
Intermediate Templates Guided Groupwise Registration of
Diffusion Tensor Images

Hongjun Jia1, Pew-Thian Yap1, Guorong Wu1, Qian Wang1,2, and Dinggang Shen1,*

Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC 27599, U.S.A.

Department of Computer Science, University of North Carolina at Chapel Hill, NC 27599, U.S.A.

Abstract
Registration of a population of diffusion tensor images (DTIs) is one of the key steps in medical
image analysis, and it plays an important role in the statistical analysis of white matter related
neurological diseases. However, pairwise registration with respect to a pre-selected template may
not give precise results if the selected template deviates significantly from the distribution of
images. To cater for more accurate and consistent registration, a novel framework is proposed for
groupwise registration with the guidance from one or more intermediate templates determined
from the population of images. Specifically, we first use a Euclidean distance, defined as a
combinative measure based on the FA map and ADC map, for gauging the similarity of each pair
of DTIs. A fully connected graph is then built with each node denoting an image and each edge
denoting the distance between a pair of images. The root template image is determined
automatically as the image with the overall shortest path length to all other images on the
minimum spanning tree (MST) of the graph. Finally, a sequence of registration steps is applied to
progressively warping each image towards the root template image with the help of intermediate
templates distributed along its path to the root node on the MST. Extensive experimental results
using diffusion tensor images of real subjects indicate that registration accuracy and fiber tract
alignment are significantly improved, compared with the direct registration from each image to the
root template image.
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1. Introduction
Diffusion tensor imaging (DTI) serves as a non-invasive in-vivo probe into brain tissues by
taking advantage of water diffusion patterns which give micro-structural information
especially in the white matter (Bihan et al., 2001; Pierpaoli et al., 1996). DTI has been
widely applied to clinical diagnosis since white matter abnormalities can potentially be
detected earlier by identifying disease-induced diffusion changes, compared to other
conventional imaging techniques, such as MR T1 or T2 weighted imaging (Huang et al.,
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2006; Lee et al., 2008; Liu et al., 2007; Yang et al., 2008). A prerequisite for meaningful
comparison of diffusion tensor images of different subjects is to bring all images into a
common space by appropriate spatial alignment (Alexander, 2006). Achieving this is,
however, not only technically challenging but also computationally expensive due to the
intrinsic high dimensionality of DTI images and the inherent large cross-subject variance. It
is also a non-trivial task to identify a common space by which the whole population under
study can be well represented (Lepore et al., 2007).

One way to achieve the registration is to employ pairwise registration techniques to register
each image one-by-one to a predefined template. Methods as such have been studied by
many researchers (Lepore et al., 2007; Yang et al., 2008; Yap et al., 2009a, b, c, 2010; Zöllei
et al., 2010). For example, Yang et al. (Yang et al., 2008) utilize the voxelwise geometry and
orientation information for guiding registration. Different measurements, such as
prolateness, oblateness, and sphericity, are calculated on each voxel, and the regional and
rotation-invariant features for these measurements are used in a deformable correspondence
matching mechanism for image alignment. More recently, two novel DTI registration
algorithms, TIMER (Yap et al., 2009b, c) and its extension F-TIMER (Yap et al., 2009a,
2010), are proposed to specifically exploit features directly related to the tensor structures.
In addition, two mechanisms which have been proven effective (Shen and Davatzikos, 2002)
- attribute vector and driving voxels - are incorporated in TIMER and F-TIMER for more
precise and robust registration.

There are, however, two potential limitations related to the pairwise registration. First,
selecting a fixed template for registration can be problematic. Any existing out-of-
population template may not accurately characterize the population. Also, selecting an
image from the population itself can be equally problematic if it differs significantly from
the rest of the images in the population. Second, pairwise registration methods often cannot
perform well when registering two images with significant anatomical differences. Hence,
only those subjects that are close to the template could be well registered, and others (that
are distant from the template) may not achieve reliable registration. In this way, the
registration accuracy and robustness for the whole population could be affected.

