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Abstract
Accurate and consistent reconstruction of cortical surfaces from longitudinal human brain MR
images is of great importance in studying longitudinal subtle change of the cerebral cortex. This
paper presents a novel deformable surface method for consistent and accurate reconstruction of
inner, central and outer cortical surfaces from longitudinal brain MR images. Specifically, the
cortical surfaces of the group-mean image of all aligned longitudinal images of the same subject
are first reconstructed by a deformable surface method, which is driven by a force derived from
the Laplace’s equation. And then the longitudinal cortical surfaces are consistently reconstructed
by jointly deforming the cortical surfaces of the group-mean image to all longitudinal images. The
proposed method has been successfully applied to two sets of longitudinal human brain MR
images. Both qualitative and quantitative experimental results demonstrate the accuracy and
consistency of the proposed method. Furthermore, the reconstructed longitudinal cortical surfaces
are used to measure the longitudinal changes of cortical thickness in both normal and diseased
groups, where the overall decline trend of cortical thickness has been clearly observed.
Meanwhile, the longitudinal cortical thickness also shows its potential in distinguishing different
clinical groups.
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1. Introduction
The human cerebral cortex is a thin, highly folded sheet of gray matter with the thickness
varying between 1 and 5 mm (von Economo, 1929; Zilles, 1990; Fischl and Dale, 2000;
MacDonald et al., 2000; Han et al., 2004). Reconstruction of cortical surfaces from brain
magnetic resonance (MR) images plays a vital role in studying structure and function of
human brains (Van Essen et al., 1998; Dale et al., 1999). Having reconstructed cortical
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surfaces, one can study the cortical folding patterns of gyri and sulci (Tao et al., 2002; Li et
al., 2009; Li et al., 2010a; Li et al., 2010b; Mangin et al., 2010), cortical thickness (Fischl
and Dale, 2000; MacDonald et al., 2000; Han et al., 2004), sulcal depth (Van Essen et al.,
2001), curvature (Cachia et al., 2003), average convexity (Fischl et al., 1999a), local
gyrification (Schaer et al., 2008), surface area, and fiber density (Zhang et al., 2010). Also,
one can perform cortical surfaces based spatial normalization (Thompson and Toga, 1996;
Fischl et al., 1999b; Van Essen, 2004; Liu et al., 2004), surface-based probabilistic atlas
generation (Van Essen and Dierker, 2007), cerebral cortex folding modeling (Nie et al.,
2010), functional brain mapping (Van Essen et al., 1998; Andrade et al., 2001) and brain
connectivity study (Hagmann et al., 2008), etc. Many methods have been proposed for
cortical surface reconstruction from brain MR images in the literature (Mangin et al., 1995;
Davatzikos and Bryan, 1996; Xu et al., 1999; Dale et al., 1999; Zeng et al., 1999; Joshi et
al., 1999; MacDonald et al., 2000; Van Essen et al., 2001; Kriegeskorte and Goebel, 2001;
Shattuck and Leahy, 2002; Han et al., 2004; Kim et al., 2005; Xu et al., 2006; Eskildsen and
Ostergaard, 2006; Liu et al., 2008; Shi et al., 2011). However, most existing cortical surface
reconstruction methods were mainly designed for working on a single MR image. Recently,
longitudinal imaging studies have increasingly received considerable attentions in
neuroscience and clinical studies (Reuter and Fischl, 2011). For studying longitudinal
changes of cortical structures, which is important to normal development, aging, and disease
progression of human brains, it requires more accurate cortical surface reconstruction and
representation, since longitudinal cortical changes in short times are usually very subtle,
especially in normal aging or even in Alzheimer’s disease (Li and Shen, 2011). Therefore,
applying the existing cross-sectional methods independently to the reconstruction of cortical
surfaces at each time point in a longitudinal imaging study may generate longitudinally-
inconsistent cortical surfaces, due to the inconsistency of skull stripping, tissue
segmentation, topology correction, surface tessellation and surface evolution, etc.
Accordingly, several efforts have been made towards the reconstruction of cortical surfaces
from longitudinal human brain MR images (Han et al., 2006; Reuter and Fischl, 2011;
Nakamura et al., 2011), e.g., the recent longitudinal processing pipeline in FreeSurfer
(Reuter and Fischl, 2011), in which cortical surfaces of the group-mean image (averaged
from the rigidly-aligned longitudinal images of a subject) or the median image are used as
initialization for each longitudinal image and then separately deformed at each time point to
achieve longitudinal cortical surface reconstruction.

The central theme of this paper is to present a new method for accurate and consistent
reconstruction of inner, central, and outer cortical surfaces from longitudinal human brain
MR images. The inner cortical surface is the interface between white matter (WM) and gray
matter (GM), and the outer cortical surface is the interface between GM and cerebrospinal
fluid (CSF) (Fischl and Dale, 2000; MacDonald et al., 2000; Han et al., 2004). The central
cortical surface is defined as the layer lying in the geometric center of the cortex,
approximately corresponding to the cytoarchitechtonic layer four (Xu et al., 1999; Van
Essen et al., 2001; Han et al., 2004; Liu et al., 2008). Comparing to the inner and outer
cortical surfaces, the central cortical surface could provide better geometric information of
the cortex (Xu et al., 1999; Van Essen et al., 2001). For consistent reconstruction of cortical
surfaces from longitudinal images, in our method, the cortical surfaces of a group-mean
image of all non-rigidly aligned longitudinal images are first reconstructed using a
parametric deformable surface method (Kass et al., 1987), which has been extensively
adopted for cortical surface reconstruction from a single MR image (Davatzikos and Bryan,
1996; Xu et a., 1999; Dale et al., 1999; Kim et al., 2005; Eskildsen and Ostergaard, 2006;
Liu et al., 2008), and then the cortical surfaces of the group-mean image are used as the
initialization to reconstruct all longitudinal cortical surfaces simultaneously. To drive the
deformable surfaces towards the target surfaces (inner, central and outer cortical surfaces), a
force derived from the Laplace’s equation (Jones et al., 2000) is adopted. Our proposed

Li et al. Page 2

Neuroimage. Author manuscript; available in PMC 2013 February 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



method has been successfully applied to two sets of longitudinal human brain MR images,
and experimental results demonstrate the accuracy and consistency of our proposed method.
The reconstructed longitudinal cortical surfaces are used to measure the longitudinal
changes of cortical thickness in both normal and diseased groups, and the overall decline
trend of cortical thickness in aging has been observed, which is consistent to the findings
reported in the literature (Resnick et al., 2000, 2003; Salat et al., 2004; Rettmann et al.,
2006; Fjell et al., 2009a, 2009b; Thambisetty et al., 2010). Meanwhile, the longitudinal
cortical thickness also shows its potential in distinguishing different clinical groups.

