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Abstract
Longitudinal atlas construction plays an important role in medical image analysis. Given a set of
longitudinal images from different subjects, the task of longitudinal atlas construction is to build
an atlas sequence which can represent the trend of anatomical changes of the population. The
major challenge for longitudinal atlas construction is how to effectively incorporate both the
subject-specific information and population information to build the unbiased atlases. In this
paper, a novel groupwise longitudinal atlas construction framework is proposed to address this
challenge, and the main contributions of the proposed framework lie in the following aspects: (1)
The subject-specific longitudinal information is captured by building the growth model for each
subject. (2) The longitudinal atlas sequence is constructed by performing groupwise registration
among all the subject image sequences, and only one transformation is needed to transform each
subject’s image sequence to the atlas space. The constructed longitudinal atlases are unbiased and
no explicit template is assumed. (3) The proposed method is general, where the number of
longitudinal images of each subject and the time points at which they are taken can be different.
The proposed method is extensively evaluated on two longitudinal databases, namely the BLSA
and ADNI databases, to construct the longitudinal atlas sequence. It is also compared with a state-
of-the-art longitudinal atlas construction algorithm based on kernel regression on the temporal
domain. Experimental results demonstrate that the proposed method consistently achieves higher
registration accuracies and more consistent spatial-temporal correspondences than the compared
method on both databases.
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1. Introduction
Longitudinal atlas construction is an active research topic in longitudinal data analysis and it
plays an important role in medical image analysis. Its applications include, but not limited
to, disease tracking (Fox et al., 2000), population analysis (Freeborough and Fox, 1997) and
anatomical structure analysis (Cardenas et al., 2007). The task of longitudinal atlas
construction is to estimate an atlas sequence in the temporal domain which can reflect the
trend of anatomical changes in the population based on a given set of longitudinal image
sequences from different subjects. The major challenge for longitudinal atlas construction is
how to effectively encode both the intra-subject longitudinal change and the inter-subject
difference in the constructed atlas sequence.

Longitudinal atlas construction methods can be broadly classified into two categories: (1)
Longitudinal atlas construction by kernel regression or mixture modeling over the temporal
domain (Davis et al., 2007, 2010; Sabuncu et al., 2009); (2) Longitudinal atlas sequence
estimated by joint alignment of subject image sequences to a template sequence (Durrleman
et al., 2009). A representative of the kernel regression based atlas construction methods is
the method proposed by Davis et al. (Davis et al., 2007, 2010), where the longitudinal
atlases at different time points are constructed by a kernel regression process over the
temporal domain on the Riemannian manifold represented by diffeomorphisms. The
contribution of each image during the regression process to construct the atlases is
determined by the kernel weight. In (Davis et al., 2007, 2010), the Nadaraya-Watson kernel
regression process is extended by formulating the regression problem based on the Fréchet
mean. This method is designed for random design data and therefore there is no subject-
specific longitudinal information considered. Also, it may lead to temporal inconsistency
between the images taken at different time points of the same subject. The schematic
representation of this method is shown by Figure 1 (a). Also, Durrleman et al. (Durrleman et
al., 2009) proposed a joint spatial-temporal registration approach to construct the
longitudinal atlas and its schematic representation is illustrated by Figure 1 (b). In
(Durrleman et al., 2009), the subject-specific longitudinal information is explicitly modeled.
More specifically, the subject-specific evolution model is first established by the regression
process based on large deformations (Durrleman et al., 2008; Vaillant and Glaunes, 2005),
which is represented by the solid lines across the images belonging to the same subject in
Figure 1 (b). Then, each subject image sequence is aligned to the atlas sequence, and the
template used in (Durrleman et al., 2009) is explicitly determined based on the generative
statistical model, which may lead to bias.

In this paper, we incorporate the subject-specific longitudinal information as the second
layer together with the population information into a unified framework for longitudinal
atlas construction. Therefore, the proposed method is a further step beyond the random
design setting in Davis’s method (Davis et al., 2007, 2010) for longitudinal atlas
construction. The schematic representation of the proposed method is illustrated by Figure 1
(c). The proposed method captures the subject-specific longitudinal information by
estimating the growth model for each subject, which is illustrated by the dotted lines across
the images belonging to the same subject. The growth model of each subject is estimated by
a feature based 4D image registration method proposed in (Shen and Davatzikos, 2004).
After estimating the growth model of each subject, the longitudinal information contained in
each subject can be propagated to each time point in the subject space based on the growth
model. Without loss of generality, the earliest time point of each subject is selected as the
time point at which the longitudinal information of the subject is propagated in this paper.
Moreover, the population information is also considered by performing groupwise
registration among all the subject image sequences. Therefore, no explicit template is used
in the proposed method which largely overcomes the bias of the template. In the proposed
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method, only one transformation is needed for each subject to map from its space to the atlas
space since image of any time point of the same subject’s image sequence has already been
well aligned in its own space based on the growth model. Finally, atlases at different time
points are jointly estimated by applying the kernel regression process on all the warped
images from different subjects and different time points in the atlas space.

The proposed method has been extensively evaluated on two longitudinal databases: the
BLSA and ADNI databases for longitudinal atlas construction. The proposed method is also
compared with a state-of-the-art longitudinal atlas construction approach proposed by Davis
et al. (Davis et al., 2007, 2010). Experimental results demonstrate that the proposed method
consistently achieves higher registration accuracy as well as more consistent temporal
correspondences than the compared method on both databases.