To overcome such limitations, a number of groupwise approaches have been proposed in the
literature. The goal of groupwise registration is to warp all subjects in a population towards
a hidden common space simultaneously within a single framework (Barmpoutis and
Vemuri, 2009; Zhang et al., 2007). Since all subjects in the data set are treated equally in the
process of registration, the registration results and the final atlas are considered to be
unbiased. For example, Barmpoutis and Vemuri proposed a groupwise diffusion weighted
MR image registration method based on the 4th-order tensor field (Barmpoutis and Vemuri,
2009). By using a metric defined for the positive valued spherical functions, unbiased
groupwise registration and atlas construction are achieved via optimizing a cost function
which also takes into account the tensor reorientation during the registration. In (Zhang et
al., 2007), the unbiased registration framework (Joshi et al., 2004), which was initially
proposed for registering T1 images, is applied to DTI groupwise registration. Two
alternating steps, atlas construction (by averaging all then-current warped images) and
registration refinement (by aligning all images to the then-current atlas), are iterated until
convergence. It is worth noting that in (Zhang et al., 2007) only piecewise affine registration
is used to “approximate” the deformable registration. A growing body of evidence shows
that groupwise methods are more consistent and accurate than direct pairwise methods.
However, the inherent high dimensionality, high degrees of nonlinearity, and complexity of
the optimization problem make it difficult to achieve the global optimal solution.
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When across-subject variation is large, it is generally difficult to achieve good registration
by simply registering each image to a template directly. In light of this, several methods
have been proposed to enhance the performance of pairwise registration methods by making
use of a concept called intermediate templates (IT). Intermediate templates have been shown
to be effective in the registration of T1 weighted MR brain images (Baloch and Davatzikos,
2009; Baloch et al., 2007; Hamm et al., 2009; Kim et al., 2008; Tang et al., 2009) and 2D
shape correspondence (Munsell et al., 2009). To date, two different strategies have been
used to implement the idea of intermediate templates, namely 1) intermediate templates
construction and 2) intermediate templates selection, depending on the way that the
intermediate templates are determined.

In the construction-based methods (Baloch and Davatzikos, 2009; Baloch et al., 2007; Kim
et al., 2008; Tang et al., 2009), an intermediate template which does not belong to the
original data set is created to aid the registration between two images. For example, in (Tang
et al., 2009), intermediate templates are created by warping the template image with a set of
simulated deformation fields which are learned using principal component analysis (PCA)
on a set of training deformation fields. During registration, an intermediate template is
automatically selected for each subject image and only the residual deformation between the
subject image and the intermediate template needs to be estimated since the deformation
field between the intermediate template and the final template is known. Such approaches,
however, do not guarantee that the intermediate template is realistic, which may affect the
registration results.

In the selection-based methods, intermediate templates are selected directly from the same
dataset by building a connection pathway between each individual image and the final
template. The registration is achieved by deforming each individual image with the help of
intermediate templates along its respective pathway to the template. This strategy is first
applied to a shape correspondence problem (Munsell et al., 2009) where a minimum
spanning tree (MST), with nodes representing the shapes and edges representing the shape
similarity between two connected nodes, can be used to characterize the shape distribution
of the population. The root node of the built MST can be determined by selecting the node
that gives a minimal overall edge length to all other nodes, or the node with the most
children on the tree. In (Hamm et al., 2009), a similar approach is adopted to register a set of
brain MR images. Upon learning the intrinsic manifold of the dataset, a pseudo-geodesic
median image is determined from the geodesic paths computed between the individual
images and the template. The utilization of intermediate templates allows us to employ a
divide-and-conquer strategy where large deformations between images can be decomposed
into a series of small ones, and hence reduce registration error since only nearby similar
images need to be registered.

In summary, intermediate templates are helpful for reducing the risk of being trapped in
local minima and for increasing robustness to large anatomical variations. This has been
demonstrated to be true in the registration of medical images (Hamm et al., 2009) and other
real-world images (Munsell et al., 2009).

More recently, a novel groupwise registration framework, called Atlas Building by Self
Organized Registration and Bundling, or ABSORB (Jia et al., 2010a, b), has been proposed
for effective registration of a group of MR T1 images. Groupwise registration is achieved by
registering each subject towards its selected neighbors, and thus the distribution of the whole
dataset on the image space becomes more and more compact in a progressive manner.
Pairwise registration, in ABSORB, is always performed between images that are close, and
the problem caused by large deformation could be relieved to some extent. However,
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ABSORB is designed specifically for registration of scalar images, and the computation
time is significantly longer than other pairwise registration methods (Jia et al., 2010a).

In this paper, we extend the intermediate template concept to work with pairwise DTI
registration algorithms for improving the alignment accuracy and the robustness of diffusion
tensor images. To this end, we first organize all images of the data group into a tree structure
with similar images represented by connected nodes. The root node closest to the population
center is selected as the template for registration. Each image will be registered with the help
of intermediate templates determined along its own path with respect to the final template.
The performance of the proposed groupwise DTI image registration algorithm is validated
by experiments involving a real dataset and extensive comparisons with other methods, e.g.,
direct pairwise registration and ABSORB-based registration.