Our proposed method has several advantages over the existing methods (Reuter and Fischl,
2011; Nakamura et al., 2011). First, temporal constraint is incorporated in longitudinal
cortical surface reconstruction by jointly deforming cortical surfaces of all longitudinal
images simultaneously, in contrast to the existing methods which independently deform the
cortical surface from the mean or median image at each time point (Reuter and Fischl, 2011;
Nakamura et al., 2011). Second, a force derived from the Laplace’s equation (Jones et al.,
2000) is used to drive the deformable surface to help preserve the topology of the
deformable surface. Third, the group-mean image in our method is obtained by a nonlinear
groupwise registration method (Wu et al., 2011), in contrast to the rigid alignment used in
the existing methods (Reuter and Fischl, 2011; Nakamura et al., 2011). At last, a
longitudinally-consistent tissue segmentation method (Xue et al., 2006) is also adopted to
facilitate the longitudinally-consistent cortical surface reconstruction.

2. Methods
Given longitudinal brain MR images of a subject, our method for consistent cortical surface
reconstruction consists of the following 4 major steps, as shown in Fig. 1. First, longitudinal
images are preprocessed, including the following steps: intensity-inhomogeneity correction,
rigid alignment, and non-brain-tissues removing. Second, longitudinal images are
groupwisely registered to obtain a group-mean image without bias, and also their tissues are
consistently segmented into WM, GM, and CSF. Third, the cortical surfaces of the group-
mean image are reconstructed using a deformable surface method. Finally, the cortical
surfaces of the group-mean image are warped to each longitudinal image and jointly
deformed to reconstruct longitudinal cortical surfaces at different time points.

2.1 Preprocessing
The preprocessing procedure includes the following steps: (1) correction of intensity
inhomogeneity of longitudinal images using N3 (Sled et al., 1998), (2) rigid registration of
follow-up images to the corresponding baseline image (the first scan), and rigid registration
of the baseline image to an atlas space, and combining the transform matrices in these two
steps to a single transform matrix to warp the original follow-up images onto the atlas space
accordingly, (3) skull stripping of the baseline images using BET (Smith, 2002) in Oxford
FSL tools, (4) removing of cerebellums and brain stems of the baseline images using in-
house tools, and (5) masking of the brains of the follow-up images using the same brain
mask of their corresponding baseline image. The motivation of rigid registration of all
longitudinal images to an atlas space in step (2) is as follows. Direct registration of the
follow-up images to the baseline image will inevitably introduce interpolation to the follow-
up images but not the baseline image, which results in smoother follow-up images in
contrast to the original baseline image (Yushkevich et al., 2010; Reuter and Fischl, 2011).
Therefore, to remove the bias of interpolation, all longitudinal images are transformed onto
the atlas space by one step transform. Note that in our method all linear registrations are
performed by FLIRT (Jenkinson and Smith, 2001) in Oxford FSL tools; however, more
sophisticated methods, such as a highly accurate inverse consistent method in Reuter et al.
(2010), can also be adopted.

Li et al. Page 3

Neuroimage. Author manuscript; available in PMC 2013 February 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



2.2 Groupwise registration and consistent tissue segmentation
Considering the nonlinear longitudinal morphological changes of human brain MR images
of a subject, instead of averaging rigidly-aligned images as did in the existing methods
(Reuter and Fischl, 2011; Nakamura et al., 2011), a nonlinear groupwise registration method
(Wu et al., 2011) is first adopted to obtain the unbiased group-mean image of longitudinal
images, as well as the deformation fields from each longitudinal image to the group-mean
image. Then, the group-mean image of the subject will be used to derive the initial cortical
surfaces for all longitudinal images of the same subject.

Tissue segmentation is one of the most important steps towards cortical surface
reconstruction. And longitudinally-inconsistent tissue segmentation will affect the
longitudinal cortical surface reconstruction results seriously. To achieve longitudinally-
consistent tissue segmentation results, CLASSIC (Xue et al., 2006) is adopted to perform
consistent tissue segmentation on longitudinal images, which iteratively performs joint
segmentation of longitudinal images and refinement of longitudinal deformations using a 4D
elastic warping (Shen and Davatzikos 2002, 2004). To deal with the tissue segmentation
errors in deep and narrow sulcal regions due to the imaging noises and partial volume
effects, which often lead to inaccurate estimation of the central and outer cortical surfaces
(Han et al., 2004; Kim et al., 2005), we use the anatomically consistent enhancement (ACE)
method in Han et al. (2004) to generate a no-more-than-one-voxel thick separation between
opposite sulcal GM banks for recovering deep buried sulci by modifying the initial
segmented GM volume.

