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Abstract
Different imaging modalities provide essential complementary information that can be used to
enhance our understanding of brain disorders. This study focuses on integrating multiple imaging
modalities to identify individuals at risk for mild cognitive impairment (MCI). MCI, often an early
stage of Alzheimer’s disease (AD), is difficult to diagnose due to its very mild or insignificant
symptoms of cognitive impairment. Recent emergence of brain network analysis has made
characterization of neurological disorders at a whole-brain connectivity level possible, thus
providing new avenues for brain diseases classification. Employing multiple-kernel Support
Vector Machines (SVMs), we attempt to integrate information from diffusion tensor imaging
(DTI) and resting-state functional magnetic resonance imaging (rs-fMRI) for improving
classification performance. Our results indicate that the multimodality classification approach
yields statistically significant improvement in accuracy over using each modality independently.
The classification accuracy obtained by the proposed method is 96.3%, which is an increase of at
least 7.4% from the single modality-based methods and the direct data fusion method. A cross-
validation estimation of the generalization performance gives an area of 0.953 under the receiver
operating characteristic (ROC) curve, indicating excellent diagnostic power. The multimodality
classification approach hence allows more accurate early detection of brain abnormalities with
greater sensitivity.
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1. Introduction
Alzheimer’s disease (AD) is an irreversible neurodegenerative disease characterized by
progressive cognitive and memory deficits, which are serious enough to interfere daily life.
It has been reported that the prevalence of AD is expected to quadruple by year 2050, where
1 in every 85 persons will be affected by the disease [3]. Thus, there is a pressing need for
accurate diagnosis of AD at its early stage in order to reduce the burden of worldwide
healthcare system.

Mild cognitive impairment (MCI), often a prodromal stage of AD, is a good target for early
diagnosis and therapeutic interventions of AD. Recent studies show that individuals with
MCI tend to progress to probable AD at a rate of approximately 10% to 15% per year [23,
15], compared with healthy controls who develop dementia at a rate of 1% to 2% per year
[2]. Early detection of MCI is of paramount importance for possible delay of the transition
from MCI to AD. Nevertheless, MCI is difficult to diagnose due to its very mild symptoms
of cognitive impairment. Most pattern classification algorithms proposed for MCI or early-
AD identification achieve relatively inferior performance with low sensitivity rate.

Several imaging modalities have been applied for AD and MCI diagnosis. These modalities
provide complementary information: diffusion tensor imaging (DTI) [16, 31] provides local
microstructural characteristics of water diffusion; structural magnetic resonance imaging
(MRI) [10, 22] can be used to delineate brain atrophy; functional MRI (fMRI) [21, 24]
characterizes hemodynamic response related to neural activity; positron emission
tomography (PET) [14, 26] measures metabolic patterns. Most existing pattern classification
methods, however, use only one of these modalities at a time for AD and MCI diagnosis.
Greater effort should hence be focused on integration of different modalities since
combining complementary information from the different imaging modalities can improve
accuracy in disease diagnosis.

To the best of our knowledge, to date, DTI and resting-state fMRI (rs-fMRI) have not been
combined at a brain connectivity network level for identifying individuals with MCI,
although they have been employed separately with reasonably good classification
performance. In this study, we propose a high-dimensional multivariate classification
framework to accurately identify individuals with MCI from those who undergo normal
aging. The key idea of our approach involves employing multiple-kernel based support
vector machine (SVM) algorithm to integrate anatomical and functional connectivity
information extracted from DTI and rs-fMRI. The current study is the first attempt to
integrate these two modalities to identify MCI individuals from cognitively normal controls.
We seek to validate whether complementary structural and functional information can be
combined to improve classification performance. We will also report brain regions that
contribute most to classification. While confirming findings of previous studies, this paper
sheds new light on the effectiveness of applying multimodality information for diagnosis of
progressive neurodegenerative disorders.

The rest of the paper is organized as follows: Section 2 furnishes information on the image
dataset, image acquisition protocols, and post-processing pipeline. This is followed by a
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comprehensive description of the multiple-kernel-SVM based multimodality classification
framework. The proposed MCI classification framework is evaluated in Section 3. Findings,
methodological issues, and limitations of the proposed framework are discussed extensively
in Section 4. Section 5 concludes this paper.

2. Method and Materials
2.1. Subjects Characterization and Diagnosis

All subjects used in this study were recruited by the Duke-UNC Brain Imaging and Analysis
Center (BIAC), Durham, North Carolina, USA. Informed consent was obtained from all
participants, and the experimental protocols were approved by the institutional ethics board.
This cohort involved of 27 participants, 10 individuals with MCI, and 17 socio-
demographically matched normal controls. All the recruited subjects were diagnosed by
expert consensus panels at the Joseph and Kathleen Bryan Alzheimer’s Disease Research
Center (Bryan ADRC) and the Department of Psychiatry at Duke University Medical
Center. Diagnosis was based upon available data from a battery of general neurological
examination, neuropsychological assessment evaluation, collateral and subject symptom and
functional capacity reports. Conformation of diagnosis for MCI if subjects met the following
inclusion criteria: 1) age > 55 years and any race; 2) recent worsening of cognition, but still
functioning independently; 3) Mini Mental State Examination (MMSE) score between 24
and 30; 4a) score ≤ −1.5 SD on at least two Bryan ADRC cognitive battery memory tests for
single-domain amnestic MCI; or 4b) score ≤ −1.5 SD on at least one of the formal memory
tests and score ≤ −1.5 SD on at least one other cognitive domain task (e.g., language,
visuospatial-processing, or judgment/executive function) for multi-domain MCI; 5) 4 or
lower for baseline Hachinski score; 6) does not meet the NINCDS-ADRDA or DSM-IV-TR
criteria for dementia; 7) no psychological symptoms or history of depression; and 8)
capacity to give informed consent and follow study procedures.

On the other hand, all healthy controls individuals met the following criteria: 1) age > 55
years and any race; 2) adequate visual and auditory acuity to properly complete
neuropsychological testing; 3) no self-report of neurological or depressive illness; 4) shows
no evidence of depression based on the Diagnostic Interview Schedule port based on the
Diagnostic Interview Schedule portion of the Duke Depression Evaluation Schedule; 5)
normal score on a non-focal neurological examination; 6) a score > −1 SD on any formal
memory tests and a score > −1 SD on any formal executive function or other cognitive test;
and 7) demonstrates a capacity to give informed consent and follow study procedures. In
order for safety purposes and minimizing biases, subjects were excluded from the study if
they have: 1) any of the traditional MRI contraindications, such as foreign metallic implants
or pacemakers; 2) a past head injury or neurological disorder associated with MRI
abnormalities, including dementia, brain tumors, epilepsy, Parkinson’s disease,
demyelinating diseases, etc.; 3) any physical or intellectual disability affecting completion of
assessments; 4) documentation of other Axis I psychiatric disorders; and 5) any prescription
medication (or nonprescription drugs) with known neurological effects. Noteworthy that the
diagnosis of all cases were made on clinical grounds without any reference to MRI.
Demographic information of the participants is shown in Table 1.

2.2. Data Acquisition
Data acquisition was performed using a 3.0-Tesla GE Signa EXCITE scanner. Diffusion-
weighted images of each participant were acquired axially parallel to the anterior and
posterior commissures (AC-PC) line with twenty-five-direction diffusion-weighted whole-
brain volumes using the following parameters: b = 0, 1000 s/mm2, flip angle = 90°, TR/TE =
17000/78 ms, imaging matrix = 128 × 128, FOV = 256 × 256 mm2, resulting in a voxel
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dimension of 2 × 2 × 2 mm3 reconstructed resolution. A total of 72 contiguous slices were
acquired.

Resting-state functional images were acquired axially parallel to the horizontal plane
connecting the AC-PC line with the following parameters: flip angle = 77°, TR/TE =
2000/32 ms, 34 slices, imaging matrix = 64 × 64, FOV = 256 × 256 mm2, resulting in a
voxel resolution of 4 × 4 × 4 mm3. A total of 34 slices were acquired using a SENSE
inverse-spiral pulse sequence in the same plane as the low resolution T1-weighted images.
All the subjects were told to keep their eyes open and stare at a fixation cross in the middle
of the screen during scanning, which lasted for 5 minutes. As we know, neurons get excited
to changing stimuli across time. But when the stimuli such as the little cross sign in this
study was presented steadily without changing across the five minutes period, the neural
excitation related to the stimuli can vanish quickly. Hence, this can ensure subjects not
falling into sleep and avoid saccade-related activation which is unavoidable if eyes were
closed.

2.3. Method
Progressive degenerative neurological diseases such as Alzheimer’s disease and similar
dementias exhibit subtle, yet spatially and temporally diffuse pathology, where the brain is
damaged in a large-scale, highly connected network, rather than in one single isolated
region. In view of this, designing an informative description of interregional connections,
which might be more sensitive in conveying the pathological information, is necessary for
accurate diagnosis or prediction of neurological diseases.

It has been proven that information extracted from different modalities and different brain
tissues might complement each other and provides more comprehensive characterization of
brain abnormalities [9, 11, 12, 18, 36]. To integrate complementary information from
different modalities and different brain tissue types, we proposed in this paper an approach
that combine structural connectivity information from white matter (WM) regions and
functional connectivity information from gray matter (GM) regions to distinguish
individuals with MCI from normal controls. The key of our multimodality classification
framework include:

• More informative description of the brain via multiple connectivity networks;

• Integration of DTI and rs-fMRI information at a whole-brain connectivity level;

• Multimodality data fusion using multiple-kernel SVM.

An overview of the proposed MCI classification framework is summarized graphically in
Figure 1.

2.3.1. Processing of DTI—The DTI images were first parcellated into 90 regions (45 for
each hemisphere) by propagating the automated anatomical labeling (AAL) ROIs [28] to
each image using a deformable DTI registration algorithm called F-TIMER [33, 34] with
tensor orientation corrected using the method described in [32]. Whole-brain streamline
fiber tractography was then performed on each image using ExploreDTI [19]. Whole-brain
streamline fiber tractography was performed on each DTI image using ExploreDTI [19],
with minimal seed point fractional anisotropy (FA) of 0.45, stopping FA of 0.25, minimal
fiber length of 20 mm, and maximal fiber length of 400 mm. The number of fibers passing
through each pair of regions was counted. Two regions were considered as anatomically
connected if fibers passing through their respective masks were present, giving us the
connection topology of the network.
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On top of the fiber count based connectivity network, averages of on-fiber FA, mean
diffusivity (MD) and principal diffusivity values were computed to form another 5
connectivity networks with the same topology but conveying different biophysical
properties [31]. The fiber count network provides information on the number of fibers
connecting a pair of regions. The FA network provides information on the degree of
anisotropy along the fibers, the MD network provides information on the average diffusivity
along fibers, the λ1 network provides information on the on-fiber average axial diffusivity
(also called the longitudinal diffusivity); and the λ2 and λ3 networks provide information on
the on-fiber average radial diffusivities (diffusivities in directions perpendicular to the
axonal direction). By including these different biophysical properties, subtle information of
WM atrophy caused by pathological disorder can be extracted and used to improve
classification performance. It has been reported in a recent paper [31] that this informative
description is capable of significantly improving classification accuracy compared with
simple univariate description. Examples of the constructed connectivity maps are shown in
Figure 2.

2.3.2. Processing the Resting-State fMRI (rs-fMRI)—Post-processing of the rs-fMRI
images, such as slice timing correction and head-motion correction were performed using
the Statistical Parametric Mapping software package (SPM8,
http://www.fil.ion.ucl.ac.uk.spm). To ensure magnetization equilibrium, the first 10 acquired
fMRI images of each subject were discarded. The remaining 140 images were first corrected
for the acquisition time delay among different slices before they were realigned to the first
volume of the remaining images for head-motion correction. We hypothesize that the
variability of BOLD signal of GM regions is sensitive in delineating the alteration of
connectivity patterns, caused by pathological attacks of MCI. Removing signal from the
ventricles and WM is motivated by the fact that these regions contain a relatively high
proportion of noise caused by the cardiac and respiratory cycles [29]. Accordingly, we first
segmented the T1-weighted image of each subject into GM, WM and CSF. For each subject,
the GM was then used to mask the fMRI images. This procedure eliminated the possible
contribution from WM and CSF in the re-fMRI time series.

The first scan of fMRI time series was coregistered to the T1-weighted image of same
subject. The estimated transformation was then applied to other fMRI scans of the same
subject. Deformation fields were estimated by warping the Automated Anatomical Labeling
(AAL) [28] template (T1-weighted image) to the subject T1-weighted images using a
deformable registration method called HAMMER [25]. The brain space of each subject was
then parcellated into 90 ROIs by warping the AAL region masks to the subject space using
the estimated deformation fields. For each subject, the mean time series of each individual
ROI was computed by averaging the GM-masked fMRI time series over all voxels in that
particular ROI.

One crucial step in rs-fMRI analysis is temporal band-pass filtering. The frequency interval
of band-pass filtering varies and depends on the application, but is normally within the
interval of [0.01 – 0.10 Hz] since the fMRI dynamics of neuronal activities are most salient
within this frequency interval. It provides a reasonable trade-off between avoiding the
physiological noise associated with higher frequency oscillations [6] and the measurement
error associated with estimating very low frequency correlations from limited time series
[1].

The analysis of rs-fMRI is normally performed on full spectrum of the filtered signals - a
relatively global analysis which might not be sensitive enough to delineate complex yet
subtle pathological patterns related to the neurological disease. Such global analysis on
BOLD signal might cause local, subtle temporal changes to be averaged out, and thus
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deteriorate classification performance. A relatively local analysis, which is more sensitive to
BOLD signal changes, is hence required.

In order to extract complex, yet subtle pathological influences of MCI, we employed a
multi-spectrum characterization of the regional mean time series, which utilizes multiple
frequency sub-bands, in contrast to the conventional full-spectrum description, to construct
functional connectivity networks. The GM-masked mean time series of each region was
band-pass filtered within frequency interval [0.025 ≤ f ≤ 0.100Hz] before it was
decomposed into five distinct, equally divided frequency sub-bands using the Fast Fourier
transform (FFT), enabling a relatively frequency specific analysis of the regional mean time
series. By using this multi-spectral characterization, a relatively local analysis, which is
more sensitive in delineating complex yet subtle pathological patterns related to the
neurological disease, can be achieved.

Functional connectivity, which represents interregional correlations in neuronal variability,
was measured using pairwise Pearson correlation coefficients between the ROI pairs. Given
a set of N random variables, the Pearson correlation matrix is a symmetric matrix in which
each off-diagonal element is the correlation coefficient between a pair of variables. We
considered the brain regions as a set of nodes and the correlation coefficients as signed
weights represented by the edges connecting the nodes. Fisher’s r-to-z transformation was
applied on the elements of the Pearson correlation matrix to improve the normality of the
correlation coefficients as

(1)

where r is the Pearson correlation coefficient and z is approximately a normal distribution
with standard deviation . The functional connectivity networks are represented
in the form of z-maps. Examples of the constructed functional connectivity maps for a
normal control (NC) and an individual with MCI are shown in the top and bottom rows of
Figure 3, respectively.

2.3.3. Feature Extraction and Feature Selection—The weighted local clustering
coefficient, a measure that quantifies the cliquishness of the nodes, is extracted from all
connectivity maps as

(2)

where ζ is the subnetwork comprising of kp nodes directly connected to the p-th node, and
z(p, q) is the edge weight between the p-th ROI and q-th ROI. Hence, a total of 90 features
can be obtained from each connectivity map, producing for each subject a pool of (6 × 90 =
540) and (5 × 90 = 450) features for DTI and fMRI modalities, respectively.

Statistical t-test was performed to select the most discriminative features for classification.
Features with p-values smaller than a predefined threshold will be selected to construct the
individual kernel matrix for each imaging modality.

2.3.4. Multiple-Kernel SVM—Given n training samples with Xi = {xi,1,…, xi,D} denoting
the feature vector of the i-th sample (D = number of connectivity maps, d = 1,…, D and xi,d
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= {fi,d,(1), …,fi,d(90)}), yi ∈ {− 1,1} denoting the corresponding label, the primal
optimization problem of a conventional single kernel SVM is given as

(3)

where ξi, C, b, w and ϕ(·) denote the distance of the i-th misclassified observation from its
correct side of the margin, the model parameter that controls the amount of constraint
violations introduced by ξi, the bias term, the normal vector of hyperplane, and the kernel-
induced mapping function, respectively.

By applying the kernel approach, equation (3) is normally solved using its dual form

(4)

where α is the Lagrange multiplier and k(Xi, Xj) is the kernel function for training samples,
Xi and Xj.

In order to integrate the biomarkers from M modalities, multiple-kernel SVM version of
primal optimization problem can be written as

(5)

where βm ≥ 0 denotes the weighting factor on the m-th modality. Accordingly, the
corresponding dual form can be written as

(6)

where  is the kernel function for the m-th modality.

Given a new test sample X = {X(1),…, X(M)}, the decision function for the predicted label
can be determined as
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(7)

The multiple-kernel SVM can be naturally embedded into the conventional single kernel

SVM framework by noting  as a mixed-kernel between the

multimodality training samples Xi and Xj, and  as a mixed-
kernel between the multimodality training sample between Xi and the test sample X.

2.3.5. SVM Training and Classification—A linear kernel based SVM classifier based
on the LIBSVM library [5] was adopted in the current framework based on mixed-kernel.
Before we computed the kernel between pairs of feature vectors, we first performed a
normalization step on each feature vector to obtain unit norm vector (i.e., ∥x∥2 = 1). In fact,
linear kernel with this normalization step can be regarded as a “normalized linear kernel”
and is defined as

(8)

where T denotes matrix transpose, (x, y) denotes the training set of instance-label pairs, ∥·∥2
denotes l2-norm.

In order to obtain an unbiased estimation of the generalization performance of the complete
framework and at the same time select the optimal SVM model, a nested cross-validation
scheme was employed. Algorithmically, this can be described as two nested loops of cross-
validation. Hyperparameter as part of the SVM model is determined in the inner loop of
cross-validation. The selected models are then evaluated in terms of their generalization
ability using an independent validation set. This procedure is repeated until all subjects have
been left out. We note that in each run of the outer-loop cross-validation loop, the selected
model and hence the hyperparameter can be different.

2.4. Summary of Methodology
The proposed multiple-kernel SVM based multimodality classification framework is
summarized as follows.

1. In the DTI modality, whole-brain streamline tractography is performed using the
90-region AAL atlas to construct structural connectivity network based on the
number of fibers passing through each pair of regions. Based on the common fibers
connecting each region pair, on-fiber average FA, MD, and principal diffusivities
are derived to construct another five connectivity networks.

2. For each network, the clustering coefficients for each ROI are determined to
compute a total of 90 features. Feature vectors from all networks of each subject
were concatenated to form a long feature vector to provide an informative
description of WM connections finally resulting in a total of 540 features.

3. In the fMRI processing, the first 10 fMRI images are discarded to cater for
magnetization equilibrium of each subject. Slice timing correction and intra-subject
registration of the acquired rs-fMRI time series are performed on the remaining
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images using the SPM software package to correct the slice acquisition time delay
and head motion.

4. T1-weighted image of each subject is segmented and its GM regions are then used
to mask the acquired fMRI time series. The brain space is further parcellated into
90 regions using the AAL template.

5. The mean time series of each ROI, which is obtained by averaging all voxels within
the GM-masked ROI, is band-pass filtered (0.025 ≤ f ≤ 0.100Hz) before it is further
decomposed into five equally-divided, distinct frequency sub-bands. Five
functional connectivity networks are constructed using pairwise Pearson correlation
coefficients, one for each frequency sub-band.

6. For each network, the local clustering coefficients for all ROIs are determined as
features for classification. All clustering coefficients are concatenated to form a
long feature vector consisting of 450 features.

7. For each modality, features with significant discriminative power are selected using
t-tests.

8. Individual kernel matrices are then constructed from the selected features of each
modality before they are integrated to form a single mixed-kernel matrix.

9. The constructed mixed-kernel is employed to train SVM classifiers in a leave-one-
out fashion using the LIBSVM solver.

3. Experimental Results
As with common practice, the classifiers are evaluated based on the classification accuracy
and the area under ROC curve (AUC). Classification accuracy measures the effectiveness of
predicting the true class label. The area under receiver operating characteristic (ROC) curve
measures the probability that when one positive and one negative samples are drawn at
random, the decision function assigns a higher value to the positive than to the negative
sample.

In addition, we also employed other statistical measures to evaluate the diagnostic power of
the various methods used for comparison. The Youden’s index (Y), Balanced ACcuracy
(BAC) and F-score (F) are defined respectively as [27]

(9)

(10)

(11)

where
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with TP, TN, FP and FN denoting true positive, true negative, false positive and false
negative, respectively. F-score is a composite measure that favors algorithms with higher
sensitivity and challenges those with higher specificity. Youden’s index evaluates the ability
of the algorithm to avoid failure by equally weighting its performance on positive and
negative samples.

3.1. Classification based on Multimodality Connectivity Maps
The proposed multiple-kernel SVM based multimodality classification approach was
compared with the single modality approach and the direct data fusion method. In the single
modality approach, only features selected from a single imaging modality (DTI or rs-fMRI)
were applied for kernel matrix construction. In the direct data fusion method, all 990
features, including DTI and rs-fMRI features, were first concatenated into a long vector
before feature selection and kernel matrix construction. In the multiple-kernel approach, the
optimal weighting factor, βm, was determined via grid search. Similarly, in all experiments
parameters such as p-value for t-test feature selection method and SVM soft margin
constraint parameter, C, were also determined via grid search.

Comparison was performed via leave-one-out cross-validation due to the limited number of
available samples. Classification performance for identification of individuals with MCI
using single and multimodality connectivity networks are summarized in Table 2. The
proposed method yields a classification accuracy of 96.30%, which is an increment of at
least 7.41% from that of the single modality approach and the direct data fusion method. It
also outperformed all other methods in the rest of the computed statistical indices.

A cross-validation estimation of the generalization performance shows an area of 0.9529
under the ROC curve (AUC), indicating excellent diagnostic power. ROC curves for all
compared methods are shown in Figure 4.

3.2. Effect of Weighting Factor, βm
The weighting factor, βm, determines the contribution of each modality in multimodality
classification as formularized in equations (5), (6) and (7). A larger βm value indicates larger
contribution of DTI to the classification and vice versa. In this experiment, we seek to
investigate how classification performance varies with respect to βm. We fixed the constraint
parameter, C to 3.0, and p-value to 0.01 for both modalities for feature selection. The
classification accuracy and AUC value of the proposed method are shown graphically in
Figure 5.

It is observed that higher classification accuracy is achieved when larger βm value is used.
Accuracy of more than 90% can be achieved with βm equal or larger than 0.3. The highest
accuracy values are achieved within the range of 0.40 ≤ βm ≤ 0.65. Similar trends can be
observed for AUC values. High and consistent AUC values are obtained over a relatively
wide range of 0.35 ≤ βm ≤ 0.70. This indicates that the proposed method is relatively robust
to the weighting factor. The skewness of the accuracy and AUC graphs towards larger βm
values indicates dominance of structural information carried by the DTI modality in the
classification.
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3.3. Effect of Constraint Parameter, C
We investigate the influence of different values of the constraint parameter, C, on the
classification performance. We fixed the weighting factor, βm to 0.6 and varied the
constraint parameter, C, from 1 to 10, in steps of 1. The p-value used for feature selection
were maintained as 0.01 for both modalities. The classification accuracies and AUC values
with respect to C are shown in Figure 6.

Classification performance is relatively robust to C. Variation of constraint parameter, C,
does not significantly affect the performance of the proposed method. In addition, we also
tested our method using several much larger C values, i.e., 50 and 100. The outcome again
showed that the proposed method consistently maintains high classification accuracy,
despite the high C values.

3.4. Effect of Predefined Threshold for Feature Selection
In the proposed framework, the statistical t-test is applied to select a subset of features with
most discriminative power. Features with their p-value smaller than a predefined threshold
are retained for construction of SVM classifiers. Thus, the number of features that will be
selected is determined by the predefined threshold. In this subsection, an experiment is
performed to explore the robustness of the proposed framework over the number of features
selected. The performance is summarized in Figure 7.

A high classification performance is consistenly observed with the variation of p-value
(variation in the number of selected features). Classification accuracy is more than 88.0%
for most of p-values. For large p-values, classification accuracy deteriorates because more
features, including some redundant and confounding features, are selected for constructing
the classifier. The proposed framework shows a very consistent AUC value, always larger
than 0.92, over the p-values, indicating excellent diagnostic power. The numbers of features
selected for different p-values are provided in Table 3.

3.5. The Most Discriminant Regions
The most discriminant regions that are selected during classifier construction include the
orbitofrontal cortex, temporal pole, anterior and posterior cingulate gyrus, frontal gyrus,
amygdala, precuneus, thalamus, parahip-pocampal gyrus and insula, in line with results
reported in previous studies. Regions which are selected by t-test feature selection method
for mixed kernel construction are shown in Table 4. The top twelve selected regions used for
multimodality classification are graphically shown in Figure 8.

3.6. Classification Performance Using Linear And Nonlinear Kernel Functions
In this subsection, we compared the classification performance of our proposed framework
using the linear and nonlinear kernel-based SVMs. The best classification performance of
the linear kernel as well as two other nonlinear kernels, i.e., radial basis function (RBF) and
polynomial, are provided after choosing the optimal parameters via grid search. The
polynomial kernel used in this study is a homogeneous kernel defined as

(12)

where T denotes matrix transpose, (x, y) denotes the training set of instance-label pairs and d
denotes the polynomial degree. The best classification performance achieved for all
compared methods are shown in Table 5.
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It can be observed that the performance of polynomial kernel is the same as the linear
kernel. In fact, we found that the best performance is found to be when d = 1. RBF kernel
shows significant improvement in classification performance if compared to the linear and
polynomial kernels. However, the proposed normalized linear kernel performs better than
the RBF kernel. We adopted the normalized linear kernel in this study since choosing the
appropriate value of σ for RBF kernel is very challenging in practice.

4. Discussion
4.1. Significance of Results

Single modality of biomarkers has been widely employed for AD/MCI diagnosis and
prediction, often achieving relatively high performance. Single-modality-based methods rely
on simpler scanning protocols and hence require less image acquisition effort, making them
more clinically feasible. However, information from different imaging biomarkers
complements to each other and potentially improve prediction accuracy. Integration of
biomarkers of different modalities with different data fusion methods for diseases diagnosis
and prediction is still an open area of research. Our study demonstrates that multimodality
connectivity network analysis can be employed to distinguish individuals with MCI from
normal controls with high accuracy.

It is well know that misclassifying a healthy person to be a patient may be troublesome,
however, misclassifying a patient to be a healthy person may cause severe consequences. If
a patient is mis-diagnosed as a healthy person, necessary treatments to delay or cure the
disease may not be provided on time during the critical treatment period. This will accelerate
the progression of disease from mild to severe, a point where no effective treatment is
available, eventually causing death of patient. Hence, it is tremendously crucial for a
classifier to alleviate such circumstance by providing high sensitivity to the disease. Our
results shown an improvement in sensitivity when both imaging modalities are combined
through the multiple-kernel SVM algorithm. Statistically, our method performed better than
any single modality method due to the improvement of sensitivity while maintaining high
specificity. Furthermore, our method shows a relatively stable and robust performance with
respect to the modality weighting factor and SVM constraint parameter.

The regions selected in the course of classification by our method are in agreement with
previous studies and include the prefrontal cortex and or-bitofrontal cortex [14], temporal
pole [13], anterior and posterior cingulate gyrus, precuneus and insula [8], amygdala [7],
thalamus [30], parahippocampal gyrus [21, 4, 24], inferior temporal left, superior temporal
gyrus right and precentral gyrus right [20], inferior temporal left, inferior frontal gyrus left,
insula and superior temporal gyrus [17].

4.2. Methodological Issues/Limitations
The performance of our method may be affected by the unbalanced data between individuals
with MCI and normal controls that was used for SVM model construction. This is typically
the case in real world disease diagnosis, where patient samples are normally more difficult
to collect, depending on the prevalence of the disease. A classifier will normally try to adapt
itself for better prediction of the majority class; this will increase the overall classification
accuracy. Although the sensitivity has been improved by using multimodality connectivity
networks, the proposed framework at its current stage is not designed to handle this issue.
Full investigation focusing on handling unbalanced data will be our future work.

Whole-brain connectivity network analysis, a relative new neuroimaging approach for
disease diagnosis and prediction, is still facing some fundamental problems. One of the
problems is the lack of standardized approaches for brain parcellation, resulting in network
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nodes that are often define either anatomically or randomly [35]. The scale of parcellation
can affect network properties such as clustering coefficient, global and local efficiencies,
path length, small-worldness, etc.

There are many other imaging modalities that have been used for AD/MCI classification and
prediction, as mentioned in Section 1. Integration of imaging modalities other than DTI and
fRMI will be explored in the future to further improve the classification performance based
on the proposed framework. We also plan to apply our method to distinguish between MCI
subjects who progressed to AD, and those who remained stable for a certain number of
years.

Our current study is limited by the small sample and statistical power is hence a potential
concern. Leave-one-out cross-validation, as employed in this study, provides an optimistic
estimate of the classification accuracy since all except one of the subjects are used to train
the classifier. Hence, almost all information available in the dataset is used in classifier
model construction. For other classification approaches such as k-fold cross-validation, only
N − k (N is the total number of subjects in the dataset) subjects are included during training
process, and hence the performance obtained may be less optimistic to the small dataset used
in this study. However, estimation of the classification accuracy using k-fold cross-
validation might be more precise when compared to leave-one-out cross-validation provided
that there are sufficient data to accurately train the classifier. Our dataset is quite diverse,
and it includes both sexes and all ages between 55 to 84 for individuals with MCI and 55 to
88 for normal controls. However, the results obtained have to be verified in the future with
larger datasets to reduce individual effects and to validate the effectiveness of the proposed
technique.

5. Conclusion
This study investigated the diagnostic power of multimodality connectivity networks
derived from the DTI and rs-fMRI for identifying individuals with MCI from normal
controls. In this framework, multiple modalities integration was achieved via a multiple-
kernel SVM algorithm. SVM classifiers were trained using a mixed kernel that was
constructed from the individual kernel of each modality. This framework improves
classification performance and hence justifies the hypothesis that the DTI and rs-fMRI
contain complementary information, and each of them is indispensable particularly for
achieving better diagnostic power. High sensitivity provided by our framework ensure that
necessary treatments can be provided to individuals with MCI during critical treatment
period and hence possibly delays the progression of MCI to AD or other cognitive
impairment related dementias. The promising results shed new light on the effectiveness of
applying multimodality information for diagnosis of progressive neurodegenerative
disorders such as AD.

Research Highlights

• Multiple imaging modalities provide complementary information that enhance
our understanding of the brain.

• Identification of MCI and cognitively healthy individuals using multimodality
connectivity networks.

• DTI and resting-state fMRI connectivity networks are used in multimodality
classification.

• Multimodality classification leads to better MCI classification performance.
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Figure 1.
Schematic diagram illustrating the proposed classification framework.
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Figure 2.
Connectivity maps constructed from various DTI measures.
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Figure 3.
Multi-spectral functional connectivity maps for NC (top) and MCI (bottom), respectively.
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Figure 4.
ROC curves.
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Figure 5.
Performance of the multi-kernel SVM based multimodality classification with respect to the
weighting factor, βm. (Left: Classification accuracy; Right: AUC)
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Figure 6.
Performance of the multi-kernel SVM based multimodality classification with respect to the
constraint parameter, C. (Left: Classification accuracy; Right: AUC)
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Figure 7.
Performance of the multi-kernel SVM based multimodality classification with respect to the
p-value. (Left: Classification accuracy; Right: AUC)
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Figure 8.
Top twelve selected regions used for classification.
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Table 1

Demographic information of the participants involved in this study.

Group MCI Normal

No. of subjects 10 17

Gender (M/F) 5M/5F 8M/9F

Age (mean ± SD) 74.2 ± 8.6 72.1 ± 8.2

Years of education (mean ± SD) 17.7 ± 4.2 16.3 ± 2.4

MMSE (mean ± SD) 28.4 ± 1.5 29.4 ± 0.9

Neuroimage. Author manuscript; available in PMC 2013 February 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Wee et al. Page 26

Ta
bl

e 
2

C
la

ss
ifi

ca
tio

n 
pe

rf
or

m
an

ce
 o

f s
in

gl
e 

an
d 

m
ul

tim
od

al
ity

 c
on

ne
ct

iv
ity

 n
et

w
or

ks
. (

A
C

C
 =

 A
C

C
ur

ac
y;

 S
EN

 =
 S

EN
si

tiv
ity

; S
PE

 =
 S

PE
ci

fic
ity

)

M
et

ho
d

A
C

C
 (%

)
SE

N
 (%

)
SP

E
 (%

)
A

U
C

Y
B

A
C

F

fM
R

I
70

.3
7

70
.0

0
70

.5
9

0.
78

82
0.

40
59

0.
70

29
0.

63
64

D
TI

88
.8

9
80

.0
0

94
.1

2
0.

93
53

0.
74

12
0.

87
06

0.
84

21

D
ire

ct
88

.8
9

90
.0

0
88

.2
4

0.
91

18
0.

78
24

0.
89

12
0.

85
71

Pr
op

os
ed

96
.3

0
10

0.
00

94
.1

2
0.

95
29

0.
94

12
0.

95
24

0.
97

06

Neuroimage. Author manuscript; available in PMC 2013 February 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Wee et al. Page 27

Ta
bl

e 
3

N
um

be
rs

 o
f f

ea
tu

re
s s

el
ec

te
d 

fo
r d

iff
er

en
t p

-v
al

ue
s. 

(L
O

O
 =

 le
av

e-
on

e-
ou

t)

L
O

O
p-

va
lu

e

0.
00

4
0.

00
6

0.
00

8
0.

01
0

0.
01

2
0.

01
4

D
T

I
fM

R
I

D
T

I
fM

R
I

D
T

I
fM

R
I

D
T

I
fM

R
I

D
T

I
fM

R
I

D
T

I
fM

R
I

1
7

1
7

7
7

16
7

24
7

26
7

28

2
7

0
7

3
7

10
7

15
8

22
8

24

3
7

5
7

10
7

13
7

20
7

24
7

31

4
6

8
7

17
7

21
7

25
7

30
7

36

5
5

4
7

10
7

14
7

15
8

20
8

22

6
7

2
7

6
7

10
7

12
8

12
8

15

7
7

0
7

3
7

7
7

8
7

12
7

15

8
7

0
7

3
7

7
7

11
8

14
8

20

9
7

0
7

4
7

8
7

10
8

13
8

16

10
7

0
7

1
7

3
8

10
8

14
8

20

11
7

0
7

2
7

6
7

10
8

10
8

12

12
7

5
7

10
7

14
7

17
7

20
7

25

13
6

1
7

3
8

4
9

6
10

11
11

14

14
7

2
7

5
7

10
7

17
7

18
8

20

15
7

2
7

4
7

7
7

11
7

16
7

21

16
7

0
7

1
7

3
7

6
7

8
8

10

17
8

0
8

0
8

1
8

3
8

5
9

9

18
7

0
8

0
8

2
9

3
10

5
12

9

19
7

0
7

1
7

3
7

7
7

9
8

12

20
7

5
7

9
7

12
7

14
7

18
7

19

21
7

1
7

5
7

8
7

10
7

11
7

13

22
7

0
7

1
7

4
7

7
7

9
8

10

23
7

5
7

8
7

18
7

20
7

29
8

32

24
7

2
7

4
7

8
8

17
8

22
8

27

25
7

0
8

0
8

0
8

2
8

4
8

5

26
6

0
7

0
7

3
7

4
8

5
8

13

Neuroimage. Author manuscript; available in PMC 2013 February 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Wee et al. Page 28

L
O

O
p-

va
lu

e

0.
00

4
0.

00
6

0.
00

8
0.

01
0

0.
01

2
0.

01
4

D
T

I
fM

R
I

D
T

I
fM

R
I

D
T

I
fM

R
I

D
T

I
fM

R
I

D
T

I
fM

R
I

D
T

I
fM

R
I

27
7

0
7

0
7

0
7

2
7

4
7

5

Neuroimage. Author manuscript; available in PMC 2013 February 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Wee et al. Page 29

Table 4

Regions selected during classification.

Regions

Rectus gyrus right

Insula right

Orbitofrontal cortex (medial) left

Temporal pole (superior) right

Orbitofrontal cortex (medial) right

Amygdala right

Posterior cingulate gyrus left

Posterior cingulate gyrus right

  Anterior cingulate gyrus left

Temporal pole (superior) left

Orbitofrontal cortex (superior) right

Anterior cingulate gyrus right

Middle frontal gyrus right

Inferior frontal gyrus (opercular) right

Precentral gyrus right

Precuneus left

Thalamus right

Temporal pole (middle) left

ParaHippocampal gyrus left

Superior occipital gyrus left
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Table 5

Classification performance of linear and nonlinear kernels based SVM.

Kernel ACC (%) AUC

linear 85.16 0.8941

polynomial 85.16 0.8941

RBF 92.59 0.9353

Proposed 96.30 0.9529
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