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Abstract
To achieve more accurate and consistent registration in an image population, a novel hierarchical
groupwise registration framework, called Atlas Building by Self-Organized Registration and
Bundling (ABSORB), is proposed in this paper. In this new framework, the global structure, i.e., the
relative distribution of subject images is always preserved during the registration process by
constraining each subject image to deform only locally with respect to its neighbors within the learned
image manifold. To achieve this goal, two novel strategies, i.e., the self-organized registration by
warping one image towards a set of its eligible neighbors and image bundling to cluster similar
images, are specially proposed. By using these two strategies, this new framework can perform
groupwise registration in a hierarchical way. Specifically, in the high level, it will perform on a much
smaller dataset formed by the representative subject images of all subgroups that are generated in
the previous levels of registration. Compared to the other groupwise registration methods, our
proposed framework has several advantages: 1) It explores the local data distribution and uses the
obtained distribution information to guide the registration; 2) The possible registration error can be
greatly reduced by requiring each individual subject to move only towards its nearby subjects with
similar structures; 3) It can produce a smoother registration path, in general, from each subject image
to the final built atlas than other groupwise registration methods. Experimental results on both
synthetic and real datasets show that the proposed framework can achieve substantial improvements,
compared to the other two widely used groupwise registration methods, in terms of both registration
accuracy and robustness.
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1. Introduction
Image registration is one of the most important techniques in the field of medical image analysis
due to its significance in both scientific researches and clinical applications (Crum et al.,
2004). A large proportion of registration methods have been developed for pairwise image
registration (Christensen and Johnson, 2001; Johnson and Christensen, 2002; Klein et al.,
2009; Shen and Davatzikos, 2002; Vercauteren et al., 2009) where each subject image is
registered independently with a selected template by a separately estimated spatial
transformation. To better understand and analyze the group similarity and variation within a
population, it is important to accurately and consistently register all images in the population.
However, the pairwise registration can inevitably introduce bias to the registration, due to the
bias in the selection of the template for registration. Accordingly, many groupwise registration
methods have been recently proposed to achieve more accurate and consistent registration
among the population by simultaneously registering all images within a single registration
framework, thus facilitating the better investigation of the group similarity and variation in the
population (Hajnal et al., 1995; Hill et al., 2001; Holden et al., 2000; Maintz and Viergever,
1998; Sabuncu et al., 2009; Sabuncu et al., 2007; Zitová and Flusser, 2003).

One way to achieve groupwise registration is based on the pairwise methods. For example, in
(Park et al., 2005), an image that is the closest to the geometrical mean of a population is
selected as a template by Multi-Dimensional Scaling (MDS) (Cox and Cox, 2000) and then all
other images are registered to the selected template for achieving the least bias. Specially, the
geometrical mean is estimated based on the registration results of all image pairs. As mentioned
above, this type of groupwise registration is limited due to the selection of a particular image
as a template for registration, which can inevitably introduce bias to the final registration.
Another method proposed by Seghers et al. (Seghers et al., 2004) implements the pairwise
registration on all pairs of images in the population, and each image is deformed by the average
deformation field over the deformation fields estimated between this image and all other
images. The atlas is thus built by averaging all the deformed images. However, the high
computational load limits its application, especially when the number of images to be registered
is large.

To avoid the potential bias in the registration, many other groupwise registration methods are
proposed to directly register all images simultaneously by formulating groupwise registration
as an optimization problem, with a global cost function particularly defined on all aligned
images. For example, in the congealing registration method proposed in (Learned-Miller,
2006; Zitová and Flusser, 2003), an objective function based on the pixel stack entropy is
defined over all aligned images in the dataset, to solve the groupwise registration problem by
a gradient-based stochastic optimizer. The results by this congealing registration method can
provide an estimated deformation field for each image and also generate an atlas through the
averaging of all aligned images. The congealing registration method has been recently extended
by Balci et al. (Balci et al., 2007a; Balci et al., 2007b) to perform non-rigid registration using
B-Splines based deformation representation (Bhatia et al., 2004), and by Wang et al. (Wang
et al., 2009b) to use the attribute vector (instead of the image intensity only) for guiding the
registration and achieving more robust and accurate registration results. However, the curse of
dimensionality from the huge number of variables involved in the global cost function poses
challenges to the optimizer which is vulnerable to local minima.

Compared to the above-mentioned methods, Joshi et al. (Joshi et al., 2004) proposed to solve
the groupwise registration in an iterative manner within the framework of diffeomorphism.
Specifically, an interim atlas is first built by averaging all images after affine registration, and
then all the images are registered to this interim atlas by diffeomorphic registration. (Note that
this interim template is also called the group mean image in this paper.) After this first round
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of registration, the interim atlas is updated based on the newly registered images and a second
round of registration is performed subsequently. By iteratively performing the steps of (1) the
registration to the atlas and (2) the atlas updating, this method can provide an unbiased way to
build the atlas, and also can converge fast with a few iterations. However, the registration
process of this method could be misled by trying to register sharp individual images (with clear
anatomical structures) to a blurry group mean image (with no clear anatomical structures)
especially in the first rounds of registration.

It is generally difficult to achieve good registration in one step by simply registering each image
to an explicit (or implicit) template directly, especially when anatomical variations are large
across images within the group. To this end, Wang et al. (Wang et al., 2009a) proposed to
perform groupwise registration by clustering all the images hierarchically into several small-
scale subgroups, and thus the images in each subgroup can be better registered since they are
more similar to each other. Specifically, a tree of images is first constructed based on the
clustering results, and then the registration process starts from the subgroups on the leaf nodes
and ends at the root. However, the problem of how to perform groupwise registration within
each subgroup in a consistent and robust way remains untouched.