2.3 Cortical surface reconstruction from group-mean image
Reconstruction of cortical surfaces from the group-mean image could be considered as a
problem of cortical surfaces reconstruction from a single MR image. In our method, the
inner cortical surface is first reconstructed, and then the inner cortical surface is deformed
under imposed internal and external forces to reconstruct both the central and outer cortical
surfaces. This strategy has been extensively used for cortical surface reconstruction from a
single image in the literature (Xu et al., 1999; Dale et al., 1999; Han et al., 2004; Kim et al.,
2005; Liu et al., 2008), since the inner cortical surface is relatively easier to be identified
than the central and outer cortical surfaces. Topological correctness is always an important
issue in cortical surface reconstruction (Mangin et al., 1995; Fischl et al., 2001; Shattuck and
Leahy, 2001; Kriegeskorte and Goebel, 2001; Han et al., 2002; Ségonne et al., 2007). To
obtain the topologically-correct inner cortical surface, the topology of the WM volume is
first corrected by a graph based method in Shattuck and Leahy (2001) as implemented in
BrainSuite (Shattuck and Leahy, 2002) to ensure a spherical topology, and then the
Marching cubes method (Lorensen and Cline, 1987) is used to convert the boundary of the
topology-corrected WM volume into an explicit cortical surface representation. Using a
deformable surface method, this reconstructed rough inner cortical surface is deformed
under imposed internal and external forces to obtain the refined inner cortical surface, as
well as to achieve the reconstruction of the central and outer cortical surfaces one-by-one.
Since the deformable surface for cortical surface reconstruction from a single image can be
considered as a special case of longitudinal cortical surface reconstruction, the general
deformable surface will be detailed in Section 2.4. Fig. 2 shows an example of the
reconstructed inner, central, and outer cortical surfaces of a group-mean image by our
method.

2.4 Longitudinal cortical surface reconstruction
The reconstructed cortical surfaces of the group-mean image are warped to each longitudinal
image using the corresponding deformation field generated by the groupwise registration
method (Wu et al., 2011), and further jointly deformed for cortical surface reconstruction of
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longitudinal images using a deformable surface method (Kass et al., 1987), as popularly
used in the literature for cortical surface reconstruction (Davatzikos and Bryan, 1996; Xu et
al., 1999; Dale et al., 1999; Kim et al., 2005; Eskildsen and Ostergaard, 2006; Liu et al.,
2008). Since the warped cortical surfaces are generally very close to the target surfaces
(inner, central and outer cortical surfaces), they just need to be refined. For longitudinal
surface reconstruction with n time points, the deformable surfaces at 4D (3D spatial + 1D
temporal) domain are parameterized as { xt (u) = [xt (u), yt (u), zt (u)]T, u = (u1, u2) ∈ [0,1]×
[0,1], t ∈ {1,…,n}}, which can be obtained by minimizing the following energy function:

(1)

where parameters α and β control the tension and rigidity of surfaces, respectively. And the
parameter γ controls the temporal smoothness of surfaces. xt,i and xt,ij denote the first and
the second partial derivative of xt w.r.t. ui, respectively. And  denotes the finite difference
of xt w.r.t. time t. And Eext (xt) is the external energy derived from the image at time t. The
solution to the above energy minimization problem can be obtained by solving the following
dynamic equation (Xu et al., 1999; Liu et al., 2008):

(2)

where the internal force is defined as  and the external force
Fext (xt) will be defined later. Here, Δu = ∂2/(∂u1)2 + ∂2/(∂u2)2 is the Laplacian operator to
u. And  denotes the second order finite difference of xt w.r.t. time t. In the internal force,
the first two terms are the spatial regularizing forces, and the third term is the temporal
regularizing force, which is used to impose temporal constraint along the time t. Note that
the deformable surface is treated as a function of surface evolution time τ. If only one time
point exists, the temporal regularizing force will be 0 and the above deformable surface can
be used for cortical surface reconstruction from the group-mean image as mentioned above.

The external force plays a central role to drive the initial surfaces towards the target
surfaces. For cortical surface reconstruction, the general external force is designed as:

(3)

where G(xt) is the GM indicator function and defined as: if xt is in GM, G(xt) = 1;
otherwise, G(xt) = 0. FGM (xt) is a force activated inside of GM and will be defined later.
And FNonGM (xt) is a force activated outside of GM and defined as:

(4)

where W (xt) is the WM indicator function, and n(xt) is the outward-oriented unit normal
vector. D(xt) is the force strength at vertex xt. For inner and outer surface reconstruction,
D(xt) is the distance along the direction of (2W (xt) − 1) n(xt) to the WM/GM and GM/CSF
interfaces, respectively. For central surface reconstruction, D(xt) is set as the average
distance along the direction of (2W (xt) − 1) n(xt) to WM/GM and GM/CSF interfaces.

The force FGM (xt) is derived from the Laplace’s equation (Jones et al., 2000) of the GM
layer, which has been widely used for computing cortical thickness in brain MR images.
Mathematically, Laplace’s equation is a second-order partial differential equation for a
scalar field ϕ enclosed between two interfaces:
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(5)

The solutions of Laplace’s equation are harmonic functions (Jones et al., 2000). By setting
the WM as the minimal value and the CSF as the maximum value, the Laplace’s equation is
solved inside of the GM to obtain the harmonic function. The normalized gradient vector
field of the harmonic function and the streamlines to both WM/GM and GM/CSF interfaces
are computed for each point in the GM. One important advantage of the Laplace’s equation
is that it establishes a one-to-one correspondence between WM/GM and GM/CSF interfaces
and the streamlines of the harmonic function can never intersect each other. This elegant
property helps preserve the topology of the deformable surface in GM when defining the
force FGM (xt) using the gradient vector field of the harmonic function. Denote the
normalized gradient vector field of the harmonic function as T(xt). And also denote the
lengths of streamlines from a point xt in GM to WM/GM and GM/CSF interfaces as L0 (xt)
and L1 (xt), respectively. Thus, the force FGM (xt) for inner, central and outer cortical
surfaces reconstruction can be respectively defined as:

(6)

(7)

(8)

The central idea behind this setting is that the direction of FGM (xt) should always point
toward the target surface and the magnitude of FGM (xt) should be directly proportional to
the distance to the target surface. Fig. 3 (a) and (b) illustrate the streamlines to GM/CSF
interfaces in GM where deep sulci have been recovered. And Fig. 3 (c) and (d) illustrate the
force directions for central and outer surface reconstruction in GM, respectively.