The rest of the paper is organized as follows: Section 2 introduces the proposed longitudinal
atlas construction framework and its properties are analyzed. Section 3 provides the
experimental results and the related discussions. Section 4 concludes the whole paper.

2. Formulation of the Proposed Longitudinal Atlas Construction Framework
Data used in the preparation of this article were obtained from the Alzheimers Disease
Neuroimaging Initiative (ADNI) database (adni.loni.ucla.edu). The ADNI was launched in
2003 by the National Institute on Aging (NIA), the National Institute of Biomedical Imaging
and Bioengineering (NIBIB), the Food and Drug Administration (FDA), private
pharmaceutical companies and non-profit organizations, as a $60 million, 5-year public-
private partnership. The primary goal of ADNI has been to test whether serial magnetic
resonance imaging (MRI), positron emission tomography (PET), other biological markers,
and clinical and neuropsychological assessment can be combined to measure the progression
of mild cognitive impairment (MCI) and early Alzheimers disease (AD). Determination of
sensitive and specific markers of very early AD progression is intended to aid researchers
and clinicians to develop new treatments and monitor their effectiveness, as well as lessen
the time and cost of clinical trials.

In this section, the details of the proposed longitudinal atlas construction framework are
given. The proposed framework mainly consists of four steps: (1) Subject-specific growth
model estimation; (2) Transformation ϕi estimation for each subject i to map from the
subject space to the atlas space; (3) Atlas construction at each time point in the atlas space
by performing kernel regression; (4) The evolution model χ estimation in the atlas space. It
should be noted that the subject-specific growth model in the first step needs to be estimated
only for one time, while the other three steps are performed iteratively until convergence.
The flow chart of the proposed framework is illustrated in Figure 2.

The preprocessing step illustrated in Figure 2 includes the histogram matching and rigid
alignment process of all the images to the baseline image of the subject. It should be noted
that this preprocessing step is also applied to Davis’s method (Davis et al., 2007, 2010)
implemented in this paper for fair comparison, since the initial rigid alignment has
significant influence on the diffeomorphic registration results.

Suppose there are N different time points where we want to construct the atlas sequence,
denoted as T = {t1, t2, …, tN}. We also denote the atlas at each time point t ∈ T as Mt. To
construct the atlas sequence, we are also given image sequences of different subjects, and
the number of longitudinal images of each subject and the time points at which the images
are scanned can be different. Without loss of generality, suppose that there are C different
subjects, and each subject i (i = 1, …, C) has ni longitudinal images. We denote the
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longitudinal image taken at the jth time point of subject i as , where  denotes the jth time
point of subject i. The proposed framework for longitudinal atlas construction can be
formulated by Equation 1:

(1)

where  denotes the transformed image of  to the atlas space, which is defined by
Equation 2:

(2)

where Vi denotes the subject-specific growth model for subject i, and  denotes the

operation of transforming the image  of subject i to the first time point  of subject i based
on its growth model. ϕi is the transformation to map the subject space of subject i to the atlas
space, and ◦ denotes the operation of composing deformations.

In Equation 1, d(·) denotes the distance metric between two images based on the theory of
diffeomorphisms (Beg et al., 2005; Dupuis and Grenander, 1998; Joshi and Miller, 2000;
Miller and Younes, 2001; Miller et al., 2002; Miller, 2004), which is defined by Equation 3:

(3)

where G1 and G2 denotes two input images, φ(·) denotes the diffeomorphic transformation,
and υs is its related velocity field. The relationship between φ(·) and υs at each voxel

position x is expressed by Equation 4.  denotes the Sobelev norm and  denotes the
L2 norm. In this paper we followed the settings of large deformation diffeomorphic metric
mapping (LDDMM) (Beg et al., 2005) for Equation 3 where the velocity fields were
integrated via the semi-Lagrangian scheme and the Cauchy-Navier type operator was
adopted as the differential operator to construct the self-adjoint kernel.

(4)

where φs(x) denotes the displacement at voxel position x at time s ∈ [0, 1].

In Equation 1, χ denotes the evolution model in the atlas space, and  denotes the

operation of warping the transformed image  from time point  to the underlying time
point t in the atlas space based on the evolution model χ. Kh(·) is the kernel function which
assigns different weights to each image to reflect the contribution of the image to construct
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the atlas. h is the bandwidth of the kernel function Kh(·). , where K(·) is a
function satisfying Equation 5:

(5)

In this paper, the Gaussian function is adopted as the kernel function Kh(·) similar to (Davis
et al., 2007, 2010). In this paper, the kernel bandwidth is empirically determined in a way
similar to (Davis et al., 2007, 2010) according to the following rule: If the number of
longitudinal images of each subject image sequence is relatively small, a larger kernel
bandwidth is adopted in order to include a sufficient number of images from different
subjects to robustly construct the longitudinal atlas sequence. On the other hand, if the
number of longitudinal images of each subject image sequence is relatively large, then a
smaller kernel bandwidth is enough to include a sufficient number of images from different
subjects to robustly construct the longitudinal atlas sequence, and the longitudinal changes
across the constructed atlases at different time points are more obvious with a smaller and
sharper kernel bandwidth.

