesurfer’s LME Matlab tool-box (http://surfer.nmr.mgh.harvard.edu/
fswiki/LinearMixedEffectsModels) (Bernal-Rusiel et al., 2013). The conventional analyses
of longitudinal neuroimaging data, referred to as voxel-based analysis, may be carried out in
two major steps: Gaussian smoothing the imaging data and subsequently fitting a statistical
model at each voxel by using either SAS or R. As discussed below, the voxel-based analysis
is generally not optimal in power and the use of Gaussian smoothing may introduce
substantial bias in statistical results.

The voxel-based analysis has several major limitations. First, it is common to apply a single
Gaussian kernel with the full width half maximum in the range of 8–16mm to imaging data
in order to account for registration errors, to Gaussianize the data, and to integrate imaging
signals from a region, rather than from a single voxel. As pointed out in (Jones et al., 2005;
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Zhang and Davatzikos, 2011; Zhao et al., 2012; T.Ball et al., 2012), such Gaussian
smoothing method can suffer from several major drawbacks including the arbitrary choice
of smoothing extent and the lack of spatial adaptivity to the shape and spatial extent of the
region of interest. Thus, it is suboptimal in power. In addition, as discussed in (Li et al.,
2012), directly smoothing imaging data from twin and familial studies can introduce
substantial bias in estimating these factors and lead to a dramatic increase of the numbers of
false positives and false negatives. Second, as pointed out in (Worsley et al., 2004; Li et al.,
2011), the voxel-based analysis essentially treats all voxels as independent units in the
estimation stage, and thus it does not explicitly account for the spatial properties (e.g.,
location and smoothness) of imaging observations.

There are several attempts to address the limitations of voxel-based analysis. In (Zhang and
Davatzikos, 2011), an optimally-discriminative voxel-based analysis was proposed to
determine the spatially adaptive smoothing of images, followed by applying voxel-wise
group analysis. The key drawback of the optimally-discriminative voxel-based analysis is
that it uses the imaging data twice for both optimal weights determination and group
analysis, and thus the test statistics calculated for the group analysis do not have a simple
asymptotic null distribution, such as the t distribution. Thus, the optimally-discriminative
voxel-based analysis has to resort to permutation test to calculate the p-values of test
statistics. However, the permutation methods are not only computational intensive, but also
require the so-called complete exchangeability. Such complete exchangeability is in fact a
very strong assumption, and thus the optimally-discriminative voxel-based analysis is
limited to both univariate imaging measure and two-group comparisons and cannot control
for other continuous covariates of interest, such as age. Moreover, the optimally-
discriminative voxel-based analysis has not been extended to analyze longitudinal
neuroimaging data. In (Tabelow et al., 2006, 2008; Polzehl et al., 2010), the authors
generalized a powerful propagation–separation (PS) approach (Polzehl and Spokoiny, 2000,
2006) to develop a multiscale adaptive linear model to adaptively and spatially de-noise
functional magnetic resonance images and diffusion tensor images from a single subject and
analyze neuroimaging data from cross-sectional studies. Recently, in (Zhu et al., 2009; Li et
al., 2011; Skup et al., 2012), a multiscale adaptive regression model and a multiscale
adaptive generalized method of moments approach were developed to integrate the PS
approach (Polzehl and Spokoiny, 2000, 2006) with statistical modeling at each voxel for
spatial and adaptive analysis of neuroimaging data from multiple subjects. All these PS
related methods, however, only allow simultaneously smoothing all parameters.

This article has two major aims. The first one is to review a class of statistical methods
called generalized estimating equation (GEE) for general neuroimaging researchers. We
illustrate that GEE is a powerful tool for making statistical inference on regression
coefficients in both balanced and unbalanced longitudinal designs and even twin and
familial studies. The second aim is to develop a multiscale adaptive generalized estimating
equation (MAGEE) for the spatial and adaptive analysis of longitudinal neuroimaging data.
Compared with the existing literature including (Zhu et al., 2009; Li et al., 2011; Skup et al.,
2012; Polzehl et al., 2010), we make several novel contributions. (i) MAGEE integrates the
PS approach with GEE, which is a semiparametric model, into a simultaneous smoothing
and estimation framework, allowing adaptively smoothing images while accounting for the
spatial pattern of activation regions. (ii) We develop a new novel strategy of estimation and
testing hypothesis of interest in MAGEE. Specifically, the new strategy allows solely
smoothing the images of a set of parameters of interest, while fixing other parameters at
their initial estimates. For instance, the scientific interest of many neuroimaging studies
typically focuses on the comparison of imaging measures across diagnostic groups, while
controlling for age, gender, and other covariates. MAGEE allows solely smoothing the
images for parameter estimates of the diagnostic effect without smoothing the images of
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other parameter estimates, such as age and gender. (iii) We use simulated data sets to show
that the new strategy can dramatically gain statistical power in some scenarios. (iv)
Theoretically, in the appendix, the adaptive estimates and test statistics of MAGEE are
shown to have appropriate statistical properties. We will validate companion software for
MAGEE and release it to the public.

2. Methods
2·1. Balanced Versus Unbalanced Designs

In a typical longitudinal study, one collects a fixed number of repeated measurements on all
study participants at a set of common time points. When all individuals have the same
number of repeated measurements on a common set of occasions, the study is “balanced”
over time. Many of the early statistical methods, such as repeated-measures analysis of
variance, have been developed specifically for balanced longitudinal designs. However, in
most longitudinal studies over a relatively long duration in the health sciences, some
individuals almost always miss their scheduled visit or date of observation. Consequently,
the sequence of observation times may vary across individuals. In that case, we call the data
“unbalanced” over time.

2·2. Missing Data
Missing data, a ubiquitous problem in longitudinal studies, can be caused by various
reasons, such as skipped assessments, bad MRI scans, or study dropout. Therefore, in
practice, the longitudinal data are necessarily unbalanced and they are often called
“incomplete” to emphasize the fact that an intended measurement for an individual could not
be obtained. Complete case analysis, a common and simple method for handling incomplete
data, focuses on all individuals with complete measurements from the analysis. This
approach, however, can be highly inefficient when a large proportion of the subjects are
excluded. Moreover, when the individuals with complete data are not a random sample from
the target population, this approach can also seriously bias estimates of longitudinal change.
Fortunately, most statistical methods for longitudinal analysis, such as GEE discussed
below, accommodate incomplete data under less stringent assumptions, such as missing at
random (Diggle et al., 2002; Fitzmaurice et al., 2004). A good longitudinal analysis should
include serious assessment of these assumptions for the data at hand and consideration of the
effects of their violation on the results of the analysis, which is beyond the score of this
paper. See, for example, (Ibrahim and Molenberghs, 2009) for an exhaustive review of
missing data methods in longitudinal studies.