To preserve the topology when deforming surfaces, which is of great importance for
generating topologically correct cortical surfaces, a fast triangle-triangle intersection
detection method (Moller, 1997) is used, similar to the method in Dale et al. (1999). Once
self-intersection is detected when deforming a vertex, the deformation is reduced until to a
location where self-intersection no longer exists. Fig. 4 shows an example of reconstructed
outer cortical surfaces of longitudinal images of a subject with 8 time points color-coded by
cortical thickness, which is calculated as the closet distance between the inner and outer
cortical surfaces (Fischl and Dale, 2000). Fig. 5 shows an example of the reconstructed
longitudinal inner, central and outer cortical surfaces around the central sulcus in Fig. 4
overlaid in the corresponding 2D image slices. As we can see from Fig. 4, the cortical
thickness is relatively thin around the central sulcus, and such observation is consistent with
the findings in other surface reconstruction methods (Zeng et al., 1999; MacDonald et al.,
2000; Han et al., 2004). We can also observe the overall decline trend of the cortical
thickness in aging, which is consistent to the findings in the literature (Resnick et al., 2000,
2003; Salat et al., 2004; Rettmann et al., 2006; Fjell et al., 2009a, 2009b).
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3. Results
In this section, a set of experiments are conducted to evaluate our proposed longitudinal
cortical surface reconstruction method. Currently, all the parameters in our method are set
experimentally. And the parameters in the deformable surface are set as: α = 0.25, γ = 0.1,
and further fixed for all experiments. The parameter β, which controls the rigidity of the
deformable surface, is set as 0 as suggested by Xu et al. 1999 and Liu et al. 2008. With the
above parameter setting, reasonable cortical surface reconstruction results have been
obtained for longitudinal images as will be reported below. In the experiments, we also
found that the results are not sensitive to small changes of parameters.

3.1 Results on ADNI dataset
Data used in the preparation of this section were obtained from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database (adni.loni.ucla.edu). The ADNI was launched in
2003 by the National Institute on Aging (NIA), the National Institute of Biomedical Imaging
and Bioengineering (NIBIB), the Food and Drug Administration (FDA), private
pharmaceutical companies and non-profit organizations, as a $60 million, 5-year public-
private partnership. The primary goal of ADNI has been to test whether serial magnetic
resonance imaging (MRI), positron emission tomography (PET), other biological markers,
and the progression of mild cognitive impairment (MCI) and early Alzheimer’s disease
(AD). Determination of sensitive and specific markers of very early AD progression is
intended to aid researchers and clinicians to develop new treatments and monitor their
effectiveness, as well as lessen the time and cost of clinical trials. ADNI is the result of
efforts of many coinvestigators from a broad range of academic institutions and private
corporations, and subjects have been recruited from over 50 sites across the U.S. and
Canada. The initial goal of ADNI was to recruit 800 adults, ages 55 to 90, to participate in
the research – approximately 200 cognitively normal older individuals to be followed for 3
years, 400 people with MCI to be followed for 3 years and 200 people with early AD to be
followed for 2 years.

To validate the proposed method, we applied the method to both healthy and diseased
subject groups. Specifically, four groups of subjects in ADNI are adopted, including the
normal control (NC), stable mild cognitive impairment (S-MCI), progressive mild cognitive
impairment (P-MCI), and Alzheimer’s Disease (AD). The S-MCI subjects are the subjects
that do not convert to AD even after several years of follow-up, while the P-MCI subjects
are the subjects that finally developed probable AD. In all 4 groups, each subject has been
scanned at least four times. The scan intervals between 1–2 and between 2–3 time points are
around 6 months, and the scan interval between 3–4 time points are around 12 months. The
demographic and clinical information of all selected subjects in the four groups are provided
in Table 1. For more details of the criterion of selection of these subjects, we refer to Li et
al. 2011.

3.1.1 Validation of Accuracy—To evaluate the accuracy of the longitudinal inner and
outer cortical surface reconstruction results, we compare the GM volume in the tissue-
segmented image (denote as A) with the GM volume enclosed by the corresponding
reconstructed inner and outer surfaces (denote as B) as did in Lee et al. (2006). Three
statistical values are calculated, including: (1) true positive: (A ∩ B̄)/A, (2) false negative: (A
∩ B̄)/A, (3) false positive: (Ā ∩ B)/A, similar to the measurements adopted in Lee et al.
(2006). To evaluate the accuracy of the longitudinal central cortical surface reconstruction
results, we calculate the percentage of vertices of the reconstructed central surface falling
outside the GM (non-GM vertices), as adopted in Liu et al. (2008), since the central cortical
surface is converged to the inside of GM. The proposed method is applied to 10 randomly
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selected normal healthy subjects, each with 4 time points. The average true positive, false
negative, false positive, and percentage of non-GM vertices of 4 time points for each subject
are shown in Fig. 6. For inner and outer cortical surfaces, the average true positive, false
negative and false positive of our method are around 0.74, 0.26 and 0.15, respectively,
indicating the relative accuracy of the proposed method. For central cortical surfaces, the
average percentage of non-GM vertices of the reconstructed central surfaces by our method
is around 0.03, showing the good performance of the proposed method. The above
measurements are further compared in Fig. 6 to the results from the longitudinal processing
pipeline in FreeSurfer, indicating that our method obtains better results. However, it is worth
noting that, since FreeSurfer uses different tissue segmentation method from ours (4D-tissue
segmentation), the improvement by our method may be also contributed from the tissue
segmentation results.