The last term Ψ(ϕi, χ) in Equation 1 is the overall smoothness term defined by Equation 6:

(6)

where Reg(·) denotes the regularization function, and γϕi and γχ are constants reflecting the
trade-off between the accuracy in image matching and the smoothness of the deformation
field.

Therefore, the physical meaning of Equation 1 can be explained as follows: First, the growth
model Vi is estimated for each subject i to encode the subject-specific longitudinal

information. Based on the estimated growth model, each longitudinal image  of subject i
is warped to the first time point  of subject i. Then, the transformation ϕi is estimated based
on the warped images of subject i at time point  to project the image sequence of subject i

to the atlas space, the corresponding projected image of  is . The projected images in the
atlas space are propagated to each time point t ∈ T in the atlas space by the evolution model
χ in the atlas space. Finally, the kernel regression process is performed at each time point t ∈

T on the propagated images  (i = 1, …, C, j = 0, …, ni − 1) to construct the atlas Mt
at t.

To minimize the energy function in Equation 1, we need to estimate the optimal variables Vi,
ϕi, Mt and χ. As stated in the beginning of this section, the growth model Vi of each subject
only needs to be estimated once, while the transformation ϕi to map each subject’s space to
the atlas space, the atlas Mt at time point t, and the evolution model χ in the atlas space need
to be iteratively estimated and updated. In this paper, variables ϕi, Mt and χ in Equation 1 are
optimized by using the three-step alternated minimization strategy as also adopted in
(Durrleman et al., 2009). In the following sections, details of the optimization strategy with
respect to each variable are given.
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2.1. Subject-Specific Growth Model Construction
The first step of the proposed framework after the preprocessing stage is the estimation of
the subject-specific growth model, as illustrated in Figure 2. In this paper, the subject-
specific growth model of each subject is estimated based on the 4D feature based image
registration method proposed in (Shen and Davatzikos, 2004). This step can be summarized
by Algorithm 1.

Therefore, the growth model of each subject i is represented by deformation fields

 which warp each follow-up scan of subject i to the baseline
scan. The estimated growth model Vi can establish reliable temporal correspondences among
the longitudinal images of the

Algorithm 1

Growth Model Estimation for Subject i

Input: The rigidly-aligned and histogram-matched image sequence  of subject i, where ni denotes
the total number of images in the image sequence of subject i.

Output: Deformation fields  mapping from  .

1
Construct the moving image sequence as .

2
Construct the reference image sequence by repeating the first time point image as .

3 Register the moving image sequence to the reference image sequence using the 4D HAMMER method in
(Shen and Davatzikos, 2004). Denote the resulting deformation field that warps

 is the identity deformation field.

4
Return .

same subject i to preserve the trajectory constraints. The role of growth model Vi is to serve
as a longitudinal information flow which can propagate the subject-specific longitudinal
information contained in each longitudinal image of subject i to a common space. Without
loss of generality, in this paper each longitudinal image is warped to the earliest time point
of its corresponding subject. Therefore, for each subject i, its subject-specific longitudinal
information is now propagated and aggregated at its earliest time point .

Another advantage of building the growth model Vi for each subject i is that when there is a
large gap between two consecutive time points, the growth model can interpolate the
longitudinal images between two time points. This interpolation process can bridge the gap
of the dramatic anatomical changes between two time points to ensure the temporal
smoothness during the atlas construction step. As stated at the beginning of Section 2, the
subject-specific growth model estimation step only needs to be estimated once for each
subject.

In the following sections, the optimization strategy to iteratively estimate the rest of the
variables ϕi, Mt and χ in Equation 1 is given.
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2.2. Estimation of the Transformation to Project each Subject’s Space to the Atlas Space
After estimating the growth model Vi of each subject i in Section 2.1, the next step is to
estimate the transformation ϕi to project each subject i’s space to the atlas space in Equation
1, which is a diffeomorphic deformation field. We can estimate ϕi by fixing the rest of the
variables Mt and χ in Equation 1. Also, to estimate ϕi, the image distance metric

 in Equation 1 can be rewritten as , and it should be noted
that this conversion is valid only if the evolution model χ is a diffeomorphic transformation.

The converted image distance metric  can be interpreted as: Each atlas Mt

at time point t ∈ T is first warped to the earliest time point  of subject i by the reversed

evolution model χ−1 in the atlas space. Then, each image  of subject i is warped to the
earliest time point  of subject i in the subject space by subject i’s growth model Vi. Finally,
the warped atlas in the atlas space and the warped image in the subject space are matched by
the transformation ϕi. Therefore, by fixing the rest of the variables in Equation 1, Equation 1
with respect to ϕi can be rewritten as:

(7)

where . Equation 7 denotes the process of warping the atlases at different
time point t ∈ T to the earliest time point  of subject i by the reversed evolution model χ−1

in the atlas space, and all the images  of subject i have been warped and aggregated at
time point  in the subject space via the growth model Vi. Thus the optimal transformation
ϕi can be estimated by performing diffeomorphic registration between the warped images in
subject i’s space and the warped atlases in the atlas space by minimizing the sum of the
weighted image intensity differences between each pair of images in the subject space and in
the atlas space, with the weights determined by the kernel function. The schematic
illustration on how to estimate ϕi is given in Figure 3.