On the other hand, some other algorithms have been proposed to register the individual image
to the template with help of intermediate templates (Baloch and Davatzikos, 2009; Baloch et
al., 2007; Tang et al., 2009). These intermediate templates are selected from the dataset to build
a connection path between each individual image and the template. The final registration result
can be obtained for each individual image by deforming it along its respective connection path
to the template. This idea can be applied to the groupwise registration by building a minimum
spanning tree (MST) (Kruskal, 1956) where each node corresponds to one image and each
edge weights the distance between two connected nodes (Munsell et al., 2009). The root node
for the MST can be determined by selecting a node that has the minimal edge length to all other
nodes. In (Hamm et al., 2009), after learning the intrinsic manifold from the whole dataset, the
pseudo-geodesic median image is determined as the template since it minimizes the total path
length from each image to the template. The corresponding geodesic paths between individual
images and the template are computed to construct a tree on the learned manifold. Since a fixed
image (i.e., the root image) is used as the final template to register with all other images, the
bias is unavoidable in this scenario (as other pairwise-registration based groupwise registration
methods as mentioned above), although the registration error could be reduced since each time
only the nearby similar images need to be registered.

In this paper, a new framework for groupwise registration, termed as Atlas Building by Self-
Organized Registration and Bundling, or ABSORB for short, is proposed to address the
problems mentioned above, with the basic idea illustrated in Fig. 1. We resolve the groupwise
registration problem in an iterative manner by warping each image in the population to the
final atlas step by step on the learned manifold, and, at the same time, maintain the global
distribution of the population. To achieve this goal, two new strategies, namely self-organized
registration and image bundling, are proposed. Specifically, the self-organized registration is
introduced to deform each image towards a subset of its neighbors that are closer to the global
center (estimated in each iteration) and thus condense the distribution of image set on the
learned manifold gradually. Note that the global center is updated iteratively and is used only
to guide the selection of neighbors, thereby no fixed template is directly used for population
registration. After several iterative registrations, some nearby subjects become close enough
to each other and are thus bundled together spontaneously into a subgroup. By using these two
strategies, ABSORB can perform groupwise registration from the lower level to the higher
level hierarchically; particularly, in the higher level, the registration is performed on a much
smaller dataset, which consists of the representative images of all subgroups formed in the
previous registration steps. As the result of this hierarchical registration process, a pyramid of
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images is built automatically and the atlas image can be generated eventually once the
registration arrives at the upmost level.

Similar to the approaches that solve the groupwise registration in an iterative way (Hamm et
al., 2009; Joshi et al., 2004; Munsell et al., 2009), the complete path from each individual image
to the final atlas built by the proposed ABSORB method is composed of a series of small
segments, connecting neighboring images. But the proposed ABSORB method is inherently
different from those methods in three ways. First, in ABSORB, there are no intermediate
templates used for all images in any iteration. Instead, the movement of each individual image
on the manifold is driven only by a selected set of its neighboring images, not by a common
explicit or implicit template. Second, in this proposed framework, the number of neighboring
images that could have effects on the current image is adaptively determined according to the
data structure learned online, and the complete path generated from each image to the final
atlas on the manifold is generally smoother and more conservative as ABSORB always moves
one image to its nearby location, instead of the global mean location. In contrast, in (Hamm et
al., 2009; Joshi et al., 2004; Munsell et al., 2009), the direction and the amount of deformation
for each image in each iteration are determined by only one image, i.e., the selected image used
as the tentative template, which can often result in a zigzag path if the selected template cannot
represent the data distribution very well, as will be demonstrated in the experimental result
section. Finally, in the proposed ABSORB method, the registration path for each image is not
pre-determined before the actual registration starts. In other words, it is a fully data-driven
groupwise registration method. In contrast, the tree in (Hamm et al., 2009; Munsell et al.,
2009) is built in the pre-processing step and fixed during the whole registration. The
performance of ABSORB is evaluated on both synthetic and real image sets, showing that this
novel framework of groupwise registration can significantly improve the registration accuracy
and the quality of the built atlas, compared to other two groupwise registration methods (Joshi’s
iterative groupwise registration method (Joshi et al., 2004) and the tree-based groupwise
registration method (Hamm et al., 2009)).

The rest of this paper is organized as follows. The proposed groupwise registration framework
(ABSORB) is detailed in Section 2. In Section 3, extensive experiments on both synthetic and
real datasets, as well as the comparison with other two groupwise registration methods, are
provided to demonstrate the performance of the ABSORB registration method. We conclude
and discuss the future work in Section 4.

2. Method
In this section, a new framework for simultaneous registration of an image population, termed
as ABSORB, is presented. We assume that a population I = {I1, I2, … , IN} with N different
subject images has already been pre-processed under intensity normalization and affine
registration, i.e., the global shape differences among subject images, such as translation,
rotation, shearing and scaling, have been removed, e.g., by a groupwise affine registration
method (Zöllei et al., 2005). The registered image of subject Ii at the beginning of iteration t
is denoted as  , where i = 1, 2, … , N and t ≥ 1. The goal of the proposed framework at iteration

t is to further align all images  and obtain an updated image set

 in the end of iteration t, so that all the images in It+1 are distributing
more compactly to each other in the data space than they are in It. Here, we set I1 = I. It is
worth noting that Nt denotes the current number of representative subjects under consideration,
which can change dynamically with the registration. We will make it clear in Section 2.3.

In Fig. 1, the basic idea of how the registration process evolves in the proposed framework is
illustrated. To move a subject  towards a common space at iteration t, a self-organized
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registration is first performed. Specifically, a subset of neighbors of  within It are selected
based on some criteria that will be specified in Section 2.1, and then the deformation field
defined to warp the current subject  to  is calculated by combining all the deformation
fields between  and each of its selected neighbors. Note that the deformation field between

 and each of its selected neighbors can be obtained by any pairwise registration methods,
although in this paper we choose the diffeomorphic demons method1 because it is available in
ITK (Ashburner, 2007;Vercauteren et al., 2009). After performing the self-organized
registration on all subjects in the current iteration (t), we bundle some nearby subjects into
respective subgroups if they have been registered very close to each other, and then update the
deformed image set It with It+1. The same (self-organized registration and image bundling)
steps are repeated on It+1 in the next iteration until the algorithm converges.

In the following, we first introduce in Section 2.1 a strategy for selection of neighboring
subjects for the self-organized registration step. In Section 2.2, the detail of how to combine
the deformation information from the neighborhood for guiding the movement of each subject
is presented. Finally, the hierarchical structure of the whole registration framework is depicted
in Section 2.3.

2.1. Selection of neighboring subjects
Selection of neighboring subjects is critical to self-organized registration. We design a
particular procedure to adaptively choose a subset of neighbors for each subject by considering
both local and global information. Specifically, a metric is first defined to measure the distance
between any two subjects on the data manifold, and then a graph is built and updated iteratively
to help locate the global center. Finally, the selection of neighboring subjects is performed for
each subject and its deformation field is later calculated based on the qualified neighbors.

We first define a distance measurement between any two subjects in the dataset. In this paper,

the intensity difference between two images  and  is used to define a metric, , due

to its simplicity and fast calculation, i.e., ,
where M is the total number of voxels in the image and  is the intensity value of the p-th
voxel in the image . It is worth noting that other metrics, such as those defined in (Hamm et
al., 2009; Munsell et al., 2009; Seghers et al., 2004), can also be applied. To better measure
the distance between two subjects on the manifold that captures the intrinsic structure of the
image space in the dataset, we can go one step further to pursue a distance defined on the
manifold. Following the procedure described in the isomap algorithm (Tenenbaum et al.,

2000), a k-NN isomap based on the pairwise distance  can be constructed. The distance

between  and  can be updated as , where  is the shortest distance
between  and  on the k-NN isomap.

To ensure that the registration process within the population is on the learned manifold, the
interactions between different subjects in a single iteration are constrained to be within a local
neighborhood. That means, for any subject image , its movement at iteration t is determined
locally. This is extremely important in the early phase of registration (in order to achieve more
accurate registration results), because it is always much easier to register two nearby subjects
with similar structures precisely than to register two subjects far-away from each other. The
local movement in each iteration will be used to warp one subject towards the global center

1Source code can be downloaded from http://www.insight-journal.org/browse/publication/154.
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step by step. One of the simple and straightforward ways to implement the above idea is to
consider the movements to the local and global center separately. However, since the direction
of the local movement is not necessarily consistent with that of the global movement, the overall
registration path to the final atlas could be more like a zigzag. In this way, the whole population
could converge slowly and possibly undermine the registration accuracy.

To solve this problem, we propose a different strategy to combine both the global and local
information in one step, by embedding the global information into the selection of neighboring
subjects. For example, when selecting the qualified neighbors of one subject for registration,
we choose only subjects that are closer to the global center than the subject under consideration.
It is worth noting that, here, the global center is different from the final atlas in two ways. First,
the global center is not served as a template, to which each subject should be registered directly.
Second, the global center is iteratively updated (rather than being fixed in many registration
algorithms), and it is used only to provide general information for the selection of qualified
neighbors. As depicted in Fig. 2, the neighborhood of subject  is defined within a hyper-sphere
in the high-dimensional space (i.e., the small disc in red). The global center at the current
iteration is located at  and another hyper-sphere with the radius equal to the distance from

 to  is also calculated, i.e., the large disc in blue. Here, c(t) is the index of the subject
selected as the global center at the current iteration t. Then, only those subjects within the
intersection of two discs, i.e., subject  (the solid triangle point), are chosen as the qualified
neighbors of subject . Subject  (denoted by the solid square) is not qualified as it is not closer
to  than  , although  is in the neighborhood of .

As we have discussed above, the global information is embedded into the selection of local
qualified neighbors by choosing only those closer to the global center. So the determination of
global center is also critical to the performance of the algorithm. In (Joshi et al., 2004), the
group mean image in the Euclidean space is adopted as the global center. However, this mean
image is usually very fuzzy, which could lead to an inaccurate registration because of
registering two images with different contrast, i.e., subject images are sharp with clear
anatomical structures while the initial estimated group mean image is fuzzy with unclear
anatomical structures. On the contrary, we select the median subject on the learned manifold
as the global center due to its robustness to the outliers as shown in (Hamm et al., 2009). The
median subject in a dataset is defined as the subject that minimizes the overall distance from
that subject to all other subjects. To achieve this, an undirected graph, whose edges are assigned
with distances between connected subjects, can help compute the median subject. Instead of
building a fixed graph throughout the registration process, we propose a dynamic graph which
is updated by the dataset composed of all registered images after each iteration. The global
center is then updated accordingly on the manifold. This helps subjects adjust their moving
directions more adaptively. However, if the graphs in different iterations are generated
independently, the determined global center may change dramatically, especially in the early
stage of registration, and thus the estimated deformation for each subject would lack
smoothness in the perspective of registration process. A stable global center can provide a
consistent direction to guide the registration of subjects and alleviate unnecessarily zigzagged
paths. To obtain such a consistent but not fixed global center, we build an Iterative
Neighborhood Graph (ING), , from k-NN isomap. The weight assigned to the edge
connecting two images  and  in  is defined as

(1)
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where the current edge weight  is calculated as a weighted summation of , the

distance between  and  , and , the cumulative distance applied in the previous
iteration. Here, we use α to include the distance information in previous iterations. We set α ∈
(0,1) so that the earlier iteration will have less effect on the current weight. Based on the weight
assigned to each edge in , the median image  (or the global center here) at the current
iteration t can be selected by

(2)

According to Eq. 1, we can see that the information from different manifolds generated in all
previous iterations (from 1 to t – 1) has been integrated together iteratively in graph . The
ING can thus regulate the graph topologies built on the registered image set It in different
iterations and can assure a gentle shift of the global center.

With the constructed  and the selected global center , we can determine those qualified
neighbors for each subject in its neighborhood as illustrated in Fig. 2. For the given subject

 at iteration t, we sort all other subjects in the ascending order of bilateral distances,

. And a subscript set  is built to include the top 
indices of the sorted subjects which are the closest to . We build another set  containing
the subscripts whose corresponding subjects are closer to the current global center  than the
subject under consideration The intersection between  and , , with size

, is exactly the set where each element corresponds to a qualified subject index that
we expect to get. Note that  could be zero since, for some subjects , the common area in
Fig. 2 might not contain any other subject in , and  is only true either when  is the global
center or when all of its nearest neighbors are farther to the global center. All the qualified

neighbors form a set as  and only they will guide the warping of  at iteration
t.