To further validate the accuracy of the reconstructed inner and outer cortical surfaces, we
simulate brain images from our reconstructed inner and outer cortical surfaces using the
method in Lee et al. (2006). Briefly, the voxels inside the inner cortical surface are labeled
as WM, and the voxels between the inner and outer cortical surfaces are labeled as GM,
while the voxels between the skull and the outer cortical surface are labeled as CSF. Thus,
the longitudinal image sequences are simulated from the corresponding reconstructed inner
and outer cortical surfaces. Then the inner and outer cortical surfaces reconstructed from the
simulated longitudinal images are compared to those original inner and outer cortical
surfaces, which are treated as the “ground truth”. The average surface distance errors
between the two sets of surfaces are calculated and further averaged for 4 time points of
each subject. The distance errors of the inner and outer cortical surfaces of 10 simulated
subjects are shown in Fig. 7. On average, the average distance errors of the inner and outer
cortical surfaces are all around 0.6 mm, indicating the relative accuracy of our proposed
method. To further validate the accuracy of the central cortical surfaces, we also simulate
brain images from our reconstructed central surfaces using the method in Liu et al. (2008).
Specifically, a thickness value following a Gaussian distribution with the mean value 3.0mm
and variance 1.0mm is generated for each point of the central cortical surface by keeping the
thickness locally smooth, and all voxels inside the half thickness range are labeled as GM.
Also, all voxels enclosed by GM are defined as WM, and all the voxels between the skull
and GM are labeled as CSF. Similarly, the reconstructed central cortical surfaces from the
simulated longitudinal images are compared to those original central cortical surfaces. The
distance errors of central cortical surfaces of 10 simulated subjects are also shown in Fig 7.
The average distance errors of central cortical surfaces are around 0.55mm, indicating the
relative accuracy of our proposed method.

3.1.2 Evaluation of Consistency—In this section, we compare the capabilities of
consistently capturing longitudinally morphological cortical changes by three methods,
including our method, our method without temporal constraint (i.e., by setting the parameter
γ = 0), and the longitudinal processing pipeline in FreeSurfer (Reuter and Fischl, 2011). We
apply the three methods on 25 normal healthy subjects in the ADNI dataset to reconstruct
longitudinal cortical surfaces and calculate the cortical thicknesses as defined in Fischl and
Dale (2000), since one fundamental application of cortical surface reconstruction is to
measure the cortical thickness. We first parcellate cortical surfaces into 78 ROIs (Regions
Of Interest) using an atlas-based brain warping method (Shen and Davatzikos, 2002; Liu et
al., 2004) based on the AAL atlas (Tzourio-Mazoyer et al., 2002) and then merge these ROIs
into four lobes on each hemisphere, including frontal lobe, parietal lobe, temporal lobe and
occipital lobe, in order to evaluate the longitudinal consistency of the average cortical
thickness in each lobe. For quantitative comparison, a linear regression is performed on the
longitudinal trajectories of average thickness of each lobe in left hemisphere of each subject,
and the residuals are calculated. Smaller residual indicates that the longitudinal trajectory of
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cortical thicknesses is smoother. Since the longitudinal change of cortical thickness in short
time (such as 6 months) for normal aging brains is generally very subtle, it is naturally
expected that the average cortical thickness in each lobe should change smoothly along the
time. The average residuals by our method in left frontal, parietal, temporal and occipital
lobes are 0.0033 ± 0.0027 mm, 0.0035 ± 0.0023 mm, 0.0054 ± 0.0033 mm and 0.004 ±
0.0027 mm, respectively. And the average residuals by our method without temporal
constraint in left frontal, parietal, temporal and occipital lobes are 0.0174 ± 0.0121 mm,
0.0184 ± 0.0133 mm, 0.0225 ± 0.0162 mm and 0.0146 ± 0.0095 mm, respectively. While
the average residuals by FreeSurfer in left frontal, parietal, temporal and occipital lobes are
0.0331 ± 0.0189 mm, 0.0358 ± 0.0171 mm, 0.0298 ± 0.0201 mm and 0.0298 ± 0.0267 mm,
respectively. It can be concluded that the average residuals in each lobe by our method are
much smaller than the other two methods, indicating the necessity and benefit of imposing
temporal constraint for longitudinal cortical surface reconstruction.

To further demonstrate the consistency of our proposed method on each vertex, we compare
the trajectories of positions of vertices on the reconstructed longitudinal outer cortical
surface by our method with those by our method without temporal constraint and the
longitudinal processing pipeline in FreeSurfer, as shown in Fig. 8 (a), (b) and (c). Clearly,
the trajectories of positions of vertices by our method are much smoother than the other two
methods, which contain many zigzag trajectories since no temporal constraint is
incorporated into the longitudinal surface reconstruction procedure of other two methods.
For quantitative evaluation, we also perform linear regression on the trajectories of positions
of vertices on longitudinal outer cortical surfaces and calculate their residuals. Fig. 9 (a), (b)
and (c) show the comparison of the residuals of linear regression of positions of vertices on
longitudinal outer cortical surfaces of a subject by our method, our method without temporal
constraint, and FreeSurfer, respectively. Fig. 9 (d) shows the comparison of the average
residuals on longitudinal outer cortical surfaces of 10 randomly selected subjects by the
three methods. As we can see, the residuals by our method are consistently smaller than
those by other two methods. All these results demonstrate that the trajectories of positions of
vertices on longitudinal outer cortical surfaces by our method are much more consistent and
smoother.

To demonstrate the consistency of calculated cortical thicknesses on each vertex, we also
compare the residuals of linear regression of cortical thickness of vertices on reconstructed
longitudinal outer surface by our method with other two methods. Fig. 10 (a), (b) and (c)
show the results on a subject by our method, our method without temporal constraint, and
FreeSurfer, respectively. While Fig. 10 (d) shows the average residuals on the above-
mentioned 10 subjects by the three methods. As we can see, the residuals by our method are
consistently smaller than those by other two methods, indicating the consistency of our
reconstructed longitudinal cortical surfaces.