After estimating ϕi, the next step of the proposed method is to construct and update the
atlases at different time points in the atlas sequence, which will be described in the next
section.

2.3. The Atlas Sequence Construction
In order to construct and update the atlas Mt at different time point t ∈ T in the atlas space
after estimating ϕi in Section 2.2, we also fix the rest of the variables Vi, ϕi and χ in Equation
1. Then, Equation 1 with respect to Mt can be rewritten as:

(8)
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The optimal solution of Mt of Equation 8 can be obtained by Equation 9:

(9)

where Λ denotes the whole possible image space, C denotes the number of subjects, and ni
denotes the number of longitudinal images of subject i. d(·) is the distance metric between
two images defined based on diffeomorphisms by Equation 3.

Therefore, Equation 9 denotes the kernel regression process to construct the atlas Mt at
different time point t ∈ T. In this paper, the greedy iterative optimization strategy proposed
in (Joshi et al., 2004) is adopted to estimate the optimal atlas Mt in Equation 9. The iterative
optimization strategy consists of two steps: First, the group mean of all the warped images
based on φ(x) in Equation 4 is computed, and set it as Mt. Then, each image is registered to
the current Mt to update φ(x) and return to the first step until convergence. After estimating
Mt, the last step of the proposed framework is to estimate the evolution model χ in the atlas
space, and details will be given in the next section.

2.4. Evolution Model Estimation in the Atlas Space
The last step of the proposed algorithm is to estimate the evolution model χ in the atlas
space, which is represented by a set of diffeomorphic deformation fields mapping the atlas
Mt at each time point t to its consecutive time point atlas Mt+1. By fixing the rest of the
variables Vi, ϕi and Mt in Equation 1, Equation 1 becomes:

(10)

To obtain the optimal solution χ in Equation 10, each image of each subject i is first warped
to the first time point of subject i and projected to the atlas space by the estimated
transformation ϕi. Then, similar to the estimation of ϕi in Section 2.2,  can be estimated
by performing diffeomorphic registration between the projected images of subject i in the
atlas space with Mt. The overall evolution model χ can be obtained by stitching all .
The role of the kernel function Kh(·) here is to reflect the weight of each projected image to
estimate χ.

3. Experimental Results
In this section, the proposed method is evaluated by constructing longitudinal atlas sequence
on two longitudinal databases: The ADNI1 and BLSA databases (Resnick et al., 2000). The
proposed method is also compared with a state-of-the-art longitudinal atlas construction
method proposed by Davis et al. (Davis et al., 2007, 2010) on both the registration accuracy
and temporal consistency. The proposed method and the compared method proposed by
Davis et al. are both implemented based on ITK2. In the following sections, experimental

1www.loni.ucla.edu/ADNI
2http://www.itk.org/
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results on the ADNI and BLSA databases will be given. For fair comparison, the
longitudinal atlas sequence of the proposed method is initialized by using Davis’s method
under comparison. More specifically, each atlas Mt is initialized with kernel regression over
the temporal domain at each time point t.

3.1. Experimental Results on the ADNI Database
In this section, the experimental results on the ADNI database is given. In this experiment,
20 normal subjects are selected from the ADNI database, and each subject has 4 longitudinal
MRI images scanned at different time points. For each subject, the time points at which its 4
longitudinal images are scanned are: Baseline time point, six months after the baseline time
point, one year after the baseline time point, and two years after the baseline time point.
Therefore, the time gap between the third time point and the fourth time point is larger than
any other two consecutive time points for each subject. The baseline time points of the 20
normal subjects vary from ages 70 to 88, and the coverage of the scan times of the 20
normal subjects is plotted in Figure 4. It can be observed from Figure 4 that the number of
images scanned at different ages is approximately the same, which avoids the bias in a
specific age during the longitudinal atlas construction process. Before we conduct the
proposed algorithm on this database, each image is preprocessed by the following
procedures: First, the anterior commissure (AC) - posterior commissure (PC) correction is
applied to each image, and each image is re-sampled to resolution 256 × 256 × 256 with
voxel size 1mm × 1mm × 1mm. The N3 algorithm (Sled et al., 1998) is then adopted for
intensity inhomogeneity correction. After the intensity inhomogeneity correction step, the
skull-stripping process is performed on each image. In this paper, we take advantages of two
popular skull-stripping methods, which are the Brain Surface Extractor (BSE) (Shattuck et
al., 2001) and the Brain Extraction Tool (BET) (Smith, 2002), followed by further manual
editing to ensure the skull-stripping results. Finally, the FAST algorithm in FSL (Zhang et
al., 2001) is adopted to segment each image into three different types of tissues: white matter
(WM), gray matter (GM) and the cerebrospinal fluid (CSF). Figure 5 shows some sample
images taken from different subjects, and it can be observed from Figure 5 that there are
large structural variations across different subjects in this database.

In this paper, we construct the longitudinal atlases from ages 72 to 86 with time gap 2 years
between two consecutive time points on the ADNI database. Since there are only 4
longitudinal images of each subject, empirically the kernel bandwidth should be larger in
order to cover sufficient population information. In this paper, the Gaussian kernel with
bandwidth σ = 6 years are adopted in Equation 1 to construct the atlases. To visualize the
atlas construction performance of the proposed method, Figure 6 shows the same cross-
sectional images of the constructed atlases at different ages on the ADNI database. It can be
observed that the constructed atlases are sharp and preserve subtle anatomical structures.