The rest of this paper is organized as follows. The proposed intermediate templates guided
groupwise DTI registration framework is detailed in Section 2. In Section 3, extensive
experiments for performance evaluation on real datasets, in comparison with other
registration methods, are performed to demonstrate the registration accuracy and fiber
alignment consistency. We conclude and discuss possible future extensions in Section 4.

2. Method
We detail in this section a novel intermediate templates guided DTI groupwise registration
framework. The groupwise registration problem is solved with two steps: 1) compute the
pairwise image similarity matrix, build a minimum spanning tree (MST), and determine the
root node (which serves as the final template); and 2) register each image towards the final
template with the help of intermediate templates distributed along its path to the root node.
Registration between any two neighboring diffusion tensor images on the path can be
performed using any conventional pairwise registration algorithm. For our case, we adopt
two state-of-the-art techniques, TIMER (Yap et al., 2009c) and its fast version F-TIMER
(Yap et al., 2010), for the pairwise registration. It is worth noting that other pairwise DTI
registration methods can also be employed in this framework (Yang et al., 2008; Zhang et
al., 2006).

2.1. Image similarity
For organizing the images based on their similarity, we first define a pairwise distance
measure. Many different forms of similarity metrics between images have been defined in
the literature (Alexander and Gee, 1999; Basser and Pierpaoli, 1996), including scalar-based
metrics (e.g., metrics based on mean diffusivity or fractional anisotropy) and full-tensor-
based metrics (Zhang et al., 2004). However, since we have adopted TIMER (Yap et al.,
2009c) and its fast version F-TIMER (Yap et al., 2010) as our basic tools to do pairwise
registration, it is essential to formulate the distance measure in a consistent way for both
image pre-organization step and image registration step.

In TIMER, both volumetric information (e.g., the fractional anisotropy (FA) map) and edge-
related information (e.g., the edge magnitude extracted from the FA map and the tensor
field) are involved in the distance measurement. However, when two images are not well
aligned, especially in the early stage of the registration, including the edge information into
the similarity measurement is not necessarily helpful. Hence, we opted to use FA, without
edge information, in our formulation of distance measurement. FA (Basser and Pierpaoli,
1996) measures the degree of anisotropy of a tensor at location x as

, where e1, e2, e3, are the eigen-values of the
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corresponding tensor matrix and ē,is the mean eigen-value. For an isotropic medium, FA =
0, and for a fully anisotropic medium, FA = 1. Its value is characteristically high for a voxel
in the white matter (WM). But FA alone is not sufficient for fully capturing the difference
between two images because of its poor discriminant power on gray matter (GM) and
cerebrospinal fluid (CSF) (see Fig.1 (a) and (d)). For this reason, the apparent diffusion
coefficient (ADC) map (ADC(x) = (e1 + e2 + e3)/3), that measures the average diffusivity in
each voxel is also considered in distance measurement in addition to the FA map. The range
of ADC values is dependent on the acquisition parameters. Some regions of the brain, such
as the ventricles, contain mostly CSF, and thus ADCs typically have characteristically
higher values (as shown in Fig. 1(b)) while other regions typically showing lower values. So
ADC is a good measure for separating CSF and non-CSF tissue, while FA is helpful for
distinguishing WM from non-WM tissues. By combining FA and ADC, the differences
between two brain images in WM, GM and CSF can be fully accounted for, as indicated in
Fig. 1 (c).

For each diffusion tensor image S, the corresponding FA and ADC maps are used to
calculate the distance. To combine two scalar maps properly, it is necessary to normalize
their values to have the same range. As the FA value has an inherently fixed range ([0, 1]),
we only need to rescale all ADC values to be within [0, 1] by dividing each of them by the
maximum ADC value. The maximum ADC value is calculated over all subjects in the
groupwise registration scenario for a fair comparison in the later steps.

We define the distance (dissimilarity) between subject S and T as the Euclidean distances
between the corresponding FA maps SFA and the rescaled ADC maps SADC,

(1)

where M is the total number of voxels in each subject, and SFA(p) and SADC(p)are the value
of the p-th voxel on the FA map and the rescaled ADC map of subject S, respectively. To
better measure the distance between two neighboring subjects, after building a graph with
each node representing a subject and each edge weighted with the above-mentioned
distance, we go one step further to obtain the shortest distance defined on the k-Nearest-
Neighbor (kNN) graph with the Dijkstra algorithm (Dijkstra, 1959) to estimate the local
structure. Thus, the distance between two images S and T can be updated as dk(S,T), which is
the shortest distance between these images on the kNN graph. It is shown in our experiments
that the above kNN graph based distance can help build a more balanced tree, which can
effectively reduce the computing time of the registration.