Such a neighboring subject selection strategy as we detailed above can successfully embed the
global information into the selection of the local neighbors, which is a desirable property of
the self-organized registration. It is worth noting that the global center is defined on the
registered image set at each iteration, and is updated iteratively as the registration proceeds.
Therefore, the global center is not necessarily the same in different iterations. After determining
those qualified neighbors, the self-organized registration can be performed on each subject,
which is detailed in the next section.

2.2. Averaging over dense deformation fields

In this section, we define a mechanism to warp the current subject  by all its qualified
neighbors.

Different from those pairwise-registration based groupwise registration methods (Joshi et al.,
2004; Seghers et al., 2004; Wang et al., 2009a), we do not average over current qualified
neighbor images to generate a local mean image for registration, since this local mean image
could lose some key anatomical structures and thus mislead the registration as the group mean
image does. Instead, we move the subject  along an average deformation direction on the
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manifold according to the selected neighbors. In this way, the undesired registration to blurry
images can be completely bypassed. With the subset of selected neighboring subjects , we
can perform pairwise registration between  and each of its qualified neighbor subject. In
particular, we choose the diffeomorphic demons algorithm (Vercauteren et al., 2009) to register
one subject to another.

The schematic illustration of how to combine different deformation fields is shown in Fig. 3.
Here, the superscript t and the subscript i, indicating the iteration index and subject index,
respectively, are dropped to demonstrate the process in a more general situation. In Fig. 3, I is
the current subject to be registered and Ic the global center. All qualified neighbors selected
by the procedure in Section 2.1 form a set J = {J1, J2, … , Jm}, m ≥ 1. Our goal is to move I
to a new location I’ which should be closer to its destination in the end of registration. It can
be achieved by averaging the warping directions from I to each Js, where s = 1,2, … , m. For
each pair of subject I and Js, the dense deformation field Gs (i.e., the green solid arrow) is first
estimated by Diffeomorphic Demons. Then, its inverse  (i.e., the brown dotted arrow) are
calculated using the method in (Christensen and Johnson, 2001;Shen and Davatzikos, 2002).
Therefore, the average direction can be calculated based on the inversed deformation field

 (since they are defined on the same image space of I) by  (the red dashed
line). To emphasize the effect of those neighbors which are much close and similar to the center
subject I, we can go one step further by weighting different  based on the distance d(I, Js),

(3)

where  is the Gaussian function and the variance σ is adaptively set as the
median value of {d(I, Js)|s = 1,2, …, m}.

For each  in iteration t, we apply the above procedure, generate the deformation field  by

Eq. 3, and deform it following , thus moving closer to the current global center.
Note, it is possible that qualified neighboring subjects of  do not exist (i.e., ) because
either neighbors of  are farther away from the global center or  is the global center. In any
of these two cases, the subject under consideration will be assigned with an identity
transformation temporarily, thus . In the following iteration, the distribution of the
dataset in the image space becomes much denser, and this self-organized registration can
proceed again as described above.

2.3. Hierarchical registration structure
We have described the details of self-organized registration which combines deformation fields
from multiple qualified neighboring subjects to guide the movement of each subject in each
iterative registration step. As the registration proceeds, it is possible that several nearby subjects
converge spontaneously, thus partitioning the image set and obtaining subgroups of images.
Each subgroup can be stable and compact, as the member subjects in each subgroup are very
close to each other while different subgroups can be far-away. In this case, the selection of
qualified neighbors for any subject will be restricted within the subgroup it belongs to. In order
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to break this spontaneous partition and to further refine the groupwise registration result, we
employ a new strategy to perform registration across different subgroups. It is worth noting
that each subgroup could have a bundle of aligned images, or just a single warped image.

Given a set of registered images, a clustering method (e.g., Affinity Propagation (AP) (Frey
and Dueck, 2007)) can be adopted to bundle those aligned subjects (with very close distance
to each other) into subgroups. Then, the representative image of each subgroup, determined
automatically by the clustering method, forms a much smaller size of a new dataset. The same
processing in Sections 2.1 and 2.2 can be applied to the new dataset (at a higher level), to further
register subgroups of images together.

The detail of the hierarchical registration structure is illustrated in Fig. 4. Initially, all the
subjects in the population are placed on the bottom level (Level 1), where self-organized
registration is performed on each of them, including the selection of neighboring subjects (in
Section 2.1) and the combination of multiple deformations to qualified neighboring subjects
(in Section 2.2). We then apply the AP clustering method to detect whether the registered
images have fallen into a stable partition. If the clustering results on It and It+1 (t ≥ 1) are not
exactly the same, both the self-organized registration on It+1 and the clustering of the whole
population are repeated. If at some iteration t* the clustering results on datasets It* and It+1*
do not change, i.e. both the subgroup partition and the representative images are exactly the
same, the proposed groupwise registration framework will go to the next level and initiate a
new image set containing all representative images. The same procedures are repeated on this
new image set, and the iterative registration will terminate once the representative images are
clustered into a single group, or when the registration reaches the top of the hierarchical
structure.

It is worth noting that the registration accuracy will not decrease as the registration procedure
moves upwards in the hierarchical structure. Also, we will have no problem on the smoothness
of the estimated deformation fields, with reasons justified next. First, the images in each
subgroup have been well aligned together to each other when the AP clustering result becomes
stable. Therefore, it is reasonable of using the representative image to select a common set of
new qualified neighbors for all (non-representative) images in the same cluster. Second, each
(representative or non-representative) image will always have a chance to be registered
individually with its new qualified neighbors (selected by its representative image). This
indicates that the deformation field estimated for the representative image will be not directly
applied onto non-representative images as their new registration results. Therefore, there is no
problem on decrease of registration accuracy on the non-representative images, since all of
them will be separately registered with the new qualified neighbors (selected from the
representative images of other clusters). Third, the previous estimated deformation field for
each image will be used as a good initialization for the current registration of the same image,
therefore there is no problem on accumulated discontinuities since we will not try to connect
separate deformations (estimated from different phase of registration) together. Fourth, when
we register each image to its new qualified neighbors in each iteration, we always enforce the
smoothness of the deformation field. Therefore, the estimated deformation field can be always
smooth after each registration, and we have no problem on discontinuities of deformation field.
Based on all of these four novel designs, it shows that our proposed hierarchical registration
strategy will not affect the registration accuracy on the whole dataset.