Moreover, to visually compare the registration accuracy of the proposed method and the
method proposed by Davis et al. (Davis et al., 2007, 2010), Figures 7 (a) and (b) show the
3D rendering of the atlases at age 80 constructed by Davis’s method and the proposed
method, respectively.

It can be observed from Figure 7 that the atlas constructed by the proposed method is much
sharper than the one obtained by Davis’s approach (Davis et al., 2007, 2010). Moreover, it
can be observed from Figure 7 that the atlas constructed by the proposed method preserves
more anatomical details than the one obtained by Davis’s method. Significant differences
between the atlases constructed by the proposed method and Davis’s method are highlighted
by the green circles in Figure 7.
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In order to illustrate the effectiveness of the proposed method in longitudinal atlas
reconstruction, we also conduct an experiment to show the similarity between images
obtained from different ages and a constructed atlas at a specific age. Figures 8 (d) and (e)
show the image residuals obtained between the constructed atlas at age 80 and two
registered images from the same subject scanned at age 80 and 82, respectively. The
corresponding constructed atlas at age 80 and the two original subject images used to
calculate the residuals are shown in Figures 8 (a) to (c), respectively for reference. It can be
observed from Figure 8 that the image residual obtained between the constructed atlas at age
80 and the warped subject image obtained at the same age is significantly smaller than the
one obtained between the constructed atlas and the warped subject image obtained at a
different age. Therefore, the effectiveness of the proposed method in longitudinal atlas
reconstruction can be visually implied by Figure 8.

Moreover, quantitative experimental results to evaluate the effectiveness of the proposed
method in longitudinal atlas reconstruction are also given in Figure 9, which shows the
whisker plot of the absolute intensity errors of image residuals obtained between the
constructed atlas at age 80 and warped subject images scanned at three different age ranges:
ages from 74 to 76, ages from 80 to 82 and ages from 84 to 86, respectively. Ten images are
taken from each age range for the calculation of Figure 9. It can be observed from Figure 9
that the absolute intensity errors obtained from age range from 80 to 82 (i.e., the age range
closest to the age of the constructed atlas) consistently smaller than those obtained from the
other two age ranges. It is reflected that the image residuals obtained between the
constructed atlas and the warped subject images scanned at closer ages with the atlas are
smaller than those with the warped subject images scanned at further ages with the atlas,
which matches with the longitudinal time differences. These results demonstrate the
effectiveness of the proposed method in longitudinal atlas reconstruction.

Besides constructing the longitudinal atlas sequence for the healthy subjects, we also
perform the longitudinal atlas construction experiment on the subjects with the Alzheimer’s
disease (AD), which exhibit larger longitudinal variations over time than the healthy
subjects. Similar to the experimental settings of the healthy subjects, 20 AD subjects are
selected from the ADNI database with the same baseline time point ranges as the healthy
subjects, and the same preprocessing procedures such as intensity inhomogeneity correction
and skull-stripping are also performed on the AD subject images. The longitudinal atlases
from ages 72 to 86 with a 2-years time gap between two consecutive time points are
constructed for these ADNI subjects and shown in Figure 10. It can be observed from Figure
10 that the longitudinal changes over time in the constructed AD atlas sequence are much
more obvious than those from the healthy subject sequence (i.e., the expansion behavior in
the ventricle regions over time can be clearly observed). Moreover, it can be visually
observed that the constructed atlases are sharp and preserve most of the anatomical details.

In this paper, we also quantitatively measure the registration accuracy and temporal
consistency of the proposed method. All the quantitative experimental results in this section
are obtained from the 20 normal subjects selected from ADNI, while the 20 AD subjects
selected from ADNI are only used for demonstrating the longitudinal changes of built
atlases. The tissue overlap ratio function proposed in (Crum et al., 2004) is adopted to
measure the registration accuracy, which is defined by Equation 11:

(11)
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where A and B denote the regions of a specific type of tissue in two images, and | · | denotes
the number of voxels inside the region of interest. In this paper, since both the proposed
method and Davis’s method do not explicitly select the template image, the segmentation
ground-truths of the template images (i.e., the atlases constructed at different time points)
are obtained by majority voting from all aligned images by setting the tissue type of each
voxel in each template image as the majority of tissue labels from all aligned images. The
average tissue overlap ratios of WM, GM and ventricular CSF obtained by the proposed
method and Davis’s method at different ages are shown in Figures 11 (a) to (c). The tissue

overlap ratio at each age is computed by the following procedure: First, for each image  of
subject i taken at the jth time point, it is warped to the atlas space by composing the growth
model Vi of subject i with the transformation ϕi which projects subject i’s space to the atlas
space (i.e., by Equation 2). Then, each warped image is further propagated to the age of
interest by the evolution model in the atlas space. Finally, the majority voting scheme is
applied to the propagated images at the age of interest in the atlas space to obtain the
segmentation ground-truth of the atlas, and the corresponding tissue overlap ratios are
calculated. It can be observed from Figures 11 (a) to (c) that the average tissue overlap ratios
of different types of tissues obtained by the proposed method are generally 3% to 5% higher
than those obtained by Davis’s method, which is a significant improvement as the standard
deviations of the tissue overlap ratios of different types of tissues across different ages are
no more than 1%.