3.1.3 Application to Different Clinical Groups—To show the potential clinical
applications of the proposed method, we applied the method for reconstruction of
longitudinal cortical surfaces on four groups of subjects, including the NC, S-MCI, P-MCI
and AD groups, in which each group contains about 40 subjects with 4 time points in 24
months. The demographic and clinical information of all subjects in the four groups are
provided in Table 1. All cortical surfaces were parcellated into gyrus-based ROIs using the
above mentioned method. The longitudinal trajectoires of average cortical thicknesses of
four lobes on the left hemipsheres and the whole brains of four groups of subjects across 4
time points are shown in Fig. 11. As we can see, both the baseline cortical thicknesses and
the longitudinal thickness trajectoires are quite different among the four groups across
different lobes. In all four groups at the baseline, the frontal and temporal lobes have
relatively large cortical thickness, while the parietal and occipital lobes have relatively small
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cortical thickness. And in all four groups, the decline trend of cortical thickness is apparent
in the frontal, parietal and temporal lobes, but not apparent in the occipital lobes. And the
largest decreasing trend of cortical thickness is shown in the temporal lobes of the AD
group, consistent to the findings in the literature (Holland et al. 2009; Fjell et al., 2009b).
Overall, the NC group has the largest average cortical thickness at the baseline and also has
the slowest longitudincal thickness decline trend. While the AD group has the smallest
average cortical thickness at the baseline and the fastest longitudincal thickness decline
trend. The trajectoires of longitudinal cortical thciknesses of S-MCI and P-MCI groups are
in between that of the NC and AD groups. And the S-MCI group is relatively close to the
NC group, and the P-MCI group is relatively close to the AD group, in terms of both the
baseline thickness and longitudinal thickness decline trend.

To further inspect the longitudinal cortical thickness changes in smaller ROIs, Fig. 12 shows
the average cortical thicknesses changes between 1–2, 1–3 and 1–4 time points in the gyrus-
based ROIs of the four groups. Here, each ROI is color-coded by the average cortical
thickness change of the ROI. From Fig. 12, we can observe the overall longitudinally
smooth and consistent decline trend of cortical thickness in most ROIs in all groups. As we
can also see, in the same group, there exist quite different cortical thickness changes across
different gyri. And across different groups, we can also observe quite different cortical
thickness changes at the same gyrus. In general, in all four groups, the AD group shows the
largest thickness decline, especially at the temporal lobes of both hemispheres, consistent to
the findings in literature (Holland et al. 2009; Fjell et al., 2009b). Interestingly, in all 4
groups, the cortical thickness change of the postcentral gyrus is relatively small, consistent
to the findings in Holland et al. 2009. The statistical significance of the ROI-based cortical
thickness thinning is measured by the p-value in paired t-test with the null hypothesis that
the endline thicknesses are smaller than the corresponding baseline thicknesses in each ROI.
Fig. 13 shows the results of the four groups, respectively. In all 4 lobes, the temporal lobe
shows the most significant thinning of the cortical thickness in all four groups. And among
all four groups, the AD group shows the most significant thinning in most ROIs.

To test the capability of our method in distinguishing between different clinical groups, such
as NC vs. AD, and S-MCI vs. P-MCI, the statistical significance of the ROI-based cortical
thickness difference between different groups is measured by the p-value in unpaired t-test,
and further compared with FreeSurfer. Specifically, for NC vs. AD, the null hypothesis is
that the cortical thicknesses in AD are smaller than that of NC in each ROI. And for S-MCI
vs. P-MCI, the null hypothesis is that the cortical thicknesses in P-MCI are smaller than that
of S-MCI in each ROI. Note that the t-test is performed at both the baseline and endline.
Since the cortical thinning is larger in AD than NC and also larger in P-MCI than S-MCI, it
is expected that the difference between AD and NC and also the difference between P-MCI
and S-MCI should be more significant at the endline than the baseline. Fig. 14 shows the p-
values of ROI-based cortical thickness difference between NC and AD groups by our
method and FreeSurfer, respectively. As we can see, at the baseline, both methods show
signicant difference in almost all ROIs, except precentral and postcentral gyri at both
hemispheres. However, our result shows more significant difference between two groups
than FreeSurfer. At the endline, in our method, the significance is further increased in most
ROIs especially in the frontal lobes of both hemispheres. While, in FreeSurfer, although the
significance is further increased in the frontal lobes at both hemispheres, the significance is
decreased at both temporal lobes. Similarly, Fig. 15 shows the p-values of ROI-based
cortical thickness difference between S-MCI and P-MCI groups by our method and
FreeSurfer, respectively. Note that it is much more difficult to distinguish S-MCI vs. P-MCI
than NC vs. AD. At the baseline, our method shows the significant group difference at the
temporal lobe and supramarginal cortices of both hemispheres, while FreeSurfer shows the
significant group difference at less number of regions such as left temporal lobe, left
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supramarginal cortice and right inferior temporal gyrus. At the endline, both methods show
more significant group difference at the regions detected at the baseline. All these results
demonstrate that our method is able to capture different longitudinal cortical thickness
patterns in different clinical groups, and can identify more significant group difference than
FreeSurfer.

3.2 Results on BLSA dataset
To further extensively validate our proposed method, we apply the method for cortical
surface reconstruction of longitudinal brain MR images of 10 elderly subjects from the
Baltimore Longitudinal Study of Aging (BLSA) dataset (Resnick et al., 2000). In the 10
subjects, each subject has been successively scanned 8 or 9 times, with the interval about 1
year, therefore, the longitudinal cortex changes are more apparently in the BLSA dataset
than the ADNI dataset. With the reconstructed longitudinal cortical surfaces by our proposed
method, we calculate the cortical thickness map of each time point for each subject. The
longitudinal trajectories of the average cortical thicknesses of whole cortical surfaces of the
10 subjects with and without longitudinal constraints are shown in Fig. 16 (i) and (j),
respectively. Since the longitudinal change of the cortical thickness in one year for the
normal aging brains is generally subtle, it is expected that the average cortical thicknesses
should change smoothly along the time. As we can see, the average cortical thickness
declines smoothly along the time by our proposed method with temporal constraint, while its
trajectory is very bumpy by our method without temporal constraint. Similarly, by
performing linear regression on the longitudinal trajectory of average thickness of each
subject, the average fitting residuals of our method with and without temporal constraint are
0.017 ± 0.009 mm and 0.037 ± 0.018 mm, respectively, rendering the benefits of imposing
temporal constraint for longitudinal cortical surface reconstruction.