2.2. Registration path allocation and intermediate templates selection
Based on the image dissimilarity measure defined above, we first build a fully connected
graph with each node representing a subject and each edge being weighted by the distance,
and then a tree can be extracted from the graph. In this way, all images can be organized into
a tree structure where only similar images are connected. Here, the minimum spanning tree
(MST) algorithm, which can be efficiently computed by using Kruskal's algorithm (Kruskal,
1956) is employed. The MST is constructed to be the tree with the minimum total edge
length. However, the tree generated by Kruskal’s algorithm does not have a specific root
node, which in our case is important for determining the final template. To build a more
balanced tree (Balakrishnan, 1997) and to reduce the average pairwise registration
computation cost for each subject, the root node is selected to be the one with the minimum
path length to all other images. A path length is defined as the number of segments involved
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in traversing a pathway between two nodes along the tree. The root node, considered as the
population center, is used as the template in subsequent registration steps.

2.3. Sequential registration
After all images in the dataset have been organized into a tree, each subject is either directly
connected to the root template or indirectly by one or more intermediate templates. We take
a sequential approach for registering the entire population. For an image that is connected to
the root template directly, any pairwise diffusion tensor image registration method can be
employed and the registration result is guaranteed since these two images are generally very
similar to each other. For images that are not directly connected to the template, registration
is performed sequentially along the path determined during the tree-building process. The
subject image is aligned to its first intermediate template (represented as its immediate
parent node on the path), and then to its next intermediate templates one by one along the
path to the root image. This scheme allows the images to be registered more accurately,
especially for those images that are far away from the population center.

As an illustration, we construct the MST based on a real data set with 22 subjects, as shown
in Fig. 2. In this MST, subject 02 (the square at the top level) is chosen as the root, or the
final template. For the four subjects (represented by diamond nodes at the second level)
which have direct connection to the root, their registration can be completed in one step with
reasonable accuracy, since they are similar to the template. There are one or two
intermediate templates selected for each of other subjects (represented by the circle or
ellipse at the third or fourth level) to help guide its respective registration to the final
template. It can also be observed that in our experiments, the minimum spanning tree (in
Fig. 2) constructed with kNN graph based distance measurement is more balanced with a
smaller height 3 than the tree with height 5 if built directly with the distance defined in Eq.
1.

2.4. Discussion
The main advantages of our method are: 1) the final template, which is closest to the
population center of the image space, is automatically selected to alleviate potential bias; 2)
the whole registration process is guided by intermediate templates determined from the
existing set of images, effectively decomposing the deformation process into a series of
smaller ones which can be solved more efficiently and accurately.

This proposed method is well-suited for a large dataset. In a large dataset, in general, it is
more likely that better intermediate templates can be found to guide the registration between
any two images, especially for the two images with large deformation. The only concern
might be the running time for the whole process, which is analyzed below for the individual
steps involved: (1) the selection of affine template, (2) tree-building, and (3) intermediate
templates guided registration. In the following discussions, we assume a total of N DTI
images in the dataset.

In the step (1) of affine template selection, only the pairwise affine registration between the
FA maps is needed, and the complexity is O (N2). In our experiments, each pairwise affine
registration takes less than 30 seconds. This can be further reduced if affine registrations are
applied to down-sampled images. In the step (2) of MST building, since the distance
measure is defined on the scalar maps (FA map and ADC map), the distance between two
images can be computed very rapidly. The overall complexity for computing the pairwise
distance matrix is O (N2). The running time of Kruskal’s algorithm for MST construction is
also very low (within seconds for N = 100). The most computationally demanding step is the
step (3) of sequential registrations, where each subject is registered towards the final
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template along its respective path onto the root node. TIMER will be applied once for each
subject, giving a complexity of O (N), and each run of TIMER takes approximately 0.5 hour.
F-TIMER (~0.15 hour per run) is much faster than TIMER. The average runs of F-TIMER
are directly related to the scale of the MST. Here, the scale of the tree is evaluated based on
its height, which will determine the maximal number of intermediate templates, as well as
the maximum runs of F-TIMER. In graph theory (Balakrishnan, 1997), a balanced tree will,
in general, give the smallest height, i.e., O (logN) (refer Section 2.2). So the total runs of F-
TIMER is in the order of O (NlogN), which is roughly linearly proportional to the size of the
dataset. Thus we can see that the proposed groupwise registration framework can be feasibly
extended to a larger dataset.

3. Experiments
We have performed a number of experiments to evaluate the accuracy of the proposed
intermediate templates guided DTI groupwise registration algorithm. The dataset consists of
a set of diffusion tensor images of real subjects with significant anatomical variation. We
first demonstrate that our method can successfully learn the structure of the dataset, from
which a tree can be constructed for identifying the root node and also the appropriate
intermediate templates. Upon successful registration, we display the average images of the
aligned images given by different registration methods for gauging registration accuracy
both qualitatively and quantitatively. A fiber-tracking based experiment was also performed
to gauge the effectiveness of the algorithm on registering white matter microstructures in
brain.

3.1. Data set and pre-processing
Diffusion tensor images were acquired from 22 subjects using a 1.5T scanner with 30
gradient directions and diffusion weighting b=700 s/mm2. Imaging dimension is
256×256×70 with a 240×240 mm2 field of view (FOV) and a 0.9375 × 0.9375 × 2.5 mm3

image resolution.

All of the diffusion tensor images were skull-stripped to extract the brain parenchyma before
they were used in the experiments. All images were first affinely aligned together for
removing global shape differences, such as translation, rotation, scaling and shearing. We
adopted the same tree-building strategy as proposed in this paper to select the root template
image as the target of affine registration. The distance is calculated based on a pair of affine
registered FA maps. For instance, for two DTI images S and T, we can linearly register the
FA map SFA to the FA map TFA to obtain the registered image S'FA. The intensity difference
between TFA and S'FA can be computed as follows:

(2)

where M is the number of voxels. The distance between two images s(SFA,TFA)is defined as
follows to make it symmetric:

(3)

Based on the distance defined in Eq. 3, we can build MST by applying the same method
described in Section 2.2, and then the root image is chosen as the template for removing
global differences of all images by linearly registering them to the selected template.
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3.2. Different registration methods
In our framework, we adopted two state-of-the-art DTI registration techniques, TIMER (Yap
et al., 2009) and its fast version F-TIMER (Yap et al., 2010), to achieve the pairwise
registration. To speed up registration, F-TIMER, due to its speed, was used for registering
each subject image to its intermediate templates, while TIMER was employed in the last
step for the final refinement of the non-rigid registration. TIMER uses a more localized
Gaussian-based propagation of the driving voxel deformations. F-TIMER, on the other
hand, uses the thin-plate splines (TPS) (Rohr et al., 2001; Wahba, 1990), which can
effectively model global deformation although it might not be able to model fast spatially-
varying deformations.

As the baseline for comparison, we performed a direct pairwise registration of each image to
the same final template by TIMER with the same parameters and more iterations. For the
proposed intermediate templates guided registration framework, the numbers of iterations in
F-TIMER and TIMER are set to 8 and 20, respectively. In contrast, we set the iteration
number to 30 for direct pairwise registration based on TIMER. The total computational time
of the proposed framework was ~14 hours for 22 subjects, which is similar to that of direct
pairwise registration that requires more iterative registration steps and thus needs ~13 hours.
It is worth noting that the processing time reported here is based on single CPU. Using the
intermediate templates for registration gives greater robustness to local minima. In contrast,
direct pairwise registration is more susceptible to local minima, and not much improvement
can be gained by further refinement. We also compared the proposed method with ABSORB
(Jia et al., 2010a). Specifically, we use ABSORB on the FA maps of the DTI images to
estimate a set of initial deformations, followed by a registration refinement via TIMER to
obtain the final deformation field.

3.3. Results
Tree Structure, Intermediate Templates, and Final Template—One advantage of
the proposed registration algorithm is that several subjects are selected to serve as the
intermediate templates to bridge two subjects together for a guided registration. An example
is given in Fig. 3. The relatively large differences between a subject S and the template T
makes it difficult to register them directly. With the help of intermediate templates, IT1 and
IT2, the registration from subject S to T could be solved more easily by following the path
S→IT1→IT2→T, since the difference between any two successive subjects, both inspected
visually and measured by the dissimilarity measure defined in Section 2, is much smaller
than that between S and T directly.

Fig. 4 shows that all images in the dataset can be organized into a single tree structure by
employing the minimum spanning tree algorithm with the help of the pairwise dissimilarity
measure defined in Section 2. The root subject is taken as the final template and placed at
Level 1. Totally, 4 subjects are quite similar to the template, and thus they are placed at
Level 2 with direct connections to the template. So the registration of subjects in Level 2 can
be performed using conventional pairwise registration easily. Images at Level 3 or 4 are
connected to the template indirectly through the intermediate templates. As we will show
later in this paper, the subjects in the lower levels of tree generally benefit more from the
current registration framework.

Registration Accuracy – Qualitative Assessment—We now demonstrate that the
registration accuracy can be improved with the help of intermediate templates. Fig. 5 shows
the registration results of different methods, where the subject image (with three different
consecutive slices shown in (d) ~ (f)) is registered to the template (a). The red crosses are
placed as landmarks of corresponding positions in (a) the template image, (b) the warped
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image after the proposed intermediate templates guided registration, and (c) the warped
image after direct pairwise registration. We can see that the proposed method can achieve
higher registration accuracy as it can better align the white matter structures (indicated by
high FA values) in the subject in correspondence to the template. Similar observation can be
made in the circled area. To further demonstrate that the branching structure appearing in the
circled region of (b) is indeed a real brain structure, three neighboring slices are displayed in
Fig. 5(d)(e)(f). Based on this example, we can conclude that the intermediate templates are
conducive to a more accurate registration.

Registration Accuracy – Quantitative Assessment—To further demonstrate the
registration accuracy of the proposed algorithm at a group level, we evaluated the
registration consistency by measuring the pairwise distances of the warped images. For each
warped image, we computed its FA and ADC maps. For FA (or ADC) map of each subject
pair, the pairwise distance was defined as the mean of the sum of the squared error (MSSE)
calculated voxel-wisely over the whole image space. The average pairwise distance over all
registered image pairs is reported in Table 1. It is obvious that the proposed method results
in more consistent alignment of images in the population. For both ADC and FA maps, the
proposed intermediate templates guided registration method can generate a more compact
and better aligned image set than the direct pairwise registration (with p = 0.01 and p =
0.005, respectively). It also can be seen that the ABSORB-based registration framework has
an improved result to the direct pairwise registration algorithm, but it is still worse than the
proposed method. The possible reason is that the deformation fields obtained by the
groupwise registration on FA maps cannot provide a good initialization to the further
TIMER-based refinement as there are not many structural details in FA map, especially for
the cortical regions.

Atlas Building—An atlas can be constructed from the underlying dataset by averaging the
aligned images. An atlas as such can give us a direct and intuitive means of inspecting the
registration accuracy. A sharper atlas indicates better registration accuracy in contrast to a
fuzzy atlas due to misaligned structures. The atlases built with affine registration, direct
pairwise registration with TIMER and the proposed method are given in the left, middle, and
right column of Fig. 6, respectively. We can observe that the proposed method gives a
sharper atlas, especially in the cortical regions.

Comparison of Deformation Fields—Higher registration accuracy can sometimes be
achieved by sacrificing the smoothness of the deformation field. In TIMER or F-TIMER, the
cost function is regularized by a deformation-smoothness constraint. To demonstrate that the
improvement of registration accuracy was indeed the result of employing intermediate
templates, we computed the Jacobians and the values of bending energies (Rohr et al., 2001)
on the position of each voxel based on the deformation fields estimated by different
registration methods. Measurements used include the maximum Jacobian (Jmax), and the
maximum and mean bending energy values (BEmax and BEmean). Specifically, we use
BEmax,i to denote the maximum bending energy value calculated from the deformation field
for warping subject i to the template, and Jmax,i for its corresponding maximum Jacobian.
The mean and maximum values of each measurement over all the 22 subjects are given in
Table 2. We can see that the proposed method almost always gives smaller Jacobians or
bending energy value, except the maximum Jacobian. That is, the proposed registration
framework can achieve better registration accuracy with comparable or even slightly
smoother deformation fields. The p-values of the pairwise t-test on the corresponding values
are also shown in Table 2 to reinforce the same conclusion.

The distributions of Jacobians on the deformation field generated by two registration
methods are shown in Fig. 7 (a) and (b), respectively. The mean Jacobians for the proposed

Jia et al. Page 9

Neuroimage. Author manuscript; available in PMC 2012 January 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



method is 0.96, which is closer to 1 than that of the direct pairwise registration method
(0.93). The standard deviation of Jacobians of the proposed method is 0.103, which is
smaller than that of the direct method (0.109). This implies that the Jacobians given by our
method are more concentrated around 1, indicating smoother deformation fields. We also
illustrate the sample deformation fields and bending energy value maps from different
methods in Fig. 8. It can be observed that the proposed method can, in general, generate
smoother deformation fields.

Alignment of Fiber Bundles—To evaluate the effectiveness of the proposed algorithm
in aligning the brain microstructures, a fiber tracking based experiment was performed,
where the fiber tracts from each subject are warped to the template space for gauging
consistency (Gerig et al., 2004; Jiang et al., 2006).

To demonstrate the fiber registration results, we placed three different ROIs in the region of
genu, splenium and the body of the corpus callosum (CC) in the template space (as shown in
Fig. 9) so that fiber bundles passing through these ROIs could be extracted, i.e., using DTI
studio (Jiang et al., 2006), for comparison. Each ROI in the template space was first warped
back to the individual subject image space using the inverse of the estimated deformation
field. Then fiber tracking was performed on each individual subject based on the warped
ROI. The tracked fiber bundles were finally warped to the common template space using
those estimated deformation fields. In DTI studio, the FA start threshold was set to 0.25, the
FA stop threshold to 0.2, and the stop turning angle to 70°. The same tracking parameter and
procedure were applied to all images, including the template. The distance between two
fiber bundles was then evaluated using the distance measure:

(4)

where d(Fi,Gj)is a pairwise distance measurement between each fiber pair and Fi ∈ ℱ and
Gj ∈  which is defined as the mean of the closest distance for every point pair of two
fibers. Here, ℱ and are the fiber bundles tracked in each subject, respectively. This
measurement can be used as indication of fiber alignment and two perfectly aligned fibers
give a distance of zero.

Pairwise distances between the warped subject fibers and the original template fibers are
tabulated in Table 3. Recall that our built tree consists of 4 levels. In Table 3, we focus on
the fiber bundle registration results of the images at the third and fourth levels, since the
registration of these images are guided by intermediate templates.

The results in Table 3 indicate that the proposed intermediate templates guided registration
gives an average of 20% smaller fiber misalignment error. To further demonstrate the
benefit brought by the intermediate templates, we break down the results according to
different levels of the tree. For the 10 subjects at the third level, the average decrease in fiber
misalignment error is 1.24mm (20.03%); while for the 7 subjects at the fourth level the
decrease is 1.20mm (21.34%). This indicates that images further down the tree benefit more
from the utilization of intermediate templates. The distributions of the point-wise fiber
distances to the fibers in the template are shown in Fig. 10, which clearly indicates the
improvement obtained by the use of intermediate templates.

To illustrate the fiber bundles alignment results more clearly, one subject is selected to show
the different aligned results to the template by the direct registration and the proposed
registration method, respectively. In Fig. 11, two fiber bundles, genu (Fig. 10a) and
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splenium (Fig. 10b) of the corpus of callosum, tracked in the template are overlaid with the
corresponding warped subject fiber bundles. In each plot, the distance-weighted color-
coding result on the corresponding fiber bundles in the template is shown in the top row, and
the actual alignment results are shown in the bottom row, with red indicating the template
bundle and green for subject bundle. By visual inspection, we can see that the proposed
method (left column) gives a more consistent alignment of the fiber bundles than direct
pairwise registration (right column).

To visualize the fiber tracking results on the mean image, the same two ROIs defined above
were used to track the fiber bundles in the mean diffusion tensor images computed from the
registered images. The results are given in Table 4. In general, the mean image given by the
proposed algorithm gives a denser fiber bundle with more fibers. There is also an increase in
the maximum and minimum fiber lengths, albeit a slight decrease in the average fiber
length. If we select the longest 300 fibers in each extracted bundle, the average fiber length
given by the proposed algorithm is much longer than the results from other methods. This
also indicates that better registration allows better alignment of fibers from different
subjects.

4. Conclusions
A new method has been proposed for more accurate and robust group-wise registration of
diffusion tensor images. Based on the dissimilarity measure defined based on the
combination of the FA and ADC maps, all DT images are organized into a minimum
spanning tree where only similar images are directly connected. The image closest to the
population center is chosen as the final template. For subject images far from the template,
one or more intermediate templates will be utilized to guide their registration. Registration
of any two connected images can be achieved with relative ease since they are similar in
shape. Registration accuracy and robustness has been demonstrated using a set of real
diffusion tensor images. Fiber misalignment error is found to be significantly reduced
compared to direct pairwise registration. In future, we will examine the scalability of the
proposed framework and test it on large clinical datasets with white matter disorders to
evaluate its performance in aiding the detection of disease-related abnormalities.
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Fig. 1.
Two typical scalar maps of the diffusion tensor image: (a) the FA map and (b) the ADC
map. These two maps are illustrated together with their combination map in (c). In (d), the
color-coded representation of the FA-weighted first principal directions is shown: green for
the anterior-posterior direction, blue for the superior-inferior direction, and red for the left-
right direction.
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Fig. 2.
The minimum spanning tree constructed from the DTI dataset. Pairwise similarity is defined
as the summation of Euclidean distances of the corresponding FA and scaled ADC maps,
and the root node is selected to be the node with the minimum path length to all other nodes.
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Fig. 3.
Two intermediate templates (IT1 and IT2) are selected by the proposed algorithm from the
same data set to guide the registration between subject S and template T, whose structures
are significantly different from each other. In this way, the large deformation between
subject S and template T could be decomposed into a series of smaller ones, which can be
solved more easily and accurately by the existing pairwise DTI registration techniques.
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Fig. 4.
The tree structure constructed to represent the whole dataset. Registration of images at Level
3 and 4 are guided by the intermediate templates along their respective paths. Note that the
images shown in Fig. 3 are connected by the red lines in this tree.
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Fig. 5.
Comparison of registration accuracy between the proposed intermediate templates guided
registration method and the direct pairwise registration algorithm. FA maps are shown for
the same slice in (a) the template, (b) the image warped by the proposed method, and (c) the
image warped by direct pairwise registration. The red crosses in (a) ~ (c) indicate the same
physical location in the different images. It can be seen that direct pairwise registration fails
in some cortical regions, while the proposed method clearly demonstrates better registration
accuracy. Similarly, the circled areas also indicate that the proposed groupwise registration
method can obtain better correspondences than the direct registration. The corresponding
slice in the original subject image is shown in (e) together with its two neighboring slices in
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(d) and (f). The proposed method successfully registers the branching structure that exists in
both subject (f) and template (a), although it appears in different slices.
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Fig. 6.
Atlases constructed from 22 subjects with affine registration (left column), direct pairwise
registration (middle column) and the proposed intermediate templates guided registration
method (right column). The FA weighted first principal directions are shown in their color
coded representations: green for the anterior-posterior direction, blue for the superior-
inferior direction, and red for the left-right direction.
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Fig. 7.
The distribution of Jacobians on the deformation field generated by (a) the direct pairwise
registration and (b) the proposed intermediate templates guided method. The overlay of two
distributions shown in (c) indicates that the distribution of the proposed method is more
concentrated around 1 than the direct pairwise registration.
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Fig. 8.
Bending energy value maps for (a) the intermediate templates guided registration, and (b)
the direct pairwise registration. The brighter region indicates higher bending energy. For
most brain regions, especially those in red circles, the proposed intermediate templates
guided registration method can yield smoother deformation field and smaller bending
energy. This is further confirmed by the close-up views of the vector fields.
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Fig. 9.
The illustration of fiber bundles used for evaluation. Shown in green, blue, and red are the
fiber bundles in the genu, body and splenium of corpus callosum, respectively.

Jia et al. Page 23

Neuroimage. Author manuscript; available in PMC 2012 January 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 10.
The distributions of the point-wise fiber distances given by (a) the direct pairwise
registration method, and (b) the proposed intermediate templates guided groupwise
registration method. The distribution of the misalignment error reduction is provided in (c).
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Fig. 11.
Accuracy of fiber bundle alignment. In each plot, the distance-weighted color-coding result
on the corresponding fiber bundles in the template is shown in the top row, and the actual
alignment results are shown in the bottom row. Red indicates the template fiber bundles, i.e.,
genu in (a) and splenium in (b), while green indicates the warped subject fiber bundles. The
proposed method (left column) gives better fiber alignment than direct pairwise registration
(right column).
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Table 1

The mean values of the pairwise Euclidean distances between all image pairs after the registration using
different methods. The distance is calculated based on FA maps, ADC maps and the combined maps (as
defined in Eq. 1). Note that the results based on the combination maps are obtained after normalization of the
ADC map.

Affine registration Direct pairwise
registration

ABSORB-based
registration

Intermediate
templates guided

registration

ADC 10.9×10−4 9.09×10−4 8.87×10−4 8.56×10−4

FA 6.32×10−3 5.72×10−3 5.63×10−3 5.24×10−3

FA+ADC 8.42×10−3 7.49×10−3 7.43×10−4 7.22×10−3
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Table 4

Fiber tracking on the mean diffusion tensor images.

Affine registration Direct pairwise
registration

Intermediate templates
guided registration

Fiber
tracts

overlaid
on the FA

map

Number
of

extracted
fibers

926 1266 1311

Maximum
fiber

length
(mm)

84.54 91.14 109.87

Minimum
fiber

length
(mm)

7.29 7.57 8.45

Mean
fiber

length
(mm)

64.98 64.93 62.54

Mean
fiber

length of
top 300
fibers
(mm)

78.40 83.65 86.28
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