In this paper, we also measure the registration accuracy of the proposed method within each
individual subject. More specifically, each subject is considered as a group, thus images
from the same subject are from the same group. Since there are 20 normal subjects used for
the ADNI database, there are 20 separate groups in total. The tissue overlap ratio measure
expressed in Equation 11 of different types of tissues across different ages of each group is
calculated independently. The calculation procedure is similar to the calculation of the
whole population tissue overlap ratios shown in Figure 11 except that now the majority
voting scheme is performed for each group independently and the corresponding tissue
overlap ratios are calculated from each group. The average tissue overlap ratios of WM, GM
and the ventricular CSF obtained by different methods across the 20 groups of different ages
are shown in Figures 12 (a) to (c). It can be observed from Figures 12 (a) to (c) that the
subject-specific tissue overlap ratios of different types of tissues are higher than those
obtained from the whole population as shown in Figure 11 because the longitudinal changes
in the images of the same subject are much smaller than the shape variations between
images of different subjects. It can also be observed that the subject-specific tissue overlap
ratios obtained by the proposed method are consistently higher than those obtained by using
Davis’s method, which illustrates the superior registration accuracy of the proposed method.

It should be noted that for the task of 4D atlas construction, enforcing the temporal
consistency among the longitudinal images of each subject is also an important requirement
besides the high registration accuracy. Therefore, in this paper we also measure the temporal
consistency (TC) factor of different types of tissues for each subject. The average TC factor
of each subject is calculated based on Equation 12 (Xue et al., 2006):

(12)

where Ω denotes the regions of interest of a particular tissue type to measure the temporal
consistency, and ‖Ω‖ denotes the number of voxels in Ω. Li denotes the number of tissue
label changes of the corresponding voxel i across time, and Y denotes the number of
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longitudinal images of the subject. The higher the value of TC, the more consistent the
temporal consistency is.

The average TC value of WM, GM and ventricular CSF for each subject obtained by using
the proposed method and Davis’s method are shown in Figures 13 (a) to (c), respectively.

It can be observed from Figure 13 that the average TC values of different types of tissue for
each subject obtained by the proposed method are consistently higher than those obtained by
Davis’s method (Davis et al., 2007, 2010). The main reason for the higher TC values
obtained by using the proposed method than using Davis’s method is that the subject-
specific longitudinal information is considered by establishing the subject-specific growth
model in the proposed method, while in Davis’s method the atlas is constructed by
performing regression over the temporal domain on all the images without considering the
subject-specific longitudinal information. Therefore, the proposed method can achieve
higher temporal consistency than Davis’s method.

In order to quantitatively analyze the effectiveness of the proposed method with respect to
the characterization of brain development, Figures 14 (a) and (b) show the progression of the
gray matter (GM) and ventricular CSF tissue volumes over time, respectively, for both
Davis’s method and the proposed method on the ADNI database. It can be observed from
Figure 14 that both methods can capture the expansion behavior of the ventricular CSF
volume over time as such changes are quite obvious. However, regarding to the GM volume
changes over time, it is demonstrated that the proposed method achieves more consistent
and steady decrease behavior of the GM volume over time for the constructed atlas
sequence, which is consistent with those reported in the literature. On the other hand, it is
observed that the longitudinal changes with respect to the GM volume for Davis’s method
are not smooth and stable over time as no subject-specific longitudinal information is
considered in Davis’s method.

3.2. Experimental Results on the BLSA Database
Besides evaluating the proposed method on the ADNI database in Section 3.1, in this section
we also evaluate the proposed method on a more challenging database, namely the BLSA
longitudinal database (Resnick et al., 2000).

The task of 4D atlas construction in the BLSA database is more challenging than in the
ADNI database because in the BLSA database each subject has much more longitudinal
images than in the ADNI database. Moreover, the longitudinal changes within each subject
in the BLSA database is generally larger than those in the ADNI database. In this paper, 20
subjects are selected from the BLSA database to evaluate the performance of the proposed
method. Each subject has around ten longitudinal images taken at differen time points, and
the period between two consecutive time points is around one year. Each image has
resolution 256 × 256 × 124, with voxel size 0.9375mm × 0.9375mm × 1.5mm. The age at
which the first time point image is taken for each subject ranges from 66 to 85 of the 20
selected subjects.

The first row shown in Figure 15 illustrates longitudinal images of the same subject taken
from ages 68 to 75, and obvious longitudinal changes can be observed (i.e., the expansion of
the ventricle region). The second row in Figure 15 shows images taken from different
subjects, and large inter-subject shape variations can be observed across different subjects in
the BLSA database.

In this paper, we evaluate the performance of the proposed method by constructing 4D
atlases at ages 68, 70, 72, 74, 76, 78, 80 and 82 for the BLSA database. A smaller kernel
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bandwidth is adopted for the BLSA database than in the ADNI database as there are more
longitudinal images for each subject. The bandwidth of the Gaussian kernel in Equation 1 is
set to σ = 1 year for the BLSA database. The constructed atlases at different ages by using
the proposed method are shown in Figure 16. It can be observed from Figure 16 that the
constructed atlases by using the proposed method are sharp and preserve many anatomical
details. It can also be observed from Figure 16 that the longitudinal expansion behavior in
the ventricle region of the constructed atlases is captured.