To further validate the method, the cortical ROI-based longitudinal trajectories of cortical
thickness are analyzed. Fig. 16 (a), (c), (e) and (g) show the trajectories of average cortical
thicknesses of frontal, parietal, temporal and occipital lobes on the left hemispheres of the
10 subjects by our method with temporal constraint, along with Fig. 16 (b), (d), (f) and (h)
by our method without temporal constraint. After performing linear regression on each
longitudinal trajectory, the average residuals by our method with temporal constraint (or
without temporal constraint) in the left frontal, parietal, temporal and occipital lobes are
0.0285 ± 0.0135 mm (0.0578 ± 0.0277 mm), 0.0226 ± 0.0113 mm (0.0461 ± 0.0191 mm),
0.0261 ± 0.0126 mm (0.0556 ± 0.0270 mm) and 0.0163 ± 0.0091 mm (0.0375 ± 0.0211
mm), respectively. Again, as we can see, the trajectory of average thickness of each lobe by
our method with temporal constraint is much more consistent and smoother than that by our
method without temporal constraint. Meanwhile, the overall trend of cortical thinning in
each lobe in aging can be clearly observed by our method with temporal constraint. Again,
similar to the findings in ADNI dataset, we can also observe that frontal and temporal lobes
have relatively large average cortical thickness, while parietal and occipital lobes have
relatively small average cortical thickness.

4. Discussion and Conclusion
In the literature, several methods have been proposed for cortical surface reconstruction
from longitudinal human brain MR images, such as the longitudinal processing pipeline in
FreeSurfer (Reuter and Fischl, 2011) and CLADA (Nakamura et al., 2011). In the
longitudinal processing pipeline in FreeSurfer (Reuter and Fischl, 2011), the inner cortical
surface of the group-mean image of the rigidly aligned or the median image of longitudinal
images is first reconstructed by tessellating the WM volume and further refining the
tessellation by a deformable surface (Dale et al., 1999), and then the corresponding outer
cortical surface is reconstructed by deforming the inner cortical surface using the
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deformable surface, and at last, the inner and outer cortical surfaces are placed into the
longitudinal images as the initialization and separately deformed to reconstruct the
longitudinal inner and outer cortical surfaces using the deformable surface (Dale et al.,
1999). In CLADA (Nakamura et al., 2011), the initial inner cortical surface of the group-
mean image of the rigidly aligned longitudinal images is first reconstructed by shrink-
warping an elliptic surface to the WM volume, and then the initial outer cortical surface is
generated by deforming the inner cortical surface by a deformable surface (Nakamura et al.,
2011), and next the initial inner and outer cortical surfaces are jointly deformed to obtain the
final cortical surfaces of the group-mean image by the deformable surface, and at last,
similar to FreeSurfer, the inner and outer cortical surfaces are placed into the longitudinal
images as the initialization and separately deformed to reconstruct the longitudinal inner and
outer cortical surfaces using the deformable surface (Nakamura et al., 2011). Although the
above methods can guarantee that the reconstructed longitudinal cortical surfaces at different
time points have the exactly same triangular mesh configuration and topology with the
cortical surfaces of the group-mean image, no temporal constraint is imposed in these
methods (Reuter and Fischl, 2011; Nakamura et al., 2011), thus the temporal trajectories of
attributes (such as positions and cortical thicknesses) of vertices on longitudinal cortical
surfaces are generally bumpy.

In this paper, we presented a deformable surface method for consistent reconstruction of
cortical surfaces from longitudinal human brain MR images. In our method, the cortical
surfaces of the group-mean image of all non-rigidly aligned longitudinal images are first
reconstructed using a deformable surface method, and then the longitudinal cortical surfaces
are reconstructed by using the cortical surfaces of the group-mean image as the initialization
and meanwhile explicitly imposing temporal constraint in the deformable surface method.
Experimental results demonstrate the necessity and benefit of imposing this temporal
constraint. As we can see, our method can reveal very subtle morphological changes such as
0.02mm in 24 months in normal aging. It should be noted that the proposed method is
mainly developed for working on adult brain images with subtle and smooth longitudinal
morphological changes across relatively uniform time points. Therefore, the method might
not work well on subjects with dramatic longitudinal cortical changes at a time point or with
highly uneven distributed time points. Note that since longitudinal smoothness is imposed in
the method, the longitudinal changes, such as the maximum change of the cortical thickness,
might be underestimated, however, as long as the assumption of smooth longitudinal change
is effective (which should be true for normal aging and AD), the proposed model will only
slightly affect the range of variations. And also, a more conservative estimation of change is
more preferable than an overestimation for longitudinal analysis (Reuter and Fischl, 2011).
More importantly, it has been demonstrated the potential clinical application of the proposed
method, since our method can reveal the difference of the longitudinal cortical thickness
patterns among different groups. Recently, a voxel-based method for measuring longitudinal
cortical thickness has been proposed (Li, 2010c), which, however, doesn’t consider the
inherent spherical topology of the cortex. Moreover, the longitudinal cortical surface
reconstructions has much wider application than measuring only the cortical thickness
achieved by the voxel-based method (Li, 2010c), e.g., studying and modeling cortical
folding, cortical surface based registration, and functional mapping.

Although the proposed method for consistent reconstruction of longitudinal cortical surfaces
has achieved reasonably good results, several procedures involved in our proposed method
might be further improved. First, the linear alignment of longitudinal images is performed in
our method by FLIRT (Jenkinson and Smith, 2001) in FSL tools currently. In the future, we
will investigate whether the highly accurate inverse consistent method in Reuter et al. (2010)
will further increase the accuracy of the linear alignment. Second, CLASSIC (Xue et al.,
2006) is adopted for longitudinally consistent tissue segmentation to facilitate the

Li et al. Page 12

Neuroimage. Author manuscript; available in PMC 2013 February 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



longitudinal cortical surface reconstruction. And it is found that the longitudinal cortical
surface reconstruction benefits from this method in contrast to independently performing
tissue segmentation at each time point. However, since CLASSIC treats the baseline image
different from the follow-up scans by using the baseline image as the reference for 4D
registration, it might introduce some bias in this step. In the future, we will investigate
unbiased longitudinal consistent segmentation by treating each longitudinal image equally.
Third, the recovery of deep buried sulci is performed by the ACE method in Han et al.
(2004) on each longitudinal image independently. In the future, we will investigate method
on consistently recovering deep buried sulci in longitudinal images. At last, several
parameters in the deformable surface are set experimentally currently, and the optimal
parameter setting will be investigated in the future. Currently, our method takes about 2
hours for surface reconstruction from the mean image, and another 8 hours for longitudinal
cortical surface reconstruction on 4 time points in ADNI subjects. In the future, we will
investigate how to optimize the method. And after making the method more self-contained
and stable, we intend to make it publicly available. Our future work will also include the
further validation of our proposed method using more longitudinal data, and the analysis of
longitudinal attribute changes of the reconstructed cortical surfaces for the aging and disease
progression studies using cortical thickness, cortical area, and cortical folding.
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Fig. 1.
(a) The flow chart of the proposed longitudinal cortical surface reconstruction method. (b)
The flow chart of the cortical surface reconstruction method from the group-mean image.
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Fig. 2.
Reconstructed cortical surfaces from a group-mean image. (a) Inner surface. (b) Central
surface. (c) Outer surface. (d) Three surfaces overlaid in a 2D image slice. Dark blue: inner;
orange: central; light blue: outer.
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Fig. 3.
Illustration of streamlines and force directions in GM. (a) The streamlines to GM/CSF
interface. (b) The zooming view of the yellow rectangular region in figure (a). (c) The force
directions for central surface reconstruction. (d) The force directions for outer surface
reconstruction.
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Fig. 4.
An example of reconstructed longitudinal outer cortical surfaces of a healthy subject with 8
time points (from figure (a) to figure (h)), color-coded by cortical thickness (mm). The color
bars are shown on the right.

Li et al. Page 20

Neuroimage. Author manuscript; available in PMC 2013 February 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 5.
An example of the reconstructed longitudinal inner (blue curves), central (orange curves),
and outer (light blue curves) cortical surfaces in Fig. 4 overlaid in the corresponding 2D
image slices. The red arrows indicate the selected regions with cortical thinning.
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Fig. 6.
The average true positive, false negative, false positive, and percentage of non-GM vertices
of 4 time points for each subject. Note that the true positive, false negative and false positive
are used to validate the inner and outer cortical surfaces, and the percentage of non-GM
vertices is used to validate the central cortical surfaces. Larger true positive indicates better
results, while smaller false positive, false negative and non-GM vertices indicate better
results.

Li et al. Page 22

Neuroimage. Author manuscript; available in PMC 2013 February 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 7.
The average surface distance errors of the inner, central and outer cortical surfaces of 4 time
points for each subject, compared to the “ground truth”.
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Fig. 8.
Comparison of the trajectories of positions of vertices on longitudinal outer cortical surfaces
of a subject by our method (a), our method without temporal constraint (b), and the
longitudinal processing pipeline in FreeSurfer (c).
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Fig. 9.
Comparison of the residuals of linear regression of trajectories of positions of vertices on
longitudinal outer cortical surfaces by (a) our method, (b) our method without temporal
constraint, and (c) FreeSurfer. (a), (b), (c): Color-coded residuals (mm) on a subject; (d)
Average residuals on 10 subjects by the three methods.
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Fig. 10.
Comparison of the residuals of linear regression of trajectories of cortical thicknesses of
vertices on longitudinal outer cortical surfaces by (a) our method, (b) our method without
temporal constraint, and (c) FreeSurfer. (a), (b), (c): Color-coded residuals (mm) on a
subject; (d) Average residuals on 10 subjects by the three methods.
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Fig. 11.
The longitudinal trajectoires of average cortical thicknesses of four lobes on the left
hemipshere and the whole surface of four groups of subjects (NC, S-MCI, P-MCI and AD)
across 4 time points. Figures (a), (b), (c) and (d) show the results on frontal, parietal,
temporal and occipital lobes, respectively. Figure (e) shows the results on the whole surface.
As we can see, the longitudinal cortical thickness patterns are quite different among 4
groups.
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Fig. 12.
The average changes of cortical thicknesses (mm) of four groups of subjects betwwen time
points 1–2, 1–3 and 1–4, measured in gyrus-based ROIs in the atlas space. The color bar is
given on the right.
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Fig. 13.
P-values of ROI-based cortical thickness thinning in 24 months in four groups of subjects.
The color bar is provided on the right.
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Fig. 14.
P-values of ROI-based cortical thickness difference between NC and AD groups by our
method and FreeSurfer. The color bar is provided on the right.
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Fig. 15.
P-values of ROI-based cortical thickness difference between S-MCI and P-MCI groups by
our method and FreeSurfer. The color bar is provided on the right.
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Fig. 16.
The longitudinal trajectories of average cortical thicknesses of four lobes on left
hemipsheres and whole surfaces of 10 elderly subjects, each with 8 or 9 time points. One
series indicates one subject. Figures (a), (c), (e), (g) and (i) show the results by our method
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with temporal constraint, while figures (b), (d), (f), (h) and (j) show the results by our
method without temporal constraint. As we can see, the results by our method with temporal
constraint are much more consistent and smoother than those by our method without
temporal constraint.
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