2·3. Data Structure
In a typical longitudinal neuroimaging study, we observe repeated imaging and clinical
measures from n subjects. Let mi denote the total number of time points and tij be the j-th
time point for the i–th subject, in which i = 1, …, n and j = 1, …, mi. Let  be an imaging
space and d represent a specific voxel of . Specifically, for the i–th subject at time tij, we
observe imaging data, denoted by Yij = {yi(tij, d) : d }, and a q × 1 covariate vector of
interest, denoted by xij = xi(tij), where yi(t, d) is a p × 1 vector of imaging measures (e.g.,
diffusion tensor) at the voxel d. The xij may include age, time point, gender, genetic marker,
diagnostic status, height, and their interactions, among many others. Without loss of
generality, we assume that all imaging data have already been registered to a common
template and  is the common template. Moreover, our main scientific interest is focused on
characterizing the longitudinal change of imaging measure.
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2·4. GEE Model Formulation
The GEE method for longitudinal data has 2 main components: (i) a mean model for the
mean response and its dependence on covariates; and (ii) a working covariance model for
the covariance among repeated measures. GEE allows characterization and comparison of
changes in the imaging measure of interest over time, complex models for the covariance,
and accommodation of incomplete data. GEE can also handle unbalanced data,
accommodate continuous and discrete covariates, and model the covariance in a
parsimonious way (Liang and Zeger, 1986; Diggle et al., 2002). Moreover, GEE is also free
of distributional assumption. For notational simplicity, we temporarily drop voxel d from
our notation.

The mean model of GEE is to characterize the trajectories of imaging measure over time and
their association with inter-individual differences in selected covariates (e.g., diagnostic
group, and gender). Such trajectories can be linear or nonlinear. Specifically, the mean
model of GEE is given by

(1)

where β is a q ×1 vector of regression coefficients and μ(·, ·) is a p × 1 vector of known
functions that describe longitudinal change in the responses. For instance, it is common to

set  for linear models. Furthermore, we consider a quadratic growth model
given by

(2)

where β = (β1, …, β6)T and , in which gi represents gender. As an
illustration, we considered the fractional anisotropy values of 38 subjects obtained from our
neonatal study of normal brain and each subject has three repeated measures. Panels (a)–(d)
of Fig. 1 are, respectively, the line plots of fractional anisotropy versus age with the fitted
quadratic growth curves for four selected voxels.

The working covariance model of GEE is to characterize the correlation among repeated
measurements on an individual and heterogeneous variability, which are two common
features of longitudinal data. That is, knowledge of the value of the response on one
occasion provides information about the likely value of the response on a future occasion
and the variance of the response changes over the duration of the study. Specifically, the
covariance matrix of Yi = (yi(ti1)T, …, yi(timi)

T)T is given by

(3)

for i = 1, …, n, where θ = (β, α, γ),  is a pmi × pmi diagonal matrix and contains
the standard deviations of Yi, and Ci(α) represents the correlation among all mi repeated
measurements over time and the correlation among all p imaging measures. Moreover, γ
and α are, respectively, additional parameter vectors for characterizing the variances of
imaging measures and the correlations among imaging measures across time.

As an illustration, we consider several covariance structures (3) for univariate responses.
Some additional parametric models for covariance structure can be found in Appendix A.
Without loss of generality, we consider the homogeneous variances of yi(tij), that is,
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 for all i, j. In this case, γ = (σy). There are several commonly used correlation
structures including exchangeable, autoregression AR(1), unstructured, and m–dependent.
These four correlation structures are summarized as follows:

• exchangeable: Corr(yi(tij), yi(tik)) = ρ for j ≠ k;

• autoregressive: Corr(yi(tij), yi(tik)) = ρ|j−k| for j ≠ k;

• m–dependent: Corr(yi(tij), yi(tik)) = ρ|j−k| for |j − k| ≤ m;

• unstructured: Corr(yi(tij), yi(tik)) = ρjk for j ≠ k.

Based on a specific covariance structure of yi(tij), we can derive the explicit form of Ai(β, γ)
and Ci(α). For instance, let’s consider the exchangeable correlation. In this case, we have

(4)

where 1mi is an mi × 1 vector of ones and Imi is an mi × mi identity matrix.

There are several advantages and drawbacks associated with the four correlation structures.
The exchangeable working correlation structure is well known as compound symmetry in
the longitudinal literature. The exchangeable correlation has simple interpretation, but it may
be not reasonable for longitudinal studies with more than three measurements. The auto-
regressive AR(1) correlation structure assumes the decreasing correlation as the distance
between two measures increases. The m–dependent correlation structure assumes the zero
correlation when two measures are m steps away. Both the auto-regressive and m–dependent
correlation structures are appealing for equally spaced data, less so for unequally spaced
data. The unstructured working correlation structure leaves the correlation matrix
completely unspecified and has mi(mi − 1)/2 parameters to be estimated, which limits to the
studies with few observation times or conditions. The unstructured working correlation is
not useful in the presence of missing data and/or varying numbers of observations per
subject.

2·5. Voxelwise GEE Estimation Procedure
In most longitudinal studies, our primary interest focuses on making inference on β or
subcomponents of β. At each voxel, voxelwise GEE is iteratively solved as follows.

• Given estimates of γ̂(s) and α̂(s), one calculates β̂(s+1) as the solution of the
following GEE given by

(5)

where μi(β) = (μ(xi1, β)T, …, μ(ximi, β)T)T and Ui(β) = ∂μi(β)/∂βT. Specifically,
one sets β̃(0) = β̂(s) and then updates β̃(k) according to a Newton-type algorithm
until ||β̃(k+1) − β̃(k) ||2 is smaller than a fixed small number ε, say 10−4. One sets
β̂(s+1) = β̃(k+1).

•
Given β̂(s+1), one computes  for all i, j and uses them to
construct some estimates of (α, γ), denoted by (α̂(s+1), γ(s+1)). See Appendix B for
some estimation methods for (α, γ).

• Iterate the previous two steps until convergence.
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• Obtain the final estimator θ̂ = (β̂, γ̂, α̂) and then calculate Vi(θ), r̂ij = yi(tij) − μ(xij,
β̂) and the sandwich estimator of the covariance matrix of β̂, denoted by Σn(β̂),
which is given by

(6)

where r̂i = Yi − μi(β̂), Ûi = Ui(β̂), and V̂i = Vi(θ̂).

The β̂ based on GEE (5) has three attractive properties. Firstly, β̂ can be almost as efficient
as the maximum likelihood estimates of β in many practical applications provided that Vi(θ)
for all i are reasonably approximated (Diggle et al., 2002). In fact, GEE in (5) are exactly the
maximum likelihood score equations for multivariate Gaussian data when Vi(θ) are
correctly specified (Fitzmaurice et al., 2004). Secondly, β̂ converges to the true, but
unknown β* as n → ∞, even if Vi(θ) are incorrectly specified. When regression coefficients
in β are the scientific focus, which is the case for most longitudinal neuroimaging studies,
one should concentrate on modeling the mean structure, while using a reasonable
approximation to Vi(θ). Thirdly, Σn(β̂) is close to the true covariance matrix of β̂ as the
sample size is large even if Vi(θ) is misspecified and (α̂, γ̂) is prefixed. This property is
very appealing in practice, since GEE is directly applicable to twin and family studies if our
primary interest is on β. In practice, to ensure the robustness of the inferences about β, one
may fit GEE by using different Vi(θ) and compare the two sets of estimates and their robust
standard errors. If they differ substantially, a more careful treatment of Vi(θ) is necessary.

2·6. Weighted Generalized Estimating Equations
In longitudinal studies, β(d) is commonly decomposed as a qI × 1 vector of parameters of
interest, denoted by βI (d), and a qN × 1 vector of nuisance parameters, denoted by βN (d),
where q = qI + qN. For instance, in model (2), if our primary interest focuses on the gender

and time interaction, then βI (d) includes the regression coefficients for gitij and ,
whereas all other regression coefficients can be regarded as nuisance parameters, that is,

Moreover, the components of (α(d), γ(d)) in Vi(θ) are often nuisance parameters.
Throughout the paper, we fix (α(d), γ(d)) at their voxel-wise GEE estimates (α̂(d), γ̂(d))
obtained from the voxel-wise GEE procedure.

We propose a weighted generalized estimating equations method, referred to as weighted
GEE-A, to spatially and adaptively update {βI (d) : d ∈ }, while fixing βN (d) at their
voxel-wise GEE estimates β̂N (d) obtained from the voxel-wise GEE procedure. Since
weighted GEE-A focuses on updating a subset of β(d), it distinguishes from the original
multiscale adaptive regression model and PS methods (Li et al., 2011; Polzehl and
Spokoiny, 2000, 2006). The key idea of weighted GEE-A is to combine GEEs for βI (d′) in
a neighboring sphere of voxel d to make inference on βI (d) at the voxel d. Specifically, let
B(d, h) be a sphere with radius h centered at voxel d and ω(d, d′; h) be a weight function of
triple (d, d′ h) such that
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weighted GEE-A is based on a set of weighted GEEs, denoted by Gn(βI (d); ω, h), which is
defined as follows:

(7)

where ei(βI (d), β̂N (d′)) =Yi(d′) − μi(βI (d), β̂N (d′)), UiI (β) = ∂μi(β)/∂βI and Vi(θ̂(d′)) is
evaluated at the voxel-wise GEE estimate of θ(d′). Therefore, in (7), only βI (d) is
unknown, whereas other parameters are fixed at their voxel-wise GEE estimates. Given the
current weights {ω(d, d′; h) : d, d′ ∈ }, we consider the weighted GEE estimator of βI (d),
denoted by β̂I (d, h), which satisfies

(8)

A good ω(d, d′; h) plays a critical role in preventing oversmoothing the estimates of βI (d)
across voxel, while preserving the edges of significant regions. We require that ω(d, d′; h)
characterize the similarity between βI (d) and βI (d′). If βI (d) differs from βI (d′), then the
data in voxel d′ do not contain too much information on βI (d′) and ω(d, d′; h) should be
close to 0. However, if βI (d) is close to βI (d′) indicating that the data in voxel d′ contain
useful information on βI (d), then ω(d, d′; h) should be significantly bigger than zero. See
the explicit expression of ω(d, d′; h) in Appendix C.

2·7. Testing Statistics for weighted GEE
We present test statistic based on the weighted GEE (7) at each d ∈  for a fixed radius h.
Our choice of which hypotheses to test is motivated by either a comparison of brain
structure (or function) across diagnostic groups or the detection of a change in brain
structure (or function) across time (Skup et al., 2011; Meltzer et al., 2009; Kim et al., 2010).
These questions usually can be formulated as testing hypotheses about βI (d) as follows:

(9)

where R is a r × qI matrix and b0 is a r × 1 specified vector, such as a r × 1 vector of zeros.
For instance, in model (2) with βI (d) = (β5(d), β6(d))T, if we are interested in testing the
time and gender interaction, then we have

We test the null hypothesis H0,β using a Wald test statistic given by

(10)
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where Σn(β̂I (d, h)) is an approximation of the covariance matrix of β̂I (d, h). See the explicit
expression of Σn(β̂(d, h)) in (28) for details.

2·8. Multiscale Adaptive Generalized Estimating Equations
We develop a PS procedure based on multiscale adaptive generalized estimating equations,
referred as to MAGEE-A, by integrating weighted GEE-A and the PS procedure proposed in
(Polzehl and Spokoiny, 2000, 2006). Since PS and the choice of its associated parameters
have been discussed in details in (Polzehl et al., 2010; Li et al., 2011), we briefly mention
them here.

• At each d ∈ , the PS procedure evolves along a sequence of nested spheres with
increasing radii hs as follows:

(11)

• At the scale h0 = 0, we just use the voxel-wise GEE estimator θ̂(d, h0) = θ̂(d) and
then we fix (βN(d), α(d), γ(d)) at (β̂N (d), α̂(d), γ̂(d)).

• We combine all information contained in {β̂I (d) : d ∈ } to calculate weights ω(d,
d′; h1) at scale h1 for all d ∈ . Subsequently, we utilize all data in {B(d, h1) : d ∈

}, all weights {ω(d, d′; h1) : d, d′ ∈ }, and weighted GEEs (7) to estimate β̂(d;
h1) for all d ∈ . In this way, we can sequentially determine ω(d, d′; hs) and
adaptively update β̂ (d, hs) from h0 = 0 to hS = r0. At the end of PS, we calculate the
Wald test statistics Wβ(d, hS) across all voxels d ∈ .

A path diagram of the PS procedure for MAGEE-A is given as follows:

(12)

The detailed steps of MAGEE-A are given Appendix D.

3. Results
3·1. Simulation: Scenario I

We simulated data at all m = 23, 232 voxels on a 88 × 88 × 5 phantom image for n = 80
subjects. Each slice contains the same activation region. Specifically, at each voxel d in ,
we simulated yij(d) according to

where β(d) = (β1(d), β2(d), β3(d))T and xij = (1, xij2, xij3)T. To create unbalanced data, we
set mi = 2 for i = 1, …, 40 and mi = 3 for i = 41, …, 80. We independently generated εi(d) =
(εi1(d), …, εimi(d))T from a multivariate N(0, Ωi) distribution, where diag(Ωi) equals an mi ×
1 vector with all ones and the correlation between εij1 (d) and εij2 (d) equals 0.7|j1−j2| for j1,
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j2 = 1, …, mi and i = 1, …, n. To include time-dependent and time-invariant covariates in
longitudinal studies, we set xij2 and xij3 to be a time-dependent covariate and a time-
invariant covariate, respectively. Specifically, we generated xij2 ~ U [j − 1, j] for j = 1, …,
mi, where U [a, b] denotes the uniform distribution on [a, b]. We also generated xij3
independently from a Bernoulli distribution with equal probability for each i. We set β1(d) =
0 across all voxels d. For (β2(d), β3(d)), we divided the phantom image into six different
regions of interest with different shapes and then varied (β2(d), β3(d)) as (0, 0), (0.05, 0.9),
(0.1, 0.8), (0.2, 0.6), (0.3, 0.4), and (0.4, 0.2) across the six regions of interest. Moreover, we
chose two different shapes in order to test our methods in a relatively rich spatial structure of
activation areas. By varying (β2(d), β3(d)) in different regions of interest representing
different signal-to-noise ratios, we can examine the finite-sample performance of our
methods at different signal-to-noise ratios and shapes.

We fitted GEE with the AR(1) working correlation structure and homogeneous variances
and set

We used MAGEE-A to spatially and adaptively calculate the parameter estimates of β(d)
across all voxels. Moreover, if βI (d) = β(d) for all d ∈ , then we call MAGEE-A as
MAGEE-B for this special case. MAGEE-B can also be regarded a direct extension of the
original functional magnetic resonance imaging and PS methods in the longitudinal setting.
For MAGEE-A, we set βI (d) = β2(d) and βN (d) = (β1(d), β3(d))T, whereas for MAGEE-B,
we simultaneously updated all subcomponents of β(d). For both MAGEE-A and MAGEE-B,
we applied the PS procedure described in Appendix D to calculate adaptive parameter
estimates across all voxels at 10 different scales. Furthermore, for β(d), we calculated bias,
empirical standard error, root-mean-square error estimates, and the ratio of the empirical
standard error over the mean of the root-mean-square error estimates in all six regions of
interest based on the results obtained from the 1,000 simulated data sets. We also smoothed
the simulated data by using heat kernel smoothing with 1, 22, 32, 42, 52, 62, 72, and 82

iteration, yielding the effective smoothness of approximately 1, 2, 3, 4, 5, 6, 7, and 8mm,
respectively (Chung et al., 2005), and calculated parameter estimates by using the voxel-
wise GEE method.

For simplicity, we present some selected results for β̂2(d, hs). Both MAGEE-A and
MAGEE-B show better accuracy of parameter estimates compared with the voxel-wise GEE
estimates based on the effective smoothness scales of 4 and 8mm in terms of bias (Fig. 2
(B)–(E)). Moreover, MAGEE-B slightly outperforms MAGEE-A in terms of bias and the
root-mean-square error (Table 1), since β2(d) and β3(d) have the same imaging pattern and
updating all components of β(d) can lead to a better preservation of the edges of regions of
interest. Comparing the panels (D) and (E) of Fig. 2 confirms this observation.

We tested the hypotheses H0 : β2(d) = 0 and H1 : β2(d) ≠ 0 across all voxels by using Wβ(d,
h10) for MAGEE-A and MAGEE-B and evaluated their performance in cluster based
thresholding (Salimi-Khorshidi et al., 2011; Chumbley et al., 2010; Silver et al., 2011).
Specifically, we thresholded the images of Wβ(d, h10) by using a false-discovery rate
corrected threshold, pc = 0.05, to identify resulting clusters of contiguous supra-threshold
voxels. Then, we separate clusters into two groups including a ‘good’ (or true positive)
group, in which all clusters contain at least one true positive voxel, and a ‘bad’ group (’true
negative’), in which all clusters contain only true negative voxel(s). Similarly, we applied
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the same procedure to the Wald-test statistic maps of the voxel-wise GEE results based on
smoothed imaging data with different effective smoothness scales.

We calculated three statistics based on the two groups of clusters including the dice overlap
ratio between the clusters in the ‘good’ group and the true activation regions, the cluster
number, and the spatial extent (or the number of voxels) of all clusters in the ‘bad’ group.
The value of dice overlap ratio is between 0 and 1 and a larger dice overlap ratio value
represents better performance in detecting true positive voxels. Moreover, if the spatial
extent of a cluster is smaller than a threshold, such as 10, then the cluster is not detected to
be significant by the cluster based thresholding. Table 2 presents the three statistics of each
method.

Inspecting Table 2 reveals several facts. (i) Both MAGEE-A and MAGEE-B have larger
dice overlap ratio compared with voxel-wise GEEs with relatively large smoothing scale
(≥4mm). See Fig. 4 (a) for details. (ii) Although MAGEE-A and MAGEE-B have many
more non-overlap small clusters than voxel-wise GEEs methods, their spatial extent is much
smaller than the standard spatial extent threshold (e.g., 10). (iii) MAGEE-B outperforms
MAGEE-A in terms of dice overlap ratio and non-overlap cluster number. (iv) For voxel-
wise GEEs, small smoothing scales (≤3mm) outperform large smoothing scales (≤4mm) in
terms of dice overlap ratio, and vice versa in terms of non-overlap cluster number. However,
as expected, the larger is smoothing scale, the larger is non-overlap cluster. This can lead to
false detection of non-overlap clusters.

Figure 4 (b) and (c) presents the results for testing β2(d) = 0 in all voxels in the six regions
of interest for all methods by using the false-discovery rate corrected threshold, pc = 0.05,
based on 1,000 simulations. For each method, we calculated the type I error rate and power
based on voxels in all regions of interest for each simulated data set. Figure 4 (b) also
presents their average type I error rates, whereas Figure 4 (c) presents the detection power of
voxels in each of active regions of interest. MAGEE-A and MAGEE-B have higher
detection power in most regions of interest, while their type I error rates are quite small. As
smoothing scale is larger than 3mm, the type I error rate of the voxel-wise GEE becomes
more liberal and not well controlled. In contrast, although the type I error rate of voxel-wise
GEE is small, their detection powers are poor compared with the MAGEE-A and MAGEE-
B methods. In summary, the MAGEE methods outperform the voxel-wise GEEs with
different smoothing scales in terms of both type I and II error rates.

3·2. Simulation: Scenario II
We used the same setup as scenario I except that we randomly generated β3(d) from U[−5,
5] in the prefixed seven regions of interest with β2(d) ≠ 0. In this case, β3(d) varies in these
six regions of interest, and thus the β2 image and the β3 image do not share the same
imaging pattern. We are interested in examining the effect of different patterns in the β3
image on β̂2(d, hs) across all d ∈ . We also smoothed the simulated data using the heat
kernel smoothing with the effective smoothing scales varying from 1- to 8mm.

For β̂2(d, hS), MAGEE-A, which smooths β2(d) solely, outperforms MAGEE-B, leading to
smaller empirical standard errors and root-mean-square error estimates, even though their
biases are comparable (Table 1). For Wβ(d, h10), MAGEE-A significantly increases
statistical power in rejecting the null hypothesis of β2(d) in the five regions of interest, while
the non-overlap cluster size is still under control (Table 2 and Fig 3. (D)). Compared with
Scenario I, inspecting Table 2 and Figure 4 reveals several different facts for Scenario II. (i)
MAGEE-A outperforms MAGEE-B in terms of the dice overlap ratio. (ii) Although
MAGEE-A and MAGEE-B have many more small clusters than the voxel-wise GEE
methods, their spatial extent is much smaller than the standard spatial extent threshold (e.g.,
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10). (iii) MAGEE-A has higher power in detecting voxels in regions of interest than
MAGEE-B in general. Figure 4 (b) and (d) show the average type I error rate and power of
detection of the voxels in regions of interest, respectively, and shows clearly the advantage
of MAGEE methods: they achieve high detection power, while controlling for the type I
error rate. In summary, when the images of ’nuisance’ parameter estimates do not share the
same pattern with those of parameters of interest, solely smoothing the parameters of
interesting may lead to better results.