To visually illustrate the registration accuracy of the proposed method, Figures 17 (a) and
(b) show the 3D rendering of the constructed atlases by using Davis’s method and the
proposed method, respectively, at age 80 on the BLSA database. It can be observed that the
atlas constructed by the proposed method is sharper and preserves more anatomical details
than the one constructed by using Davis’s method, which implies the superior registration
accuracy of the proposed method. Significant differences between Figures 17 (a) and (b) are
highlighted with green circles.

We also quantitatively evaluate the registration accuracy of the proposed method. Similar to
Section 3.1, the tissue overlap ratios measure expressed in Equation 11 is adopted to
evaluate the registration accuracies of different approaches. The overlap ratios of WM, GM,
and ventricular CSF at different ages obtained by the proposed method and Davis’s method
are shown in Figure 18. Following the same trend in Section 3.1 with respect to the results
obtained on the ADNI database, it can be observed from Figure 18 that the tissue overlap
ratios of different types of tissue obtained by the proposed method are consistently higher
than those obtained by Davis’s method. Therefore, the superior registration accuracy of the
proposed method is strongly implied.

Moreover, the subject-specific registration accuracy is also evaluated on the BLSA database.
Similar to Section 3.1, each subject is treated as a separated group, and the tissue overlap
ratios expressed in Equation 11 for different types of tissue are calculated for each group.
Since there are 20 subjects used in the BLSA database, there are in total 20 groups. The
average subject-specific based tissue overlap ratios of different types of tissue are given in
Figure 19. Similar to Section 3.1, it can be observed from Figure 19 that the average subject-
specific based tissue overlap ratios of different types of tissue are higher than those obtained
from the whole population as illustrated in Figure 18. The reason is the anatomical changes
due to the longitudinal changes within each subject is much smaller than the inter-subject
shape variations. Also, it can be observed from Figure 19 that the tissue overlap ratios
obtained by the proposed method are consistently higher than those obtained by Davis’s
method, which illustrates the superior registration accuracy of the proposed method.

We also measure the temporal consistency enforced to each subject of the proposed method.
The average temporal consistency (TC) factor expressed in Equation 12 is adopted as the
temporal consistency measure similar to Section 3.1, and Figure 20 shows the average TC
value calculated from each subject for different types of tissue by using the proposed
method and Davis’s method. It can be observed that the average TC values obtained by
different methods are generally lower than the average TC values obtained on the ADNI
dataset in Section 3.1 because the longitudinal changes within each subject are larger in the
BLSA dataset than those in the ADNI dataset, and the number of longitudinal images of
each subject are larger than those in the ADNI dataset. It can also be observed that the
proposed method consistently achieves higher TC values for each subject of different types
of tissue compared with Davis’s method. Therefore, it is reflected that the proposed method
can enforce better temporal consistency than Davis’s method.
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Finally, similar to Section 3.1, we also calculate the progression of the GM and ventricular
CSF tissue volumes over time of the constructed atlas sequence by using Davis’s method
and the proposed method. Figure 21 (a) and (b) show the GM and ventricular CSF tissue
volumes at each age, respectively, by using both methods. It can be observed that both
methods capture the expansion behavior of the ventricular CSF volumes over time.
However, for the longitudinal changes of the GM volume, the proposed method again
achieves more consistent and steady decreasing behavior, which matches with the literature
observations. On the other hand, the longitudinal changes of the GM volume over time
obtained by Davis’s method are not smooth and stable as there is no subject-specific
longitudinal information considered in Davis’s method.

4. Conclusion
In this paper, a novel framework for longitudinal atlas construction is proposed. The
proposed framework considered both the subject-specific longitudinal information and the
global population information. The subject-specific longitudinal information is considered
by constructing the growth model for each subject by using the 4D HAMMER registration
approach. Based on the built growth model of each subject, the longitudinal information
contained in each subject can be propagated to any time point in the subject space. The
global population information is captured by performing groupwise registration among all
the subject image sequences and only one transformation is required for each subject to
project the subject image sequence to the atlas space. Moreover, the constructed atlases are
unbiased since no explicit template sequence is selected. The temporal consistency in the
atlas space is enforced by jointly estimating the atlases at different time points by the
regression process. The proposed method is evaluated on two longitudinal databases: the
ADNI and BLSA databases to construct longitudinal atlas sequence for elderly subjects, and
it is compared with a state-of-the-art 4D atlas construction method proposed by Davis et al..
Experimental results demonstrate that the proposed method consistently achieves higher
registration accuracies and better temporal consistency than Davis’s method, which reflects
the superior performance of the proposed method. Future work includes extending the
proposed framework to construct 4D infant atlas sequence.
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Figure 1.
(a) Schematic representation of the longitudinal atlas construction method proposed by
Davis et al. (Davis et al., 2007, 2010), where the atlas at each time point is estimated by the
kernel regression process over the temporal domain. However, the subject-specific
longitudinal information is not considered in this approach. (b) Schematic representation of
the longitudinal atlas construction method proposed by Durrleman et al. (Durrleman et al.,
2009), where the evolution model for each subject is estimated first, as indicated by solid
lines, and then each subject’s image sequence is registered to the atlas sequence. (c) The
proposed method. For each subject i, its corresponding growth model is established based on
the 4D image registration approach. Then, a single transformation ϕi is estimated to map
subject i’s image sequence to the atlas space. Each image of subject i can be transformed to
the atlas space by the composite deformation field formed by ϕi and subject i’s growth
model. The evolution model χ in the atlas space can warp each transformed image from the
subject space to any time point in the atlas space. Finally the atlas at each time point is
estimated by the kernel regression process on the warped images.
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Figure 2.
The flow chart of the proposed method.
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Figure 3.
Illustration of the process to estimate ϕi. Each atlas is warped to the earliest time point  of
subject i in the atlas space by the reversed evolution model χ−1, which is represented by the