In the upmost level, all subjects are registered very close to each other on the learned manifold,
therefore we can take their average image as the final atlas. The average image is no longer
fuzzy, but of clear anatomical structures and sharp boundaries as will be demonstrated in the
experiments section.
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It is worth noting that the way of employing the clustering method in our framework is quite
different from that in (Wang et al., 2009a). Clustering is intrinsic to our framework where
spontaneous partition naturally happens during registration. Subjects that are similar in the
population will be more likely to converge by self-organized registration. In many cases, they
arrive at a local common space before the reaching global center. The clustering result depicts
the consequence of the self-organized registration, and also helps trigger the registration in a
higher level, rather than a mandated pre-processing step to guide the subsequent registration
as in (Wang et al., 2009a). Note that, in (Wang et al., 2009a), the clustering technique is applied
before the actual registration process starts, to hierarchically partition the entire population into
several subgroups at different levels. Then, the groupwise registration is solved based on small-
scale registrations on the subgroups of images, and the final atlas is synthesized from different
subgroups hierarchically. The clustering procedure is used to alleviate the complexity of
groupwise registration on a population with a large number of images.

Another difference between our method and the method in (Wang et al., 2009a) is on how to
send an image for registration to the higher level. In our algorithm, the cluster is described by
the representative image which is derived from AP clustering. The groupwise registration on
the higher level is performed on the set of representative images. However, in (Wang et al.,
2009a), the mean image of each cluster contributes to the registration at the higher level, which
can suffer from the same problem of using fuzzy mean image as a template for registration as
in (Joshi et al., 2004). On the contrary, in our method, the representative image of each cluster
is the warped individual image that contains abundance of key anatomical structures. Thus,
the groupwise registration accuracy at a higher level can be guaranteed.

2.4. Summary of ABSORB registration method
To summarize the framework of the proposed ABSORB registration method, we enumerate
all steps in the following:

0. Set the input dataset (after linear registration) of the 1st iteration I1 to be the original
dataset I. Set initial parameters including iteration index t = 1, level index g = 1, maximum
level index gmax, and the weighting factor α in Eq. (1).

1. Build the ING  on dataset It and find the current global center image .

2. For each subject  in the dataset It:

2a. Select  qualified neighbors within the -nearest neighborhood that is
closer to  than , and perform pairwise registration between  and each qualified
neighbor.

2b. Calculate the average deformation field and warp  to .

2c. If g > 1 and there are other non-representative images in the subgroup with the
representative image , follow the same procedure in Step 2(a-b) and warp each of
them separately to its new neighboring images determined by its representative image.

3. Apply affinity propagation clustering method on the current deformed image set It+1.

3a. If the clustering result of It+1 is different from that of It, t ← t + 1 and go back to
Step 1.

3b. If the clustering results are the same for It and It+1, the number of clusters are
more than one and the level index g < gmax, reset It+1 with all representative images.
t ← t + 1 and go back to Step 1.
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3c. Otherwise (i.e., the level index g = gmax or the number of clusters is one), go to
Step 4.

4. Average all the registered images to generate the final atlas.

Note that when the registration process arrives at Step 4, the image population has been aligned
very well. We can average all registered images to obtain the atlas since the mean image of a
well-aligned dataset is sharp and keeps all major anatomical structures as will demonstrated
in our experiments below.

2.5. Implementation issues
Several implementation issues about the parameter settings and computation complexity are
discussed in this section.

In the proposed framework, there are several parameters related to the selection of the qualified
neighbors for each subject to drive its deformation. Before we construct the ING , the k-NN
isomap is built on the registered image set at iteration t first. Later on, the neighborhood of 
is defined by a hyper-sphere in which the number of neighbors is pre-specified as . Different
settings for k or  may result in different  and different selected neighbors. However, it is
worth noting that as long as  is satisfied, the registration process will not change.
This is because the edge weight in a graph  built on k1-NN isomap is not larger than the
corresponding edge weight in a graph  built on k2-NN isomap if k1 > k2, and thus the neighbor
selection within a neighborhood of size  is the same. Therefore, in this paper, we set

.

One of the key parameters in affinity propagation is the self-similarity, which is highly related
to the clustering results. Since the self-similarity measures the possibility for a subject to be
chosen as a center image (or a representative image) in a subgroup, all subjects are assigned
with a common self-similarity in order to ensure that they have equal chances to be selected
as a representative image. Different selections of self-similarity will lead to different clustering
results. When the median (or minimum) of all pairwise similarity values is selected as the self-
similarity, more (or fewer) subgroups will be generated (Frey and Dueck, 2007). In the lower
levels of our hierarchical registration structure, a relatively large number of clusters can help
reduce the distance between different clusters and thus make it easier for the cluster
representative images to be registered with each other in the next higher level. But as the
registration reaches a higher level, subjects are aligned to be similar to each other, so a smaller
number of clusters will help register all subjects together and also speed up the convergence
of registration without undermining the registration accuracy. Therefore, in the proposed
ABSORB method, we choose to use the median as the self-similarity in Levels 1 and 2 (see
Fig. 4), and the minimum as the self-similarity in all higher levels.

The pairwise image registration serves as a basic operation at each level in the proposed
framework. Specifically, in each iteration, one subject is involved in no more than k pairwise
registrations. If we assume that the total number of iterations is T, the computation complexity
of the proposed ABSORB method is O(kNT). In our experiments, k ⪡ N and T ⪡ N.

3. Experiments
In this section, extensive experiments on both synthetic and real datasets are performed to
demonstrate the performance of the proposed ABSORB registration method. For comparison,
the results from other two groupwise registration methods are also provided. The first
groupwise registration method under comparison is the group mean method proposed in (Joshi
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et al., 2004), where all subjects are registered to the group mean image, and the group mean
image is updated upon the tentatively aligned images during the registration procedure. The
second groupwise registration method is the tree-based registration method (Hamm et al.,
2009). In this method, after building a tree and locating the root node, all other images are
registered to the root subject by deforming along the path from each subject to the root.

Four datasets are used to evaluate the performance of all three methods, i.e., one synthetic
dataset with 61 images and three real brain image datasets, including 18 elderly brain subjects
(Resnick et al., 2000), NIREP brain image dataset (Christensen et al., 2006) and LONI LPBA40
dataset (Shattuck et al., 2008). We first evaluate three methods on a synthetic data set in which
the three different types of structure for gyri and sulci are synthesized. The converging process
on the synthetic data proves the efficacy and the ability of ABSORB to perform registration
on the manifold. For the real brains, we present the mean image and the overlapping ratio of
the registered brain images on different tissues, i.e., white matter (WM), grey matter (GM),
and ventricle (VN), or on different regions of interest (ROIs). In all experiments, we use the
same set of parameters, i.e., the maximum level of the built hierarchical structure gmax = 4, and
the weight factor α = 0.5 in Eq. 1. Note that adaptively learning these parameters from each
individual dataset may help improve the performance of ABSORB.

3.1. Synthetic dataset
The proposed algorithm is first evaluated on a synthetic dataset, demonstrating the effect of
self-organized registration and image bundling strategies. The synthetic dataset simulates the
sulci and gyri around cortical region in MR brain image, as shown in Fig. 5(a). Each image
has the size of 256×256. From the central image with a single wide gyrus, three different types
of images are generated. Each type has 20 images with four of them being shown in each branch
of the Y-shape structure in Fig. 5(a). There are totally 61 (20×3+1) images in the dataset. These
three types of synthetic images are, respectively: i) a single synthetic gyrus changes from wide
to narrow (i.e., a branch from the center to the bottom); ii) one gyrus splits into two gyri and
the newly generated sulcus becomes deeper and deeper (i.e., a branch from the center to the
top-left corner); and iii) one gyrus splits into three gyri with deeper and deeper sulci (i.e., a
branch from the center to the top-right corner). The areas with different gray values are
specified to represent the background, GM and WM, respectively. The built atlases and the
registration accuracy are compared among the group mean method, the tree-based method, and
the ABSORB method.

Registered images and the built atlases—After performing the groupwise registration
with the group mean method, we can obtain the registered images, which are placed in the
same location of the Y-shape structure in Fig. 5 (b). Although those images with a single gyrus
seem aligned well with each other, all other images with two or three gyri are not registered
together completely since the bottom part of the sulcus is lagging behind the motion of its
neighboring anatomies during the registration and thus a deep fissure is formed with a similar
depth at the corresponding position of each sulcus. This is resulted mainly because the group
mean image is initially very blurry (i.e., the one shown on the bottom right of Fig. 5(a)), and
it is very difficult for those sulcal parts to warp towards the right direction consistently. It is
also seen that the built atlas (as shown on the bottom right of Fig. 5(b)), with three vague cracks
and a bumpy surface, does not look like any of the initial images. In Fig. 5(c) and 5(d), the
results of the tree-based method and the proposed ABSORB method are shown together with
the final built atlas. The results of the tree-based method are visually similar to those of
ABSORB because the root node is selected to be very close to the geometrical mean and the
underlying data space is well sampled by the current dataset. We can see that all the images
with different number of sulci and different depth of each sulcus have been well registered
onto the final atlas, which is very close to the geometrical mean.
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Registration process—We illustrate the registration process of the proposed ABSORB
method on the synthetic dataset in Fig. 6. The original dataset is projected onto a two
dimensional (2D) space which is spanned by the two eigen-vectors corresponding to the largest
two eigen-values after applying Principal Component Analysis (PCA) on the original dataset
(Fig. 6(a)), and the updated image set in all later iterations is projected onto the same 2D space
to visualize the converging process. The learned manifold can be clearly seen as a Y-shape in
Fig. 6(a). In Fig. 6 (b-g), the whole population is converging, with the moving direction of
each subject determined by both its qualified neighbors and the (tentatively estimated) global
center. After 16 iterations, it reaches a stable distribution of the population, so all representative
images are automatically chosen to form a new dataset and the registration process moves up
to the second level in the pyramid (Fig. 6(g)). On the second level, the same procedure is applied
to a much smaller population, and all other non-representative images follow the movement
of their representatives. Finally, the whole registration process arrives at the top level where
all images are clustered into a single group and registered together (Fig. 6(i)).

For comparison, the registration results by the group mean method and the tree-based method
on the same 2D projection space are shown in Fig. 7. It can be observed that the registration
results of ABSORB are much more compact than those of the other two methods. In Fig. 7 (a),
we can see that, after the first iterative registration by the group mean method, the warped
dataset travels away from the manifold (i.e., the data structure represented by three branches)
because of the use of initially very fuzzy mean image as shown in Fig. 5(a). Since the
registration process is misled in the very first step, the following registrations can be refined
only around the new but wrong center of images in all later steps, although it converges very
fast using only about 4 iterations. In contrast, the registration process of ABSORB is
constrained strictly on the manifold as shown in Fig. 6, and also the topological structure of
the dataset is well preserved until all subjects reach the final atlas. In Fig. 7 (b), the registration
result of the tree-based method is also shown, which seems not as compact as that of ABSORB
(see Fig. 6(i)).

Registration accuracy—We also compare the registration accuracy in a quantitative way
by measuring the concentration on the registered dataset and the landmarks. First, the
registration accuracy is evaluated on the registered dataset. Specifically, the pairwise distance
(i.e., intensity difference) between each registered image and the atlas (the mean image) is
calculated, and the mean and standard deviation (std) of these distances are used to measure
how concentrated the registered results are for all three methods. The mean of these distances
for the group mean method, the tree-based method, and ABSORB are 3.5, 1.6 and 1.4,
respectively, and the corresponding stds are 1.7, 0.4 and 0.2, respectively. Compared to the
mean and std (16.3 and 4.0) for the original dataset, the registration accuracy by the tree-based
method and ABSORB is significantly improved, compared to that by the group mean method;
and also ABSORB is slightly better than the tree-based method.

Second, the registration accuracy is evaluated on the landmarks. As we know the ground truth
of the transformation for generating the synthetic images, we can evaluate the groupwise
registration results by the alignment of the corresponding landmarks. Totally, 193 landmark
points are located in each image of this synthetic dataset, and thus we have 193 point sets, with
each set having 61 correspondences from 61 synthetic images. All 61 correspondences in each
point set should be close to each other after groupwise registration. In the original dataset, the
mean and std of all pairwise distances from each of 61 correspondences to their center (over
all 193 point sets) are 12.4 and 15.8, respectively. The mean/std for the group mean method,
the tree-based method, and ABSORB are 6.9/7.2, 1.7/2.8 and 1.2/1.6, respectively. ABSORB
ranks top over all registration methods.
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3.2. Experiment on 18 elderly brains dataset
A brain MR image dataset with 18 elderly subjects is used to further evaluate the performance
of ABSORB on real images. Fig. 8 indicates large variations of structures across 18 different
brain images. Affine registrations have been performed to these 18 brain images to remove
their global differences. In this section, we will continue to compare the performances among
three different methods, namely the group mean method (Joshi et al., 2004), the tree-based
method (Hamm et al., 2009), and ABSORB, on the registration accuracy both qualitatively
and quantitatively.

Registered images and the built atlases—First, we compare the atlases generated by
three different methods visually in Fig. 9. It can be observed that the atlas image from ABSORB
is slightly sharper than that of the group mean method, although they are visually similar to
each other. The atlas from the tree-based method is biased to the selected root image, which
may not represent the group mean very well, although the atlas is relatively sharper. From the
result of the tree-based method on both synthetic and real datasets, we can see that, if the
selected root image cannot represent the whole population, the bias could be introduced into
the whole registration process, as well as the built atlas.

Registration accuracy—The improvement of ABSORB over the group mean method and
the tree-based method can be examined more clearly by measuring the overlapping rates on
different tissues and also the average entropy on the segmentations of registered images. Here,
we use the Jaccard Coefficient metric (Jaccard, 1912) to measure the similarity between two
registrations of the same region, which provides a similar but stricter definition of the
overlapping rate than the popularly used Dice Coefficient (van Rijsbergen, 1979). For two
registered region U and V, the Jaccard Coefficient is defined as

(4)

where |·| defines the area of region under consideration. To demonstrate the group overlapping
on the registered segmentation images, tissue labels on each voxel first vote to obtain a common
segmentation atlas. This is done by assigning each voxel with a tissue label that is the majority
of all tissue labels at the same location from all the aligned images. Then, the Jaccard
Coefficient between each of the registered segmentation images and the voted common
segmentation atlas is calculated, with the average score listed in Table 1. Note that this is a
very strict definition to measure the overlapping rate and thus the respective value seems low
compared to other definitions. Our method achieves the best overlapping rates on all three
different tissues, and the average increase over the other two methods is about 4.0%. The group
mean method and the tree-based method have similar average overlapping rates. The average
entropy of our method on the aligned segmentation images is 0.17, which is about 10% better
than the group mean method and the tree-based method.

Robustness of registration—The robustness of registration to the outliers of different
methods is also compared. The registration results of three methods are shown in Fig. 10 by
projecting all the registered subjects onto the 2D PCA space. It can be observed that the final
registered images of ABSORB and the tree-based method are more concentrated around the
geodesic mean than those of the group mean method. In other words, the group mean method
is easily to be distracted by the outliers, i.e., the left-most and the bottom-most points in Fig.
10 (a), and ABSORB and the tree-based method can obtain more robust registration results
even some outliers exist in the dataset. It is worth noting that the registration results of ABSORB
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and the tree-based method are also more compactly distributed in the projective space than
those of the group mean method.

Smoothness on registration path—The registration paths of all three methods are
examined in Fig. 11 to compare the smoothness of paths generated by different methods. We
select three different subjects (labeled as Sub 1, Sub 2 and Sub 3 in Fig. 11), and the registration
path for each of them is delineated by connecting all segments from its original position to the
final position. For the tree-based method, its built tree has the height of 5, and thus the segments
on each path are no more than 4. The selected three subjects are those of the longest distance
to the root node on the built tree. It can be observed that the path generated from our method
is always much smoother and more direct to the final location than that of the tree-based
method, which is more twisted and devious. The main reason is that each deformation segment
along the path of our method is the result of averaging several different moving directions, and
also different segments on the same path share a similar direction to the global center. However,
in the tree-based method, the path is pre-determined by a tree and a fixed root node (before
image registration), without considering the dynamic change of overall distribution of the
dataset after each iterative registration. Also, the moving directions of different segments on
the same path are independently estimated in the tree-based method, thus potentially resulting
in a more zigzag path and affecting the registration results. On the other hand, the paths
generated by the group mean method become nearly unchanged after the first round of
registration, which indicates that the group mean method could be easily trapped by the local
minima.

3.3. Experiment on NIREP dataset
In this experiment, all three methods are tested on NIREP dataset including 16 brain subjects.
The atlas images generated by the group mean method, the proposed ABSORB method and
the tree-based method are displayed in Fig. 12, respectively. ABSORB can generate an atlas
image with more anatomical details than the group mean method, especially on the cortical
regions as indicated by red arrows in Fig. 12. As we have pointed out in previous experiments,
the registration results given by the tree-based method can be biased by the selected fixed rood
subject, although the built atlas is sharper.

To demonstrate the performance of the proposed ABSORB framework quantitatively, the
overlap rates are calculated based on the registered images, which have been manually labeled
with 32 ROIs. The average overlap rate over all 32 ROIs in the original dataset is 46.21%.
After the groupwise registration of ABSORB, the average overlap ratio increases to 65.31%,
which is much higher than the results of the group mean method (61.25%) and the tree-based
method (61.69%). We plot the overlap rates of all 32 ROIs in Fig. 13. It can be seen that
ABSORB outperforms other two methods on 31 ROIs, except that the overlap ratio of
ABSORB on R insula gyrus is only 0.5% lower than that of the tree-based method. The average
entropy on the registered image dataset is also calculated. The average entropy on the original
dataset is 0.801. The ABSORB method gives the smallest average entropy (0.505) among all
three methods, which is much smaller than that of the group mean method (0.600) and the tree-
based method (0.590).

3.4. Experiment on LONI LPBA40 dataset
Finally, we evaluate the proposed ABSORB method on a much larger dataset, LONI LPBA40,
which has 40 brain images with 54 manually labeled ROIs. The average overlap rate over all
54 ROIs on the original dataset is 62.08%, since all 40 subjects are linearly aligned before
performing manual delineations. The proposed ABSORB method increases the average
overlap rate to 69.5%. The same measurements given by the group mean method and the tree-
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based method are 66.36% and 66.95%, respectively. We plot the overlap rates of all 54 ROIs
in Fig. 14.

4. Conclusion
A new framework for groupwise registration, called Atlas Building by Self-Organized
Registration and Bundling, or ABSORB, has been presented. In this new framework, the global
structure of subject distribution on the data space is always preserved during the registration
process, and the deformation of each subject is constrained locally along the learned image
manifold. As the two novel strategies proposed in the ABSORB method, self-organized
registration and image bundling are both employed to perform the groupwise registration
hierarchically, by automatically building a pyramid of images during the registration
procedure. An atlas can be finally built once the registration arrives at the top level. Extensive
experiments have been conducted to evaluate the performance of the ABSORB registration
method, which shows that ABSORB can perform the registration more accurately and
consistently, compared to other two groupwise registration methods, namely the group mean
method and the tree-based method. Specifically, the overlap rates of the same tissues across
different subjects after registration are much higher than any of two methods under comparison.
In the future, we will apply ABSORB to large clinical datasets with brain disorders such as
Alzheimer’s disease or schizophrenia, to test its performance in detecting brain abnormalities.
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Figure 1.
The framework for the proposed ABSORB algorithm. In each iteration, several deformation
fields (designated by the dashed arrows) between a subject and some of its neighbors are
combined to deform the subject to a new location by the average deformation field (designated
by the solid arrows). The global center in each iteration is shown with the squares. This figure
is best viewed in color printing.
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Figure 2.
Selection of neighboring subjects. The small red disc with a dashed boundary defines the
neighborhood of subject , and the intersection of the large blue disc and the small red disc
defines a region including all points that are closer to  than . Subject  is one of the qualified
neighbors of , while  is not.
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Figure 3.
Illustration of the combination of multiple deformation fields. The current subject I has a total
of m qualified neighboring subjects, J1, J2, … , Jm. The deformation field G as defined in Eq.
3 can deform I along the average direction to I’ (a red dashed circle), approaching closer to the
global center Ic, indicated by a purple circle on the top right. This figure is best viewed in color
printing.
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Figure 4.
The hierarchical structure built during the groupwise registration. The center image (the
squared one) in each cluster (i.e., all subjects within each box) is selected as a representative
image and sent to the higher level for registration. When the maximal number of levels is
reached or all representative images are clustered into a single group, the pyramid reaches its
top level and the groupwise registration can be completed.
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Figure 5.
The experimental results on the synthetic dataset. The original synthetic images and their blurry
mean image (before registration) are shown in (a). The registration results for (b) the group
mean method, (c) the tree-based method, and (d) the proposed ABSORB method are
demonstrated together with their corresponding atlas images. The images on the same location
of different Y-shape structures correspond to the same subject before and after the registration.
The results for ABSORB and the tree-based method are visually similar, and their final built
atlas images are much shaper and more reasonable than that of the group mean method.
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Figure 6.
The illustration of the registration process of ABSORB on the synthetic dataset. The original
dataset is projected onto a 2D PCA space (a), and the same projection is applied to all later
registered images. All subjects converge to the global center on the learned manifold during
iteration 1 till 16 (b-g). After applying AP clustering method on the results of iteration 16 (g),
all points converge together to form several subgroups, and each point in (g) represents a bundle
of aligned images. The registration continues at higher levels (h-i), and all subjects are finally
registered together (i). This figure is best viewed in color printing.
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Figure 7.
The registration results of (a) the group mean method and (b) the tree-based method. The image
registration process of the group mean method diverges away from the learned manifold
(starting from the first iteration shown in green in (a). The registration result of the tree-based
method (b) is better; however, it is not as compact as that by the ABSORB method. This figure
is best viewed in color printing.
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Figure 8.
18 elderly brain images with large anatomical variations.
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Figure 9.
The atlas images generated by three different methods. The mean image for the original dataset
(a), the atlas image constructed by the group mean method (b), and the proposed ABSORB
method (c) are shown in the top row from left to right. The atlas by ABSORB is visually similar
to that of the group mean method. For the tree-based method, its selected root image and the
corresponding atlas are shown in (d) and (e), respectively. It can be observed that the atlas
image is very similar to the root image.
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Figure 10.
The registration results of the group mean method (a), the tree-based method (b), and the
proposed ABSORB method (c) on 18 elderly brain images. The final registered images of the
group mean method are distracted by the outlier images, i.e., the left-most and the bottom-most
points, while the results by the other two methods are robust to the outliers and finally
concentrate around the geodesic mean.
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Figure 11.
The registration paths produced by three different methods. The paths generated by ABSORB
are much smoother than the tree-based method. The paths given by the group mean method
shows that there is not much progress after the first iteration of registration.
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Figure 12.
The atlas images of NIREP brain dataset built by the group mean method (a), ABSORB (b)
and the tree-based method (c). The atlas generated by ABSORB can keep more anatomical
details than that generated by the group mean method, especially on the cortical regions marked
by red arrows. The atlas built by the tree-based method (c) is clearly biased to the root subject
(d).
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Figure 13.
The overlap rates of 32 ROIs on the registered NIREP dataset by three different groupwise
registration methods.
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Figure 14.
The overlap rates of 54 ROIs on the registered LONI LPBA40 dataset by three different
groupwise registration methods.
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Table 1

The overlapping rates and average entropy of the registered segmentation images by three different methods

Overlapping rate (%)
Entropy

GM WM VN

Before registration 35.5% 45.4% 48.6% 0.33

Group mean method 49.0% 68.0% 72.6% 0.19

Tree-based method 51.7% 61.9% 74.6% 0.19

ABSORB 54.0% 71.0% 76.6% 0.17

Neuroimage. Author manuscript; available in PMC 2011 July 1.