3·3. Real Data I: Longitudinal Study
A wealth of cross-sectional diffusion tensor imaging studies has been conducted on
characterizing white matter development (prenatal to adolescent stages) using various
diffusion parameters, such as fractional anisotropy and radial diffusivity, in the past decade.
Current diffusion tensor imaging studies involving neonates have revealed three phases in
the early postnatal brain development including the rapid changes within first 12 months, the
slow maturation from 12 to 24 months, and the steady state afterwards. Particularly, in white
matter, neonates have significantly lower fractional anisotropy values and significantly
higher mean diffusivity values compared to adults (Neil et al., 1998). These diffusion tensor
imaging studies also reveal the temporal non-linearity and spatial inhomogeneity of the
apparent changes in diffusion tensor imaging parameters within brain (Mukherjee and
McKinstry, 2006; Schneider et al., 2004).

We used 38 subjects from a longitudinal study designed to investigate early brain
development led by Dr. John Gilmore at the University of North Carolina at Chapel Hill. For
each subject, diffusion-weighted images were acquired at 2 weeks, year 1, and year 2.
Diffusion-weighted imaging acquisition scheme includes 18 repeated measures of six non-
collinear directions, (1,0,1), (−1,0,1), (0,1,1), (0,1,−1), (1,1,0), and (−1,1,0), at a b–value of
1000 s/mm2 and a b = 0 reference scan. Forty-six contiguous slices with a slice thickness of
2 mm covered a field of view of 256×256 mm2 with an isotropic voxel size of 2 × 2 × 2
mm3. High resolution T1 weighted images were acquired using a 3D MP-RAGE sequence.
We then calculated a weighted least squares estimation method to construct diffusion tensors
(Basser et al., 1994; Zhu et al., 2007). All images were visually inspected before analysis to
ensure no bulk motion. All diffusion tensor images (38 subjects, 3 time points each) were
registered onto a template, which is a randomly selected brain diffusion tensor image of a 2-
year-old subject (Yap et al., 2009).

We use fractional anisotropy images to identify the spatial patterns of white matter
maturation. We fitted a GEE with AR(1) correlation structure and homogeneous variance
structure and

for i = 1, …, n and j = 1, 2, 3 at each voxel of the template. We are interested in testing two
sets of hypothesis including the gender and time interaction effect and then the time effect if
the gender and time interaction effect is not significant. We used MAGEE-A and MAGEE-
B to address such hypotheses. We also smoothed fractional anisotropy imaging data using
an isotropic Gaussian kernel with full width half maximum 8mm and used voxel-wise GEE
to address those hypotheses as well. Moreover, although fractional anisotropy is between 0
and 1, μ(x, β(d)) may fall out of [0, 1]. Therefore, it may be better to use a nonlinear
transformation (e.g., logit) of fractional anisotropy value for better prediction.
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We run the PS procedure with ch = 1.15 and S = 10 and then tested H0 : β5(d) = β6(d) = 0
for the time and gender interaction effect across all voxels d. We corrected multiple
comparisons using false discovery rate with level at 0.05. We did not observe significant
voxels and clusters where two genders have different time trends, which is not presented
here. Therefore, we fitted a GEE with AR(1) correlation structure and

for i = 1, …, n and j = 1, 2, 3 at each voxel of the template. Similarly, the findings for
MAGEE-A are similar to those for MAGEE-B, whereas MAGEE-A detects more significant
clusters and voxels compared with MAGEE-B at S = 10 (Fig. 5 (B), (C), (B′), and (C′)). As
expected, both MAGEE-A and MAGEE-B outperform voxel-wise GEE based on
unsmoothed and smoothed FA images in terms of the number of both significant clusters
and voxels (Fig. 5 (A) and (A′)). Specifically, the voxel-wise GEE results based on the
smoothed fractional anisotropy images show the obvious oversmoothing in cerebrospinal
fluid and the gray matter areas, such as the ventricle (Fig. 5 (D) and (D′)).

We also plotted the line plots and fitted growth curves in four selected voxels in the genu,
splenium, optic radiation and cerebral peduncle (Fig. 1). Different growth patterns were
observed for the genu, splenium, optic radiation, and cerebral peduncle (Fig. 1). The genu
and cerebral peduncle have a similar and small fractional anisotropy value at birth, whereas
the genu’s fractional anisotropy increases very fast and the cerebral peduncle’s fractional
anisotropy increases slowly. The splenium and optic radiation have a similar and moderate
fractional anisotropy value at birth, whereas the fractional anisotropy value of the splenium
and optic radiation increases relatively slow. There is a substantial variability across
different anatomic regions, even though fractional anisotropy is highly significantly different
between neonates and 1-year-olds for all regions of interest.

3·4. Real Data II: Twin Study
We considered the same early postnatal brain development project led by Dr. Gilmore at the
University of North Carolina at Chapel Hill (Gilmore et al., 2010). A total of 49 paired twins
(36 males and 62 females) were selected for an illustration. All 49 pairs were scanned as
neonates within a few weeks after birth at term. Written consent was obtained from their
parents before imaging acquisition. The mean gestational age at magnetic resonance
scanning was 246 ± 18.3 days (range: 192 to 270 days). All infants were fed and calmed to
sleep on a warm blanket with proper ear protection and they slept comfortably inside the
MR scanner. None of infants was sedated during the imaging session.

We then employed a nonlinear fluid deformation based high-dimensional, unbiased atlas
computation method to process all 98 diffusion tensor imaging datasets (Goodlett et al.,
2009). The atlas building procedure started with an affine registration and was followed by a
nonlinear registration of a set of feature images for all subjects. The feature images are the
maximum eigenvalue of the Hessian of the fractional anisotropy image, which are sensitive
to the geometry of white matter. Using the computed deformation fields, we warped all
tensor images into the unbiased atlas space via log-euclidean based interpolation (Arsigny et
al., 2006). We also averaged all the warped tensor images to create a study specific diffusion
tensor imaging atlas.

Fractional anisotropy has been widely used as a measurement to assess directional
organization of the brain, which is greatly influenced by the magnitude and orientation of
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white matter tracts. Here, fractional anisotropy images are employed to identify the spatial
patterns of white matter maturation. We considered a structural equation model given by

(13)

for i = 1, …, 49 and j = 1, 2 at each voxel of the template, where gij and zij, respectively,
represent the dummy variables for gender (male=1 and female=0) and zygote (monozygotic
twin=1 and dizygotic twin=0), and aij(d), ci(d) and eij(d) are, respectively, the additive
genetic, common environmental, and residual effects on the i-th twin pair.

Our objective is to show that MAGEE is applicable to making statistical inference on
regression coefficients including β1(d), β2(d), and β3(d) in twin studies. As an illustration,
we consider the gender effect, that is H0 : β2(d) = 0. We applied MAGEE-A and MAGEE-B
and compared their results with those obtained from three other methods including an
maximum likelihood estimation method, TwinMARM, and voxel-wise GEE based on
Gaussian smoothed images with full width half maximum 8mm. For MAGEE-A and
MAGEE-B, we fitted weighted GEE with the compound-symmetry correlation and μ(xij,
β(d)) = β1(d)+β2(d)gij +β3(d)zij. The maximum likelihood estimation method is to calculate
the maximum likelihood estimates of unknown parameters in model (13) at each voxel in
voxel-based analysis (Feng et al., 2009). We apply the maximum likelihood estimation
method to the twin imaging data without the use of Gaussian kernel, since the results
obtained from the maximum likelihood estimation method do not contain biases introduced
by the use of Gaussian kernel. See Li et al. (2012) for detailed discussions on such biases.
TwinMARM is a two-stage multi-scale adaptive regression method for spatial and adaptive
analysis of twin neuroimaging and behavioral data (Li et al., 2012).

Inspecting Fig. 6 (A)–(J) reveals that the images of parameter estimator obtained from all
five methods have similar pattern. All multiscale adaptive methods including TwinMARM,
MAGEE-A, and MAGEE-B significantly outperform the maximum likelihood estimation
method in terms of the spatial smoothness of significant clusters and the magnitude of
standard deviations (Fig. 6). Comparing Fig. 6 (E) with Fig. 6 (A)–(D) reveals some subtle
differences between voxel-wise GEE based on the smoothed images and all other methods.
This may confirm the biases introduced by the use of Gaussian kernel as discussed in Li et
al. (2012).

4. Discussion
4·1. GEE

We have reviewed the method of GEE for analyses of repeated-measures data. GEE is
powerful for handling unbalanced designs and missing data obtained from longitudinal,
twin, and familial studies, accommodating continuous and discrete covariates and their
interactions, and releasing distributional assumptions and complex models for the
covariance. Specifically, we discuss how to set up the mean model and the working
covariance model of GEE. The mean model is used to directly characterize individual
trajectory in repeated measurements as linear and nonlinear functions of time, while
adjusting for the effect of other predictors, such as diagnostic status and gender, on the
individual trajectory. Although the linear mean models are generally satisfactory
approximations for most neuroimaging applications, there are many cases, such as growth
curve and dose-response relationships, when an empirical indicated or a theoretically
justified nonlinear mean model is more appropriate. For instance, since growth from birth to
maturity in human subjects typically is nonlinear in nature, a nonlinear mean model should
be used. The logistic and Gompertz nonlinear models described in Appendix A have been
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widely used to characterize rapid growth shortly after birth, pronounced growth during
puberty, and a leveling off sometime before adulthood. In many applications, if a simple
nonlinear mean model is unavailable at the beginning, it is common to fit a nonparametric
mean model to longitudinal data and then use a simple mean model to approximate the fitted
nonparametric mean model (Wang, 2003; Wu and Zhang, 2006; Wang, 1998).

The working covariance model of GEE is used to model and understand the likely sources of
random variation in longitudinal data. As discussed in Diggle et al. (2002), a useful working
covariance model should include at least three qualitatively different sources of random
variation: (i) random effects, (ii) serial correlation, and (iii) measurement error. Various
strategies have been developed to incorporate them into specific models (Diggle et al.,
2002). For instance, we have discussed four commonly used correlation structures, such as
exchangeable, in Section 2.4, and several parametric models for covariance structure in
Appendix A. Although these parametric models may be sufficient for longitudinal data with
few repeated measures, most parametric models discussed here are not appealing for
sparsely and irregularly longitudinal data. Recently, several nonparametric covariance
models have been proposed to deal with such issue (Yao et al., 2005; Ramsay and
Silverman, 2005). Similar to the mean model, one may fit a nonparametric covariance model
to longitudinal data and then use a simple covariance model to approximate the
nonparametric model.

4·2. Advantages of MAGEE
We have developed MAGEE for the spatial and adaptive analyses of longitudinal
neuroimaging data. MAGEE is essentially a locally adaptive and spatial smoothing method
and is adaptive to the spatial pattern and extent of each activation region for each regression
coefficient map. Such adaptive and spatial property is very appealing from theoretical and
practical perspectives. Specifically, according to the matched filter theorem, the size of the
optimal filter should match the size of target signal, while accounting for noise distribution.
When there are multiple effect regions with different spatial patterns and extent, multiple
filters with different shapes and kernel sizes should be used. Moreover, MAGEE as a
weighted GEE method explicitly incorporate the mean model and the working covariance
model of GEE. In contrast, the single-filter and multi-filter methods are independent of the
model assumptions of GEE (Jones et al., 2005; Poline and Mazoyer, 1994; Zhao et al., 2012;
T.Ball et al., 2012; Siegmund and Worsley, 1995). Thus, the smoothed imaging data may
not follow the assumed model assumptions of GEE, which can lead to biases for the analysis
of longitudinal neuroimaging data. Such biases can be substantial for all kinds of
neuroimaging data from longitudinal, twin, and familial studies. See Li et al. (2012) for
detailed discussions on biases introduced by directly smoothing twin imaging data. Actually,
the same discussions are valid for longitudinal neuroimaging data when either the nonlinear
mean model is valid or the covariance model is the primary problem of interest. Therefore,
one should interpret the statistical findings obtained from the voxel-based analysis based on
directly smoothed longitudinal neuroimaging data with great caution.

We have used both simulations and real imaging data to demonstrate that MAGEE
outperforms the voxel-wise GEE method coupled with a single Gaussian kernel. As shown
in our simulations, the kernel size in the single Gaussian kernel can have a substantial
impact on brain mapping results. Specifically, as the kernel width varies from 1- to 8mm,
the dice overlap ratio and the type I and II error rates of voxel-wise GEE change
substantially. As shown in the first real imaging data, the use of the single smoothing kernel
can lead to the false positive results of significant diffusion property changes in
cerebrospinal fluid and the gray matter areas. Our results are also consistent with previous
results on single-filter and multi-filter analyses for various neuroimaging data including
positron emission tomography, diffusion tensor imaging, functional magnetic resonance
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imaging, and cortical morphometry (Jones et al., 2005; Poline and Mazoyer, 1994; Zhao et
al., 2012; T.Ball et al., 2012; Siegmund and Worsley, 1995). As shown in the second real
imaging data, the commonly used Gaussian kernel for smoothing imaging data can introduce
biases for the analysis of twin imaging data.

4·3. Future Works
Several important issues need to be addressed in future research. Firstly, the MAGEE
procedure is solely powerful for detecting relatively large effect regions, which are smooth
interiorly and consistent across subjects. In practice, however, the extent and location of
effect regions may vary dramatically across subjects due to both registration error and
population heterogeneity. Therefore, it is important and interesting to model population
heterogeneity, while accounting for registration error. Secondly, although we focus on
parametric growth curves, it is interesting to develop more flexible nonparametric growth
curve models, which are important for sparsely and irregularly longitudinal studies.
Developing multiscale adaptive methods for such non-parametric models faces up with
many new challenges both computationally and theoretically. Thirdly, more research is
needed for optimizing the choices of the parameters in MAGEE and for incorporating other
edge-preserving local smoothing methods into MAGEE (Qiu, 2005; Qiu and Mukherjee,
2010; Mukherjee and Qiu, 2011). Fourthly, we will extend MAGEE from simple
longitudinal studies to more complex longitudinal twin/familial studies. Fifthly, it is
interesting and important to treat the whole image as a single piecewisely smoothed
function, instead of a collection of isolated voxels, and then develop new statistical models
to directly model such functions from cross-sectional and longitudinal studies (Zhu et al.,
2011; Ramsay and Silverman, 2005; Yao et al., 2005; Greven et al., 2010).
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Appendix A. Some Parametric Models for Mean and Covariance of Yi
We may consider other parametric models for mean structure. The μ(xij, β) of the logistic
and Gompertz models are, respectively, given by

(14)

where xij = (tij) and β = (β1, β2, β3)T. Fig. 7 plots sample growth curves based on the linear
model in (2) for female and male groups and the two other nonlinear growth models in (14).

We may consider other parametric models for covariance structure. See (Diggle et al., 2002;
Pourahmadi, 2011; Zimmerman and Nunez-Anton, 2001) for overviews of different
parametric models for covariance structure. For instance, one may consider a heteroscedastic
model for the variances of yi(tij). Specifically, one may assume that var(yi(tij)) takes the
form σy(xij, γ)2, where σy(·, ·) is a known function of xij and γ. For instance, it is common
to use the log-linear model and the power-of-mean model, which correspond to

 and σy(xij, γ)2 = γ1μ(xij, β)γ2, respectively. One may use other
parametric models to model the correlation structure of yi(tij). For instance, one may assume
a stationary correlation structure as follows:

(15)

where ρ(u) is a known function of u. Two popular choices of ρ(u) are the exponential
correlation model and the Gaussian correlation model, which are, respectively, given by

(16)

for some γ1 > 0. Based on these more general forms of covariance structure, one can derive
the explicit form of Yi in (3).

Appendix B. Methods for Estimating (α, γ)
To estimate (α, γ), one may use different statistical methods, such as generalized estimating
equations, moment estimates, and a quasi-least squares method based on the assumed
covariance form (3). For instance, let’s consider the generalized estimating equations
method. Let (β) = Vecs([Yi – μi(β)][Yi – μi(β)]T), where Vecs(A) is the half-
vectorization of a symmetric matrix A. We define

(17)

In many cases, the dimension of (α, γ) is typically small, say 3 or 4, and (17) has a simple
form. Thus, computing (α̂, γ̂) is straightforward. In most statistical software platforms, it is
also common to implement moment estimates of (α, γ). For instance, for the equicorrelated
structure, the GEE moment estimates of (α, γ) are given by
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For some other covariance structures, the exact expression of their moment estimates of (α,
γ) can be found in (Ratcliffe and Shults, 2008).

Appendix C. Asymptotic covariance matrix of β ̂(d,h)
We derive an approximation of the covariance matrix of β̂I (d, h) as follows. It should be
noted that Gn(βI (d); ω, h) contains two sets of nuisance parameters including {β̂U(d′) : d′ ∈
B(d, h)} and {(α̂(d′), γ̂(d′)) : d′ ∈ B(d, h)}. As shown below, {(α̂(d′), γ̂(d′)) : d′ ∈ B(d,
h)} have negligible effects on the asymptotic distribution of β̂I (d, h), whereas {β̂U (d′) : d′
∈ B(d, h)} do.

We need to introduce some notation. Let θN (d) = (βN (d), α(d), γ(d)) be the vector of all
nuisance parameters and and θ*(d) = (β(d), α*(d), γ*(d)) be the true value of θ(d). Let op(1)
be a sequence of random vectors that converges to zero in probability. Let 0qNqI and 0qIqN
be, respectively, a qN ×qI matrix of zeros and a qI ×qN matrix of zeros and IqN and IqI be,
respectively, a qN ×qN identity matrix and a qI ×qI identity matrix. Since Gn(βI (d); ω, h)
defined in (7) is also a function of θ̂N; (d′; B(d, h)) = {θ̂N(d′) : d′ ∈ B(d, h)}, we may make
this fact explicitly by using

We define

(18)

in which we have partitioned F*(d)−1 according to the partition of β(d) = (βI (d), βN (d)).

The derivations consist of five steps as follows.

• Step 1 is to derive an asymptotic expansion of Gn(β̂I (d, h); ω, h). By using the
Taylor’s series expansion, we have

(19)
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(20)

where θN*(d) and θN*(d′; B(d, h)) are, respectively, the true value of βN (d) and
that of βN (d′; B(d, h)).

• Step 2 is to characterize the asymptotic properties of the first-order derivative of
Gn(βI*(d), θN*(d′; B(d, h)); ω, h) with respect to θN (d′). It follows from the law of
large number and (1) that

(21)

(22)

(23)

where ≈ denotes equal except a op(1) term.

• Step 3 is to characterize the asymptotic expansion of .
Substituting (23) into (19) leads to

(24)

By using (21)–(22) and (24), we have

(25)

• Step 4 is to characterize the asymptotic expansion of . Since β̂N (d′)
is a subvector of β̂(d′) and β̂(d′) is the solution of (5), it follows from the

asymptotic results in (Liang and Zeger, 1986) that for any voxel d, is
asymptotically equivalent to

(26)

where ei(d′; β(d)) = Yi(d′) – μi(β(d)) for any d′ ∈ .
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• Step 5 is to characterize the asymptotic expansion of . By
substituting (26) into (25), we have

(27)

where S(d′; d, h) is given by

Finally, it follows from (27) that the covariance matrix of , denoted by

), can be approximated by

(28)

Appendix D. The PS procedure for MAGEE-A
The PS procedure for MAGEE-A has five key steps: initialization, weights adaptation,
estimation, stop checking, and inference.

• In the initialization step (i), we calculate the voxel-wise GEE estimate θ̂(d) at each

voxel d ∈ . Then, we prefix a geometric series { : s = 1, …, S} of radii with
h0 = 0, where ch ∈ (1, 2), say ch = 1.15. We suggest relatively small ch, since small
ch prevents incorporating too many neighboring voxels in the beginning of PS,
which improves the robustness of PS and the accuracy of parameter estimation. We
then set s = 1 and h1 = ch.

• In the weights adaptation step (ii), we compute DβI(d, d′; hs−1) and the adaptive
weights ω(d, d′; hs), which are defined as

(29)

where ΔβI(d, d′;hs−1) = β̂I (d, hs−1) − β̂I (d′, hs−1), Kloc(u) and Kst(u) are two
nonnegative kernel functions with compact support, Cn is a number associated with
n, and ||·||2 denotes the Euclidean norm of a vector (or a matrix). The weights Kloc(||
d − d′||2/hs) give less weight to the voxel d′ ∈ B(d, hs), whose location is far from
the voxel d. The weights Kst(u) downweight the voxels d′ with large differences
between β̂I (d′, hs−1) and β̂I (d, hs−1). In practice, we set Kloc(u) = (1 − u)+ in order
to increase the smoothness of the images of {β̂I (d, h) : d ∈ }, whereas we choose
Kst(u) = exp(−u) in order to heavily penalize moderate to large differences. We
choose Cn = n1/3 χ2(qI)0.8 based on our experiments, where χ2(qI)a is the upper 1 –
a-percentile of the χ2(qI) distribution.
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• In the estimation step (iii), for the radius hs, we substitute ω(d, d′; hs) into (7) to
calculate β̂I (d, hs) by using the Newton-Raphson algorithm at each voxel d ∈ .

• In the stop checking step (iv), for s > S0, we compute

where ΔβI(d, hs, hS0) = β̂I (d, hS0) – β̂I (d, hs). If DI (d; hs, hS0) ≥ C̃(s), then we set
β̂I (d, hS) = β̂I (d, hs−1) and s = S. If s = S, we go to the inference step (v). If s ≤ S0
or DI (d; hs, hS0) ≤ for S − 1 ≥ s > S0, then we set hs+1 = chhs, increase s by 1 and
continue with the weight adaptation step (ii). Throughout the paper, we set S0 = 3
and C̃(s) = χ2(qI)0.8/(s−2)0.9

.

• In the inference step (v), when s = S, we report the final β̂I (d, hS) and compute the
p-values for Wβ(d, hS). In practice, we usually set the maximal step S to be
relatively small, say 10, and thus each B(d, h10) only contains a relatively small
number of voxels compared to the whole volume. Throughout the paper, we have
used the false discovery rate (FDR) method in (Benjamini and Yekutieli, 2001),
since the test statistics obtained from PS satisfy the positive dependency condition.
We may use other multiple comparison correction methods (e.g., random field
theory (RFT), FDR, or permutation methods)(Benjamini and Yekutieli, 2001;
Worsley et al., 2004; Chumbley et al., 2010; Salimi-Khorshidi et al., 2011).
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Highlights

• Develop MAGEE for longitudinal neuroimaging data.

• Characterize the development of white matter diffusivities.

• Evaluate the finite sample performance of MAGEE.

• MAGEE significantly outperforms VBA.
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Fig. 1.
Results of Real Longitudinal Data I: the raw line curves (in black) and fitted growth curves
(in red) from MAGEE-A at a selected voxel obtained from the genu (panel (A)), splenium
(panel (B)), optic radiation (panel (C)), and cerebral peduncle (panel (D)).
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Fig. 2.
Simulation results for scenario I: Panel (A) is a selected slice of the ground truth image for
simulation study of the six regions of interest with different gray levels representing
β2(d)=0, 0.05, 0.1, 0.2, 0.3, 0.4 respectively; Panel (B) represents a selected slice of β̂2
obtained from a simulated smoothed data set with 16 iteration; Panel (C) represents a
selected slice of β̂2 obtained from a simulated smoothed data set with 64 iteration; Panel (D)
shows a selected slice of β̂2 (d, h10) obtained from a simulated data set based on method
MAGEE-A; Panel (E) shows a selected slice of β̂2 (d, h10) obtained from a simulated data
set based on method MAGEE-B;
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Fig. 3.
Simulation results for scenario II: Panel (A) is a selected slice of the ground truth image for
simulation study of the six regions of interest with different gray levels representing
β2(d)=0, 0.05, 0.1, 0.2, 0.3, 0.4 respectively; Panel (B) represents a selected image of β̂2
obtained from a simulated smoothed data set with 16 iterations; Panel (C) represents a
selected slice of β̂2 obtained from a simulated smoothed data set with 64 iterations; Panel
(D) shows a selected slice of β̂2 (d, h10) obtained from a simulated data set based on method
A; Panel (E) shows a selected slice of β̂2 (d, h10) obtained from a simulated data set based
on method B;
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Fig. 4.
Simulation results for scenarios I and II for comparing MAGEE-A, MAGEE-B, and the
voxel-wise GEE methods with the heat kernel smoothing with k iterations, which are
denoted as SGEE-k for k = 1, 4, 9, 16, 25, 36, 49, and 64. Panel (a) presents Dice Overlap
Ratio (DOR) for testing β2(d) = 0 in the six regions of interest: scenario I (dashed line) and
scenario II (solid line). Panel (b) presents average Type I error rates for testing β2 (d) = 0 in
the region of interest with β2(d) = 0: scenario I (dashed line) and scenario II (solid line).
Panel (c) for scenario I and panel (d) for scenario II : average powers for testing β2 (d) = 0 in
the five regions of interest with β2(d) = 0.05 (solid line with cross), β2(d) = 0.1 (dot line
with star), β2(d) = 0.2 (dash dot line with square), β2(d) = 0.3 (dash line with diamond), and
β2(d) = 0.4 (solid line with inverse triangle), respectively.
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Fig. 5.
Results of Real Longitudinal Data I: panels (A), (B), (C), and (D) respectively, show the –
log10(p) values of Wβ(d, hs) for testing the age effect for voxel-wise GEE for unsmoothed
FA images, MAGEE-A at the 10-th iteration, and MAGEE-B at the 10-th iteration, and for
voxel-wise GEE for Gaussian smoothed FA images for the 33-th slice; panels (A′), (B′), (C
′) and (D′) are the corresponding – log10(p) values for the 37-th slice.
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Fig. 6.
Results of Real Twin Data II: panels (A), (B), (C), (D) and (E) are, respectively, the
estimates of β2(d) with β2(d, hs) > 0 for the maximum likelihood estimation method,
MAGEE-A at the scale h10, MAGEE-B at the scale h10, TwinMARM at h10 scale for the 33-
th slice, and voxel-wise GEE for smoothed images; panels (F), (G), (H), (I) and (J) are,
respectively, the corresponding estimates of β2(d) with β̂2(d, hs) < 0; panels (K), (L), (M),
(N), and (O) are, respectively, the corresponding estimated standard deviations of β̂2(d, hs).
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Fig. 7.
The growth curve pattern for different models. Red: Gomportz growth model with μ(x, β) =
3.6 exp(−2 exp(−2t)); Blue: Quadratic growth model for female with μ(x, β) = 0.1 + 0.8t −
0.05t2; Magenta: Quadratic growth model for male with μ(x, β) = 0.1 + 0.8t − 0.05t2 + 0.02t
+ 0.005t2; and Black: Logistic growth model with μ(x, β) = 3.5/(1 + 2 exp(−2t)).
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