blue arrows. Each image  of subject i is warped to the earliest time point  of subject i in
the subject space via the growth model, which is represented by the dashed red arrow. Then,
the transformation ϕi to map the subject space to the atlas space can be estimated by
performing diffeomorphic registration between the warped images in the subject space and
the warped atlases in the atlas space both at time point .
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Figure 4.
The coverage of the scanned times for each of the 20 normal subjects selected from the
ADNI database.
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Figure 5.
Sample images taken from different subjects of the ADNI database. Large structural
variations can be observed across different subjects.
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Figure 6.
The same cross-sectional images obtained from the atlas constructed by the proposed
method at different ages on the ADNI database. It can be observed that sharp atlases are
obtained which preserve subtle anatomical structures.
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Figure 7.
3D rendering of the atlas of age 80 constructed by: (a) the method proposed by Davis et al.
(Davis et al., 2007, 2010) and (b) the proposed method on the ADNI database. Significant
differences are highlighted with the green circles.
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Figure 8.
(a) The constructed atlas at age 80. (b) A subject image scanned at the same age as the atlas
shown in (a). (c) An image scanned at age 82 from the same subject as (b), which is
different from the age of the constructed atlas shown in (a). The corresponding image
residuals obtained between the constructed atlas shown in (a) and the warped subject images
shown in (b) and (c) are shown in (d) and (e), respectively.
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Figure 9.
The absolute intensity errors between the constructed atlas at age 80 and all the warped
subject images taken from three different age ranges. The horizontal lines in each box
represent the 25th percentile, median, and 75th percentile, respectively. The whiskers extend
to the most extreme data points.
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Figure 10.
Atlases constructed by the proposed method at different ages on the 20 selected ADNI
subjects with AD. It can be observed that the longitudinal changes over time are more
obvious for the constructed atlases from the AD subjects.
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Figure 11.
Average tissue overlap ratios for: (a) white matter, (b) gray matter, and (c) ventricular CSF
across different ages by using Davis’s method (Davis et al., 2007, 2010) (yellow bars) and
the proposed method (blue bars) on the ADNI database.
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Figure 12.
Subject-specific mean tissue overlap ratios for: (a) white matter, (b) gray matter, and (c)
ventricular CSF across different ages with Davis’s method (Davis et al., 2007, 2010) and the
proposed method on the ADNI database.
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Figure 13.
Average temporal consistency (TC) values for different subjects of: (a) white matter, (b)
gray matter, and (c) ventricular CSF with Davis’s method (Davis et al., 2007, 2010) and the
proposed method on the ADNI database.
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Figure 14.
Longitudinal changes with respect to the (a) GM volume and (b) ventricular CSF volume
over time by using Davis et al. (Davis et al., 2007, 2010) method and the proposed method
on the ADNI database.
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Figure 15.
Images shown in the first row are taken from the same subject from age 68 to age 75.
Significant longitudinal changes can be observed. Images shown in the second row are taken
from different subjects, which reflects the large structural variations across different subjects
in the dataset.
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Figure 16.
The same cross-sectional images obtained from the atlases constructed by the proposed
method at different ages on the BLSA database. The obvious expansion behavior of the
ventricle region is captured.
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Figure 17.
3D rendering of the atlas of age 80 constructed by: (a) the method proposed by Davis et al.
(Davis et al., 2007, 2010) and (b) the proposed method on the BLSA database. Significant
differences are highlighted with the green circles.
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Figure 18.
Average tissue overlap ratios for: (a) white matter, (b) gray matter, and (c) ventricular CSF
across different ages by using Davis’s method (Davis et al., 2007, 2010) (yellow bars) and
the proposed method (blue bars) on the BLSA database.
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Figure 19.
Subject-specific mean tissue overlap ratios for: (a) white matter, (b) gray matter, and (c)
ventricular CSF across different ages with Davis’s method (Davis et al., 2007, 2010) and the
proposed method on the BLSA database.
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Figure 20.
Average temporal consistency (TC) values for different subjects of: (a) white matter, (b)
gray matter, and (c) ventricular CSF with Davis’s method (Davis et al., 2007, 2010) and the
proposed method on the BLSA database.
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Figure 21.
Longitudinal changes with respect to the (a) GM volume and (b) ventricular CSF volume
over time by using Davis et al. (Davis et al., 2007, 2010) method and the proposed method
on the BLSA database.

Liao et al. Page 37

Neuroimage. Author manuscript; available in PMC 2013 January 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript


