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Abstract

The aim of this paper is to present a functional analysis of diffusion tensor tract statistics
(FADTTS) pipeline for delineating the association between multiple diffusion properties along
major white matter fiber bundles with a set of covariates of interest, such as age, diagnostic status
and gender, and the structure of the variability of these white matter tract properties in various
diffusion tensor imaging studies. The FADTTS integrates five statistical tools: (i) a multivariate
varying coefficient model for allowing the varying coefficient functions in terms of arc length to
characterize the varying association between fiber bundle diffusion properties and a set of
covariates, (ii) a weighted least squares estimation of the varying coefficient functions, (iii) a
functional principal component analysis to delineate the structure of the variability in fiber bundle
diffusion properties, (iv) a global test statistic to test hypotheses of interest, which may be
associated with different diffusion properties, and (v) a simultaneous confidence band to quantify
the uncertainty in the estimated coefficient functions. Simulated data are used to evaluate the finite
sample performance of FADTTS. We also apply FADTTS to investigate the development of white
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matter diffusivities along the splenium of the corpus callosum tract and the right internal capsule
tract in a clinical study of neurodevelopment. FADTTS can be used to facilitate understanding of
normal brain development, the neural bases of neuropsychiatric disorders, and the joint effects of
environmental and genetic factors on white matter fiber bundles.

1. Introduction

Diffusion tensor imaging (DTI), which can track the effective diffusion of water in the
human brain in vivo, has been widely used to map the structure and orientation of the white
matter fiber tracts of the brain (Basser et al., 1994a,b). In DT, the degree of diffusivity and
the directional dependence of water diffusion in each voxel can be quantified by a 3 x 3
matrix, called a diffusion tensor (DT), and its tensor-derived quantities, called diffusion
properties, including the three eigenvalue-eigenvector pairs of DT and other related
parameters, such as fractional anistropy (FA) (Pierpaoli and Basser, 1996; Hasan et al.,
2001; Hasan and Narayana, 2003; Zhu et al., 2006). A wealth of neuroimaging studies have
been conducted to use these tensor-derived quantities as a marker for white matter tract
maturation and integrity in order to better understand normal brain development and the
neural bases of neuropsychiatric and neuro-degenerative disorders (Moseley, 2002;
Mukherjee and McKinstry, 2006; Cascio et al., 2007; Rollins, 2007).

In the current literature, there exist three major approaches to the group analysis of diffusion
imaging data: region-of-interest (ROI) analysis, voxel based analysis, and fiber tract based
analysis (Smith et al., 2006; O’Donnell et al., 2009; Snook et al., 2007). The ROI analysis
used in some neuroimaging studies (Bonekam et al., 2008; Gilmore et al., 2008) primarily
averages diffusion properties in some manually drawn ROIs for each subject and then
creates a single statistic per ROI (Snook et al., 2007). The main drawbacks of ROI analysis
are the difficulty in identifying meaningful ROls, particularly the long curved structures
common in fiber tracts, the instability of statistical results obtained from ROI analysis, and
the partial volume effect in relative large ROIs (Goodlett et al., 2009; Zhu et al., 2010c). A
stringent assumption of ROI analysis is that diffusion properties in all voxels of the same
ROI are essentially homogeneous, which is largely false for DTI.

Voxel-based analysis is used more commonly than ROI analysis in neuroimaging studies
(Chen et al., 2009; Focke et al., 2008; Camara et al., 2007; Snook et al., 2005). It usually
involves fitting a statistical model to the smoothed and registered diffusion property imaging
data from multiple subjects at each voxel to generate a parametric map of test statistics (or
p-values). Subsequently, a multiple comparison procedure such as random field theory is
applied to correct for multiple comparisons across the many voxels of the imaging volume
(Ashburner and Friston, 2000; Wager et al., 2005; Worsley et al., 2004). The major
drawbacks of voxel based analysis include poor alignment quality and the arbitrary choice of
smoothing extent (Hecke et al., 2009; Ashburner and Friston, 2000; Smith et al., 2006; Jones
et al., 2005). Particularly, extensive simulation results have shown that the final results of
voxel based analysis can strongly depend on the amount of smoothing in the smoothed
diffusion imaging data (Jones et al., 2005).

With the drawbacks of ROl and voxel based analyses, there is a growing interest in the DTI
literature in developing fiber tract based analysis of diffusion properties (Smith et al., 2006;
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O’Donnell et al., 2009; Yushkevich et al., 2008; Goodlett et al., 2009; Zhu et al., 2010c). For
instance, a tract based spatial statistics framework was developed to construct local
diffusion properties along the white matter skeleton and then perform pointwise hypothesis
tests on the skeleton (Smith et al., 2006). A model based framework was developed for the
statistical analysis of diffusion properties on the medial manifolds of fiber tracts followed by
testing pointwise hypotheses on the medial manifolds (Yushkevich et al., 2008). These two
methods essentially ignore the functional nature of diffusion properties in terms of arc length
along the white matter skeleton and the medial manifolds, and thus they suffer from low
statistical power in detecting interesting features and exploring variability in functional data.
Statistically, diffusion properties along fiber bundles are functional data of position along
the tract. Formal functional analysis of these fiber bundle diffusion properties requires
recently developed advanced functional data analysis methods (Li and Hsing, 2010; Yao and
Lee, 2006; Hall et al., 2006; Ramsay and Silverman, 2005, 2002).

There are several developments on the use of functional data analysis methods for the
statistical analysis of diffusion properties along fiber tracts. A “smoothing first, then
estimation” was proposed by Goodlett and his coauthors. They used the functional principal
component analysis coupled with the Hotelling T2 statistic to compare a univariate diffusion
property, such as fractional anisotropy, across two (or more) populations for a single
hypothesis test per tract (Goodlett et al., 2009; Ramsay and Silverman, 2005). The method is
limited to a univariate diffusion property and cannot control for other continuous covariates
of interest, such as age. The constraint principal component analysis method was used by
Gouttard and his coauthors to fit the age related changes of diffusion properties along fiber
tracts (Gouttard et al., 2009). Three major limitations of their method include that it only fits
a univariate diffusion property; it cannot control for multiple covariates of interest, such as
age and gender; and it cannot test a hypothesis of interest, such as age effect. Zhu and his
coauthors presented a functional regression analysis of DT tract statistics, called FRATS,
for analyzing multiple diffusion properties along fiber bundles with a set of covariates of
interest (Zhu et al., 2010c). FRATS is also “smoothing first, then estimation,” and is
executed in two steps (Zhu et al., 2010c; Zhang and Chen, 2007). The first step is to smooth
multiple diffusion properties along individual fiber bundles by using the local polynomial
kernel method. The second step is to fit a functional linear model with varying coefficient
functions to directly characterize the association between the smoothed fiber bundle
diffusion properties and a set of covariates, and then to test hypotheses of interest. However,
their method is not capable of delineating the structure of the variability in fiber bundle
diffusion properties or quantifying the uncertainty in the estimated coefficient functions. A
multivariate varying coefficient model was developed by Zhu and his coauthors; it only
includes coefficient estimating and hypotheses testing methods (Zhu et al., 2010b). Greven
and her coauthors also developed a univariate varying coefficient model for longitudinal
functional data, but they have not developed any formal statistics for testing hypotheses and
constructing the confidence band of any varying coefficient function in a frequentist
framework (Greven et al., 2010).

This paper is to develop a functional analysis of diffusion tensor tract statistics (FADTTS)
pipeline for delineating the structure of the variability of multiple diffusion properties along
major white matter fiber bundles and their association with a set of covariates. Diffusion
properties, such as fractional anisotropy (FA) and mean diffusivity (MD), along fiber tracts
are modeled as functions of the position along the tracts. Compared with the existing
literature (Goodlett et al., 2009; Zhu et al., 2010c; Greven et al., 2010; Zhu et al., 2010b),
there are five methodological contributions in this paper. First, a multivariate varying
coefficient model is developed to characterize the association between fiber bundle diffusion
properties and a set of covariates. Second, a weighted least squares estimation is proposed to
directly estimate the varying coefficient functions without using the “smoothing first, then
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estimation” strategy. Third, a functional principal component analysis is employed to
delineate the structure of the variability in fiber bundle diffusion properties. Fourth, under
the multivariate varying coefficient model, a global test statistic is proposed to test
hypotheses of interest and a resampling method is developed for approximating the p-value
of the global test statistic. Fifth, a simultaneous confidence band is built to quantify the
uncertainty in the estimated coefficient functions and a resampling method is proposed to
approximate the critical point. The advantages of FADTTS are that they are capable of
modelling the structured inter-subject variability by a functional principal component
analysis method, testing the joint effects by a global test statistic and local test statistics, and
constructing simultaneous confidence bands of the interested effects through a resampling
method. Moreover, compared to univariate analysis of the diffusion tensor tracts, the
multivariate modeling is important for the testing of joint effects, but it is not crucial for
estimation (Zellner, 1962).

2. Methodologies

The focus of this paper is to present a functional analysis pipeline, called FADTTS, with
five powerful statistical tools for delineating the structure of the variability of multiple
diffusion properties along major white matter fiber bundles and their association with a set
of covariates of interest, such as age. Mathematically, we have rigorously derived the
asymptotic properties of FADTTS, whose detailed assumptions and proofs are available
from the first author upon request (Zhu et al., 2010a). A schematic overview of FADTTS is
given in Fig. 1. The code for FADTTS was written in Matlab, which along with its
documentation is freely accessible from our website
http://www.bios.unc.edu/research/bias/software.html. To make it user-friendly, we
developed a Graphical User Interface (GUI) to pack the code, also freely downloadable from
the same website.

To compare diffusion properties in populations of DTIs, we use the DTI atlas building
followed by atlas fiber tractography and fiber parametrization as described in Goodlett et al.
(2009) to extract DT fibers and establish DTI fiber correspondence across all DTI datasets
from different subjects. Since this method has been described in detail (Goodlett et al., 2009;
Zhu et al., 2010c), we skip its description here for the sake of simplicity. We briefly describe
each component of FADTTS in the following subsections, and their technical details can be
found in Zhu et al. (2010a).

2.1. Multivariate Varying Coefficient Model

We develop a multivariate varying coefficient model to model J diffusion quantities (e.g.,
FA) measured along fiber bundles with a set of covariates of interest. The J diffusion
properties along fiber tracts are treated as functional data, which are functions of the position
of the tracts and have no connection with functional magnetic resonance imaging data. Let s
€ [0, L] be the arc length of any point on a specific fiber bundle relative to a fixed end point
of the fiber bundle, where L is the longest arc length on the fiber bundle. For the i-th subject,
we consider an J x 1 vector of diffusion properties, denoted by yi(sm) = (Vi 1(Sm) - - - ¥i.
(sm))T, and its associated arc length s, for the m-th location grid point on the fiber bundle
fori=1,--.,nandm=1, ..., M, where nand M denote the numbers of subjects and grid
points, respectively. We consider a multivariate varying coefficient model (Fan and Zhang,
1999; Wu and Chiang, 2000; Fan et al., 2003; Fan and Zhang, 2008; Wang et al., 2008;
Ferguson et al., 2009), which assumes that fori=1,. -, nandj=1, .-, J,

yij(8)=x] Bj(s)+1; j(s)+&i j(5), n
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where Bj(s) = (Bj1(s), - - - ,b’jp(s))T is a p x 1 vector of coefficient functions of arc length s, x;
isap x 1 vector of covariates of interest with x; ; = 1, and &; j(s) are measurement errors.

Moreover, 7j j(s) characterizes both the individual curve variations from xiTB_,-(s) and the
correlation between y; j(s) and y; j(t) for different s and t. That is, #; j(s) measures both
subject-specific variability and location-specific variability. In addition, f;j1(s) describes an
average curve, i.e. a typical curve, of the j-th diffusion property.

It is also assumed that #i(s) = (7i.1(S), - - -, 7.3 (5))" and &;(s) = (&i 1(S), - - -, &, () are
mutually independent, and #;(s) and &;(s) are, respectively, independent and identical copies
of SP(0, Z,)) and SP(0, %), where SP(x, ¥) denotes a vector with elements being stochastic
processes with mean function x(s) and covariance function (s, t) for any s, t € [0, L].
Moreover, for any 1 <u, v < M, the covariance structure of yj(s), denoted by Z,(s, t) =

(Zy,uv(s, 1), is given by

D (S D=CVEa Y 0)= (.04 (5.D1(s=0, (2)

where X, (S, t) and Z, (s, t) are the (u, v)-th component of M x M matrices Z,, (s, t) and
¥.(s, t), respectively.

Since the design matrix is the same for all diffusion properties, the estimators of Bj(s) for j =
1,2, -, Jfrom (1) by pooling all diffusion properties together are identical to those
obtained by fitting diffusion properties individually (Zellner, 1962). However, the
covariance structure of y;j(s) plays an essential role in the inference procedure (e.g.
hypotheeis testing and constructing confidence bands), which can only be estimated by
pooling all diffusion properties together using model (1). Moreover, in practice, it is also
interested to compare different tensor-derived statistics along the tract, and thus a functional
analysis method for multiple outcomes is necessary and useful. For instance, in real data
analysis, one may be interested in testing which eigenvalue grows faster (Zhu et al., 2010c).

As an illustration, in our clinical study on early brain development, we are interested in
studying the evolution of the three eigenvalues L;, j = 1, 2, 3, of diffusion tensor (Ly > L, >
L3) along two selected fiber tracts in 128 healthy pediatric subjects (Figs. 4(a) and 8(a)). We
consider a multivariate varying coefficient model of the three eigenvalues along a specific
tract as follows:

Li1(5)=B11(s)+f12(5) X G;+B13(s) X Gage;+7; 1(s)+&;,1(5),
Li2(5)=B21(s)+B2n(s) X Gi+B23(s) X Gage;+1;2(s)+&i2(s),
Li3(s)=B31(s)+B32(5) X G;+B33(s) X Gage;+7;3(s)+&i3(s), @)

where L; j(s) equals L at the location s for j=1,2,3and i =1, - - -, 128 and G; and Gage;,
respectively, denote the gender and the gestational age at the scan time of the i-th infant. In
this case, J = 3, Bj(s) = (81(S), Bj2(5), Bj3(s))T, and x; = (1, G;, Gage;)".

2.2. Weighted Least Squares Estimation

To estimate the coefficient functions in B(s) = [B1(s), B2(s), - - -, By (s)], we employ a
weighted least squares (WLS) method based on a local polynomial kernel (LPK) smoothing
technique (Fan and Gijbels, 1996; Wand and Jones, 1995; Wu and Zhang, 2006; Ramsay
and Silverman, 2005; Welsh and Yee, 2006; Zhang and Chen, 2007). Specifically, using
Taylor’s expansion, we can expand Bj(sy) at s to obtain
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Bj(sm) = Bj(s)"'Bj(S)(Sm - 5), (4)

Wherg Bij(s) = Bjn(s), - - -, ,b_’jp(s))T anq Fii(s) = dp;j(s)/ds for | :1 -+, p. Let K(*) be a kernel
function, such as the Gaussian and uniform kernels (Fan and Gijbels, 1996; Wand and Jones,
1995). For each j and a fixed bandwidth h, the weighted least square estimator of Bj(s) is
obtained by minimizing an objective function

n M

D3 LyiiCsm) = XF A (B, 53 = 2, s = )1 K((sm = 5)/ 1)/
i=l m=1 (5)

where Aj(h, sy — s) = [Bj(s), hB;(s)(sm — 5)] and z(h, sp — 5) = (1, (Sm — s)/h)T. The WLS
method differs from the standard least squares method by only incorporating observations
measured at those grid points near each point s.

To select an optimal bandwidth, we use a leave-one-out generalized cross-validation score
method for simplicity and computational efficiency (Zhang and Chen, 2007; Zhu et al.,
2010a). Other bandwidth selection methods, such as Bayesian evidence optimization, can be
implemented directly as well. In practice, we standardize all covariates and diffusion
properties to have mean zero and standard deviation one and then choose a common
bandwidth for all covariates, which greatly increases computational efficiency in bandwidth
selection. Moreover, the estimation results are fairly robust to the bandwidth selection unless
an extremely small or large bandwidth is chosen. Based on our experience in simulation
studies, we recommend searching around max{30, M/2} log-spaced points from 1/M to 1/8
of the arc length range. For each diffusion property, we select an optimal bandwidth and
compute the corresponding estimator of Bj(s), denoted by B]-(s), at the optimal bandwidth.

2.3. Functional Principal Component Analysis

To simultaneously construct all individual variation functions #j j(s), we also employ the
local polynomial kernel smoothing technique (Fan and Gijbels, 1996; Wand and Jones,
1995; Wu and Zhang, 2006; Ramsay and Silverman, 2005; Welsh and Yee, 2006; Zhang and
Chen, 2007). Specifically, using Taylor’s expansion, we can expand 7 j(Sm) at s to obtain
7ij(Sm) ~ i j(S) + i j(S)(Sm — S). We develop an algorithm based on WLS with LPK to
estimate 7 j(s) as follows. For each j and a fixed bandwidth h, we estimate #; j(s) by
minimizing an objective function

M

Z[,\’i.j(sm) - XiTEj(SJU) - Di.j(h, sm = )2, s = )] K((sm — s)/h)/h,
m=1 (6)

where D; j(h, sm — s) = [1ij(S), h7i j(S)(Sm — 8)].

Pooling all the data from n subjects for each j, the optimal bandwidth is selected by using a
leave-one-out generalized cross-validation score method. Based on the optimal bandwidth,
we estimate 7 j(s) and #;(s), denoted by ;ﬂ,j(s) and #i(s), respectively, for all i and j. We then
use their empirical mean and covariance to estimate #(s) and Z,(s, t). The estimator of Z.(s,
s) is a weighted mean of the empirical covariances of &(Sm) = Vi(Sm) — B(Sm)T Xi — #i(Sm) by
a kernel approach with the optimal bandwidth selected by a cross validation method.

Neuroimage. Author manuscript; available in PMC 2012 June 1.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Zhu et al.

Page 7

Functional principal component analysis (FPCA) attempts to find the dominant modes of
variation around regression functions, and is thus a key technique in functional data analysis
(Li and Hsing, 2010; Yao and Lee, 2006; Hall et al., 2006; Ramsay and Silverman, 2005,
2002). We calculate the spectral decomposition of ﬁ,m-j(s, t) for each j as follows:

Z (s, ’)=Zij.1$j.1(5)$j.l("),
] =1 (7)

where /fj,l > ,112 > ... >0 are estimated eigenvalues and the yfu(t)’s are the corresponding
estimated principal components. For finite M, we essentially have a regular principal
component analysis (PCA). That is, we have a finite number of estimated non-zero
eigenvalues, which are tpe eigenvaIuAes of (ﬁn,jj(su, sy) foru,v=1,. - M,Aand the estimated
principal components [y ((S1), - - -, wj1(Sm )] are the I-th eigenfunction of (%, jj(su, Sv))- I
practice, we use the rule that the proportion of variance explained is greater than 80% to
truncate eigenvalues.

2.4. Hypothesis Test

In neuroimaging studies, most scientific questions require the comparison of fiber bundle
diffusion properties along fiber bundles across two (or more) diagnostic groups and the
assessment of the development of fiber bundle diffusion properties across age. Such
questions can often be formulated as linear hypotheses of B(s) as follows:

Hy:Cvec(B(s))=bg(s) forall s vs. H;:Cvec(B(s)) # bo(s), (8)

where C is a r x Jp matrix of full row rank and bg(s) is a given r x 1 vector of functions.

As an illustration, in model (3), we are interested in comparing the evolution speeds of the
three eigenvalues of the diffusion tenors along selected fiber tracts in 128 healthy pediatric
subjects in our clinical study on early brain development. Statistically, for model (3), the
comparison can be formulated as follows:

Hy:f13(5)=B23(s)=P33(s) forall s vs.
Hi: |B13(s) — Ba3(s)[+|B23(s) — B3s(s)| # 0.
In this case, we have

00
C‘(oo

The use of multiple diffusion properties in model (3) allows us to compare different
functions in B(s) associated with different diffusion properties.

1 00 0 0 -1 0
0 00 00 —1)andb0(5)=(o)forall .

We propose both local and global test statistics. The local test statistic can identify the exact
location of a significant grid point on a specific tract. At a given grid point s, on a specific
tract, we test the local null hypothesis Ho(sm): Cvec(B(Sm)) = bo(sm) against Hy(Sm):
Cvec(B(sm)) # bo(sm). The local test statistic Sy(s) is defined by
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— - -1
S,,(s,,,)=d(s,,,)T[C(Z”(s,,,, Sm) ® gz;l)CT] d(sm), 9)

where Q;lz,.:lez, d(s) = Cvec(B(s) — bias(B(s))) — bp(s) and ® denote the Kronecker
product. Following Fan and Zhang (2000), a smaller bandwidth leads to a small value of
bias(B(s)); thus, we drop bias(B(s)) from now on. We test the global null hypothesis Hq:
Cvec(B(s)) = bg(s) for all s using a global test statistic Sy, defined by

— - -1
Su=o 49" CQY (5.0 HCT] d(s)ds. 10

In order to use Sy, as a test statistic, we have already shown that S,, has a desirable
asymptotic distribution, a weighted »2 distribution. To efficiently approximate the p-value of
Sn, We use a wild bootstrap method from Zhu et al. (2010a).

2.5. Confidence Bands

For a given significance level «, we construct a simultaneous confidence band for each
coefficient function f;j(s) such that

P (5)<B ()< (s) forall s € [0,L])=1-a, (11

where B5°(s) and B (s) are the lower and upper limits of the confidence band. Since

sup o, \/Z[Eﬂ(S) = Bji(s)]l converges in distribution to supsepo ] IGji(s)l, where Gjy() is a
centered Gaussian process, we define the critical point Cj () such that P (supseo,L IGji(s)] <
Cji(@)) = 1 — a. Therefore, a 1 — a simultaneous confidence band for fj(s) is given as
follows:

s Cie) - Ci(a)
Bi(s) — ——,  Buls)+ )
(ﬂs \n i vn (12)

We develop an efficient resampling method to approximate Cj(e) as in Zhu et al. (2007a)
and Kosorok (2003).

3. Simulation Studies and A Real Example

We use two sets of Monte Carlo simulations and a real example to evaluate the finite-sample
performance of FADTTS. All computations for these numerical examples were done in
matlab on an IBM ThinkCentre M50 workstation. The computation for FADTTS is
relatively efficient for moderate and even large data. For example, for our real example with
n=128,J=5 M=75and p = 3, the whole FADTTS procedure including 500 wild
bootstrap samples took an average CPU time of about 13 minutes. The computational time
for FADTTS can be further reduced by using other computer languages, such as C++.

Neuroimage. Author manuscript; available in PMC 2012 June 1.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Page 9

3.1. Simulation Studies

We conducted two sets of Monte Carlo simulations to evaluate the Types | and |1 error rates
of the global test statistic S,, and the coverage probabilities of the simultaneous confidence
bands of the functional coefficients B(s), respectively. In the first set of simulations, we
evaluated the Types | and Il error rates by simulating FA and MD measures (Fig. 8(b) and
(c)) along the right internal capsule tract according to

(FA,‘(S,,,),MD,'(S,,,))TZ(X’.TBI(S,,,), X,‘TBZ(SIII))T+)7i(slll)+8i(slll)s
x! B1(5)=B11(s)+B12(5) X Gi+B13(s) x Gage,,
X! Ba(5)=P21(5)+B2(5) X Gi+B23(s) x Gage,, (13)

where Gj and Gage;, respectively, denote gender and the gestational age at the scan time of
the i-th infant; #i(s) = (7i1(S), 7i2(5))" is a Gaussian process with zero mean and covariance
matrix Z,(s, t); and &i(s) = (&j1(S), eia(s))T is a Gaussian random vector with zero mean and
covariance matrix X.(s, t)1(s = t). We used the FA and MD measures along the right internal
capsule tract from all the 128 infants in our clinical data to estimate B(s) of B(s), 5(s) of
7(s), and £(s) of &(s) via £(s) = (FA(S), MD(s))T — B(s)Tx — #(s). We fixed all the parameters
at their values obtained from our clinical data, except that we assumed (513(s), £23(S)) =
c(B13(S), f23(s)), where c is a scalar specified below and (813(s), f23(s)) were estimators

obtained from our clinical data. To mimic imaging data, we generated random samples rﬁg)
and (sy)@ from a N (0, 1) generator fori=1,---,nandm=1, - - -, M and then constructed

— —~ — . (g 2

FAi(Sm)(g):ﬁll(5711)+)812(Sm) X Gi+cf13(sm) X Gage;+7; )ﬁil(sm)‘H'i(Sm)(")Eil(Sm),
= = Py ( .,

NIDi(Sln)(g):ﬁ’.ll(Sm)+)822(5m) X Gi+cBa3(sm) X Gagej+rig)7ii2(Sm)‘l'Ti(5111)("):9\1'2(5111)-

Our tests were based on the simulated values of FA and MD measures FA(sy,)(© and
MDj(sn)@ fori=1,--,nandm=1,---, M.

As already mentioned, in neuroimaging studies, a lot of scientific questions require
assessment of the development of fiber bundle diffusion properties across age. In this
simulation study, we formulated the questions as hypotheses test Hp: f13(S) = B23(s) = 0 for
all s along the right internal capsule tract against Hy: 813(s) # 0 or Bx3(s) # 0 for at least one
s on the tract. We first assumed ¢ = 0 to assess the Type | error rates for the global test
statistic Sy, and then we assumed ¢ = 0.2, 0.4, 0.6, and 0.8 to examine the Type Il error rates
for S, at different effect sizes. In both cases,

00
C_(oo

To evaluate the Types | and Il error rates at different sample sizes, we let n = 128 and 64.
For n = 128, the values of gender and gestational age were set the same as the 128 infants in
our clinical study. For n = 64, we randomly chose 32 males and 32 females from the 128
infants and used their values for gender and gestational age to simulate the values of FA and
MD along the right internal capsule tract. Note that the number of grid points on the right
internal capsule is 75 for both cases.

0
0

o o

(1)) andbo(s)s(o

0 ) forall s.

1
0
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We applied FADTTS to the simulated values of FA and MD. Particularly, we approximated
the p-value of S,, using the wild bootstrap method. For each simulation, the significance
levels were set at o = 0.05 and 0.01, and 500 replications were used to estimate the rejection
rates. For a fixed o, if the Type | rejection rate is smaller than a, then the test is conservative,
whereas if the Type | rejection rate is greater than «, then the test is anticonservative, or

liberal. The Monte Carlo error rate is Va(1 — @)/N with N = 500.

As shown in Table 1, the rejection rates for S, based on the resampling method are relatively
accurate for all sample sizes (n = 64, or 128) and all effect sizes (c =0, 0.2, 0.4, 0.6, or 0.8)
at both significance levels (« = 0.01 or 0.05) (Fig. 2(a) and (b): n = 64 and Fig. 2(c) and (d):
n = 128). The statistical power for rejecting the null hypothesis increases with the sample
size and the effect size, which is consistent with our expectation. In addition to that, to show
that FADTTS outperforms GLM, we also analyzed the simulated data using general linear
model (GLM), in which we fitted GLM at each sy, without 7; j(Sm). That is, standard GLM
ignores the correlation among the data at different grid points. Then, we calculated the
global testing statistic except that we replaced 2,7 (Sm, Sm) in Sp, with ﬁy(sm, sm). Finally, we
calculated the p-values by the wild bootstrap method as in FADTTS. Table 1 shows that
GLM is much less powerful than FADTTS; see also Fig. 2. An advantage of using FADTTS
is that it is capable of explicitly modelling the structured inter-subject variability, in addition
to a standard white noise model. Therefore, although the parameter estimators calculated
from the two methods are close to each other, the covariance estimate of these parameter
estimators in GLM are larger than those in FADTTS.

We carried out the second set of Monte Carlo simulations to evaluate the coverage
probabilities of the confidence bands for regression coefficients. For simplicity, we only
simulated the MD measure along the right internal capsule tract (Fig. 8(c)) according to

MD;(sm)=B1(5m)+B2(sm) X Gi+B3(sm) X Gage;+1i(sm)+&i(sm), (14)

where 7;(s) is a Gaussian process with zero mean and covariance (s, t) and ¢i(s) is a
Gaussian random variable with zero mean and covariance o,(s, t)1(s = t). We used the MD
measure along the right internal capsule tract from all 128 infants in our clinical study to
estimate B(s) of B(s), #(s) of 5(s), and &(s) of &(s), respectively. We fixed all the parameters
at their estimated values and assumed them to be the true values. Subsequently, we
generated random samples z; and zj(sp,) from a N (0, 1) generator fori=1,---,nandm=1, -
-+, M and then constructed

I\’ﬂ),‘(S",.)(g)Zﬁl(S",)‘*'EQ(S,") X Gi+ﬁ3(5111) X Gagei+Ti”7i(5111)+Ti(5m)’8\i(5m)-

Then, based on the generated MD values MDj(sy)@ fori=1, -, nandm=1,- .-, M, we
calculated the simultaneous confidence bands of functional coefficients f1(s), f2(s) and f3(s)
for all s. The 95% and 99% simultaneous confidence bands were considered. As noted by
Fan and Zhang (2000), Ghouch and Genton (2009), and among many others, an appropriate
smaller bandwidth would improve the coverage probabilities of the confidence bands. In our
simulations, we found that a shrinkage factor of 0.8 generally works well. For simplicity and
computational efficiency, we do not consider estimating the bias of £ (s).

Based on 1, 000 simulated data sets, the empirical coverage probabilities of 51(s), f»(s) and
Sa(s) for the significance level o = 0.01 (or « = 0.05) are, respectively, 0.991, 0.994, and
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0.978 (0.948, 0.952 and 0.926). The coverage probabilities are quite close to the claimed
confidence levels. Figs. 5 and 9 depict typical simultaneous confidence bands.

3.2. A Real Example

This clinical study was approved by the Institutional Review Board of the University of
North Carolina at Chapel Hill. A total of 128 healthy full-term infants (75 males and 53
females) were taken from a larger study designated to investigate early brain development at
our institution. All 128 infants were less than one year old, and the written informed consent
was obtained from their parents before imaging acquisition. The mean gestational age at MR
scanning of the 128 infants was 298 + 17.6 days (range: 262 to 433 days). All infants were
fed and calmed to sleep on a warm blanket with proper ear protection. Technicians ensured
that they slept comfortably inside the MR scanner, and thus none of them was sedated
during the imaging session.

A 3T Allegra head-only MR system (Siemens Medical Inc., Erlangen, Germany) was used
to acquire all the images. The system was equipped with a maximal gradient strength of 40
mT/m and a maximal slew rate of 400 mT/(m-msec). The DTI images were obtained by
using a single shot EPI DTI sequence (TR/TE=5400/73 msec) with eddy current
compensation. We applied the six non-collinear directions at the b-value of 1000 s/mm?
with a reference scan (b = 0). The voxel resolution was isotropic 2 mm, and the in-plane
field of view was set at 256 mm in both directions. To improve the signal-to-noise ratio of
the images, a total of five scans were acquired and averaged.

To construct the diffusion tensors, we used a weighted least squares estimation method (Zhu
et al., 2007b; Basser et al., 1994a). We then employed our DTI atlas building followed by an
atlas-based tractography procedure to process all 128 DTI datasets. While several DTI fiber
tracts were tracked, we chose to focus in this paper on the splenium of the corpus callosum
and the right internal capsule tract to illustrate the applicability of our method (Figs. 4 and
8). Five diffusion properties were extracted along the selected fiber tracts including ractional
anistropy (FA), mean diffusivity (MD), and the three eigenvalues of the diffusion tensors,
denoted by Ly = L, > Lg, at each grid point along all fiber tracts of interest for all the 128
infants (Goodlett et al., 2009). FA and MD, respectively, measure the inhomogeneous extent
of local barriers to water diffusion and the averaged magnitude of local water diffusion,
while Ljs (j = 1, 2, 3) reflect the magnitude of water diffusivity along and perpendicular to
the long axis of white matter fibers (Song et al., 2003).

In this study, we have two specific aims. The first one is to compare diffusion properties
along the selected fiber bundles across the male and female groups and thus illuminate the
gender effect on the development of these fiber bundle diffusion properties. The second one
is to delineate the development of fiber bundle diffusion properties across time—the age
effect. As a graphical illustration, we plotted FA measures along the right internal capsule
tract from 40 randomly selected infants (Fig. 3). We observed that the values of FA increase
with gestational age at nearly all grid points. To statistically test the gender and age effects,
we applied FADTTS to the joint analysis of FA and MD values and the three eigenvalues
along each of the two tracts.

For the two selected tracts, we fit the multivariate varying coefficient model (1) to the
smoothed FA and MD values and the three eigenvalues from all 128 subjects, in which x =
(1, G, Gage)" and M = 5. We then estimated the functional coefficients B(s). In the
functional principal component analysis part, we estimated #(s) and constructed the spectral
decomposition of ﬁ,“-j(s, t) forall j=1, - - -, J by calculating their eigenvalues and
eigenfunctions. For the hypothesis testing, we constructed the global test statistic S, via
equation (10) to test the gender and age effects for the five diffusion-tensor properties
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altogether. We approximated the p-value of Sy, using the resampling method with G = 1, 000
replications. Finally, we constructed the 95% simultaneous confidence bands for the
functional coefficients B(s).

The bandwidths selected by GCV for the five diffusion properties along the right internal
capsule tract are, respectively, 0.49, 0.68, 0.63, 0.74 and 0.58. Fig. 5 presents the estimated
varying functional coefficients B(s) associated with all five diffusion properties (blue solid
lines in all panels of Fig. 5). The intercept functions (all panels in the first column of Fig. 5)
described the overall trend of the five diffusion properties. Compared with the estimated
mean functions using FRATS (Zhu et al., 2010c), they admitted almost identical curves,
which indicates the effectiveness of FADTTS. The gender coefficients for MD and all the
three eigenvalues (panels (e), (h), (k), and (n) of Fig. 5) are negative at most of the grid
points, which may indicate that compared with female infants, male infants have relatively
smaller magnitudes of local water diffusivity along the splenium of the corpus callosum.
However, the fact that we did observe positive gender effects at some grid point may
weaken our findings. We did not observe similar patterns for FA (panel (b) of Fig. 5). The
gestational age coefficients for FA (panel (c) of Fig. 5) are positive at most grid points,
indicating that FA measures increase with age in both male and female infants, whereas
those corresponding to MD and all three eigenvalues (panels (f), (i), (1), and (o) of Fig. 5)
are negative at most grid points. This may indicate a negative correlation between the
magnitudes of local water diffusivity and gestational age along the splenium of the corpus
callosum. It also has been noted that there are negative age effects at some grid points of FA
and positive age effects of the other four diffusion properties at some grid points, which
again may weaken our findings.

We presented the eigenvalues and eigenfunctionspf ﬁ,“-j(s, t)forallj=1, -, JinFig. 6.
ForAaII five measures, the relative eigenvalues of X, j; defined as the ratios of the eigenvalues
of X, ji(s, t) over their sum have almost identical distributional patterns (panel (a) of Fig. 6).
We observed that the first three relative eigenvalues account for 80% of the total and the
others quickly vanish to zero. The eigenfunctions of FA corresponding to the largest three
eigenvalues (Fig. 6(b)) are different from those of the other four measures (Fig. 6(c)—(f)).
For MD, L, Ly, and L3, similar patterns were observed among the eigenfunctions
corresponding to the largest three eigenvalues. This is consistent with the fact that FA is a
scaled-invariant measure of all the eigenvalues.

We statistically test the effects of gender and gestational age on all five diffusion properties
along the splenium tract. To test the gender effect, we calculated the local test statistics
Sn(sm) and their corresponding p-values across all grid points on the splenium tract, among
which only a few grid points have —logyo(p) values greater than 2 (red line in Fig. 7(a)).
Then, we also computed the global test statistic S, = 506.69 and its associated p-value (p =
0.054), indicating a weakly significant gender effect, which agrees with the findings in
panels (e), (h), (k), and (n) of Fig. 5. The —logo(p) values of S,(sy) for testing the age effect
at most grid points are greater than 2 (green line in Fig. 7(a)), while a moderately significant
age effect was found with S,, = 971.16 (p-value =.034). This agrees with the findings in
panels (c), (), (i), (1), and (0) of Fig. 5, indicating that some diffusion properties along the
splenium tract differ slightly between male and female groups and change moderately with
gestational age. Furthermore, for all diffusion properties, we constructed the 95%
simultaneous confidence bands of the varying coefficients for G; and Gage; (Fig. 5).

For the right internal capsule tract, we have the following findings. Fig. 9 presents the

estimated B(s) associated with all diffusion properties along the right internal capsule tract
(blue solid lines in all panels of Fig. 9). Since the patterns in Fig. 9 were similar to those in
Fig. 5, we do not repeat them here. Moreover, forj=1, - - -, 5, Fig. 10 presents the relative
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eigenvalues and eigenvectors of 2,“-]-(5, t) along the right internal capsule tract. As shown in
Fig. 10(a), the first three relative eigenvalues account for the 70% of the total, and the rest
quickly vanish to zero. For all diffusion properties, the eigenfunctions associated with the
largest first eigenvalues for the right capsule tract (panels (b)—(f) of Fig. 10) show patterns
similar to those for the splenium tract in Fig. 6. Moreover, we found no significant effect of
gender since S,, = 420.05 with p-value 0.347, even though the —logyo(p) values of Sy(Sy) for
gender are greater than 2 at a few grid points (red line in Fig. 7(b)). However, a highly
significant effect of gestational age was found with S, = 1549.1 and its p-value p < 0.001,
while the —logg(p) values of S,(sy,) for the age effect are greater than 2 at all grid points
(green line in Fig. 7(b)). This indicates that diffusion properties along the right internal
capsule tract do not differ significantly between male and female groups but are significantly
associated with gestational age. Finally, we constructed the 95% simultaneous confidence
bands of the functional coefficients (Fig. 9).

In our last step, we applied FADTTS to each of the five diffusion properties along both the
right internal capsule tract and the splenium tract and then calculated the global test statistic
Sy and its associated p-value (Table 2). For the splenium tract, recall the overall p-values p =
0.054 and p = 0.034 for the gender effect and the age effect, respectively, based on all five
diffusion properties. Inspecting individual diffusion properties reveals that gender mainly
has a mild effect on MD, L; and Ly, while age influences MD and the three eigenvalues.
These results agree with the findings in Fig. 9. For the right internal capsule tract, the overall
p-values are given by p = 0.347 and p < 0.001 for the gender effect and the age effect,
respectively, based on all the five diffusion properties. We did not observe a gender effect
on any of the five individual diffusion properties, but there are significant age effects on all
of them.

4. Discussion

The contributions of our work are twofold. From the statistical perspective, we have
developed a new functional analysis pipeline for delineating the structure of the variability
of multiple diffusion properties along major white matter fiber bundles and their association
with a set of covariates of interest. The FADTTS pipeline integrates five advanced statistical
tools from the statistical literature. From the application perspective, we have demonstrated
FADTTS in a clinical study of neurodevelopment for revealing the complex inhomogeneous
spatiotemporal maturation patterns as the apparent changes in fiber bundle diffusion
properties. We expect that this novel statistical tool will lead to new findings in our clinical
applications.

Several limitations need to be addressed in future research. Even though the three
eigenvalues satisfy the constraint Ly > L, > L3, model (1) and its associated statistical
procedure do not impose such a constraint. Moreover, for some strongly nondegenerate
tensors (L; » Ly > Lg) with small L, and L3, there may be difficulty in distinguishing these
two smallest eigenvalues. It is also possible that the fitted mean eigenvalues obtained from
model (1) may be negative. A possible solution is to require that the fitted eigenvalue in
model (1) be non-negative; an alternative solution is to use the logarithm of eigenvalues as
responses. Both are topics for future research.

All fiber tract based methods including FADTTS are only applicable to these major white
matter tracts in which one can establish the common localization across subjects. Thus,
FADTTS is able to investigate a subset of different scenarios in which white matter structure
is associated with a covariate, such as age, gender, and diagnostic status. For instance, the
centroid of the localization of white matter lesion could vary across time and subjects. In
this case, neither ROI based methods nor tract based methods would be appropriate. In some
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heterogenous populations, it is possible that tract-specific changes occur in only a subset of
subjects.

There are several current topics for our research. We are developing new statistical methods
for making statistical inferences about both the eigenvalues and eigenfunctions in FPCA and
for establishing the association of eigenvalues and eigenfunctions with a set of covariates of
interest. We are exploring other nonparametric methods, such as wavelet and B-spline
methods instead of using local polynomial kernel. We are in the process of extending
FADTTS to the analysis of high angular resolution diffusion image (HARDI), which is
important for resolving the issue of fiber crossing (Lenglet et al., 2009; Tuch et al., 2002). It
is also important to extend FADTTS to principal directions and full diffusion tensors on
fiber bundles (Schwartzman, 2006; Lepore et al., 2008; Schwartzman et al., 2005; Zhu et al.,
2009; Whitcher et al., 2007). The proposed methodology can be readily extended to more
complex fiber structures, such as the medial manifolds of fiber tracts (Yushkevich et al.,
2008). Furthermore, we will extend FADTTS to longitudinal studies and family studies
(Fang and Wang, 2010). Finally, we have treated fiber bundle diffusion properties as
functional responses. It will be interesting to consider generalized functional linear models,
in which a scalar outcome (e.g., diagnostic group) is used as the response and fiber bundle
diffusion properties are used as varying covariate functions (or functional predictor)
(Ramsay and Silverman, 2005; Goldsmith et al., 2011).
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diffusion properties of a tract, a weighted least squares method for estimating the coefficient
functions, a functional principal component analysis model for analyzing the covariance

structure, a hypothesis test for coefficient functions using both local and global test statistics,
a resampling method for estimating the p-value of the global test statistics, and a method for

constructing the confidence bands of the coefficient functions based on a resampling

method.
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Simulation study: Type I and Type Il error rates. Rejection rates of S, based on the
resampling method are calculated at five different values of c (representing different effect
sizes) for sample sizes n = 64 and n = 128 at « = .05 and « = .01 significance levels.
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(c) ()
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Fig. 3.
3D plots of FA along the right internal capsule tract to illustrate the possible age effect: (a)
and (b) 3D line plot and (c) and (d) 3D surf plot.
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Fig. 4.

Splenium tract and diffusion properties along the splenium tract: (a) The splenium tract
extracted from the tensor atlas with color presenting the mean FA values; (b) FA; (c) MD;
(d) Ly; (e) Ly; and (f) Lg. The diffusion properties in panels (b)—(f) are from 20 randomly
selected infants.
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Fig. 5.

The estimated coefficient functions (blue solid lines) and the corresponding 95% confidence
bands (red dashed lines) for the five measures along the splenium tract: (a), (d), (9), (j), and
(m) the varying intercept functions for FA, MD, L,, L, and L3, respectively; (b), (e), (h), (k),
and (n) the varying coefficient functions of gender for FA, MD, L, L, and L3, respectively;
(©), (B, (i), (1), and (o) the varying coefficient functions associated with gestational age for
FA, MD, L1, Ly and L3, respectively.
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Fig. 6.

Spectral decomposition of 2,7|kk(s, t) for FA, MD, L1, L, and L3 along the splenium tract: (a)
the first 12 relative eigenvalues; (b) the first 3 eigenvectors for FA, (c) the first 3
eigenvectors for MD; (d) the first 3 eigenvectors for Ly; (e) the first 3 eigenvectors for Ly;
and (f) the first 3 eigenvectors for L.
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Fig. 7.

—log;0(p) values for testing gender and gestational age effects of test statistics Sy(s;) for the
two selected tracts: (a) —logyg(p) values for testing gender and gestational age effects of the
splenium tract; (b) —log1o(p) values for testing gender and gestational age effects of the right
internal capsule tract.
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Fig. 8.

Right internal capsule and diffusion properties along the right internal capsule tract: (a) the
right internal capsule tract extracted from the tensor atlas with color presenting the mean FA
values; (b) FA,; (c) MD; (d) L1; (e) Ly; and (f) L. The diffusion properties in panels (b)—(f)
are from 20 randomly selected infants.
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Fig. 9.

The estimated coefficient functions (blue solid lines) and the corresponding 95% confidence
bands (red dashed lines) for the five measures along the right internal capsule tract. Panels
(@), (d), (9), (j), and (m) are the varying intercept functions for FA, MD, L4, L, and L3,
respectively. Panels (b), (e), (h), (k), and (n) are the varying coefficient functions of gender
for FA, MD, L4, L, and Lg, respectively. Panels (c), (f), (i), (1), and (o) are the varying
coefficient functions of gestational age for FA, MD, L,, L, and L3, respectively.
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Fig. 10.

Spectral decomposition of %, \k(s, t) for FA, MD, Ly, L; and L3 along the right internal
capsule tract: (a) the first 12 relative eigenvalues for FA, MD, L4, L, and Lg; (b) the first 3
eigenvectors for FA; (c) the first 3 eigenvectors for MD; (d) the first 3 eigenvectors for Ly;
(e) the first 3 eigenvectors for Ly; and (f) the first 3 eigenvectors for Ls.
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Table 2

The p-values of S, for testing the effects of gender and gestational age on the splenium and right internal
capsule tracts.

Splenium Right internal capsule

gender gestational age gender gestational age

FA 0.683 0.103 0.169 <0.001
MD 0.063 0.008 0.354 <0.001
Ly 0.048 0.003 0.241 <0.001
L, 0.057 0.007 0.314 <0.001
Ls 0.302 0.010 0.376 <0.001
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(FA, MD, Ly, Ly, Ly)

0.054

0.034

0.347

<0.001
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