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Abstract

Primary open angle glaucoma (POAG) is characterized by progressive neurodegeneration of 

retinal ganglion cells (RGCs). Why RGCs degenerate in low pressure POAG remains poorly 

understood. To gain mechanistic insights, we developed a novel mouse model based on a mutation 

in human optineurin associated with hereditary, low-pressure POAG. This mouse improves the 

design and phenotype of currently available optineurin mice, which showed high global 

overexpression. While both 18-month old optineurin and nontransgenic control mice showed an 

age-related decrease in healthy axons and RGCs, the expression of mutant optineurin enhanced 

axonal degeneration and decreased RGC survival. Mouse visual function was determined using 

visual evoked potentials, which revealed specific visual impairment in contrast sensitivity. The 

E50K optineurin transgenic mouse described here exhibited clinical features of POAG, and may 

be useful for mechanistic dissection of POAG and therapeutic development.
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1. INTRODUCTION

Glaucoma is a leading cause of irreversible visual impairment and blindness (Quigley and 

Broman, 2006) resulting from progressive degeneration of retinal ganglion cells (RGCs) and 

optic neuropathy. Primary open angle glaucoma (POAG) is the predominant form in which 

no obvious clinical etiology is observed, and at least 50% of POAG patients worldwide 

exhibit low intraocular pressure (IOP) (Shields, 2008, Sommer, 2011). This presents a 

therapeutic challenge because all current glaucoma treatments function by lowering IOP. 

The precise pathophysiological mechanism of POAG remains unknown, but recent data 

suggest that RGC loss may occur through a neurodegenerative process similar to 

Alzheimer's disease, Huntington's disease, and amyotrophic lateral sclerosis (Bautista, 1999, 

Gupta and Yucel, 2007, Quigley, 2005).

Many existing animal models of glaucoma depend on inducing high IOP or trauma. For 

example, some models require laser injury or intraocular injection of saline or beads 

(Aihara, et al., 2003, Morrison, et al., 1997, Sappington, et al., 2010, WoldeMussie, et al., 

2001). Other models require optic nerve crush or transection to injure RGC axons 

(Goldblum and Mittag, 2002, Tang, et al., 2011). A common genetic model (DBA/2J 

mouse) demonstrates abnormal pigment dispersion and iris atrophy that lead to an IOP 

elevation (Anderson, et al., 2005, Jakobs, et al., 2005). To study non-IOP risk factors and 

mechanisms that may contribute to RGC degeneration, a low-pressure POAG model is 

clearly needed.

Optineurin (OPTN) mutations have been associated with a loss of RGCs and motorneurons 

in familial low-pressure POAG and amyotrophic lateral sclerosis, respectively (Aung, et al., 

2005, Maruyama, et al., 2010, Rezaie, et al., 2002). The E50K missense mutation in 

optineurin results in visual impairment in an autosomal dominant fashion, presumably due to 

a toxic gain of function mechanism. Transgenic mice with global overexpression of high 

levels of E50K mutant optineurin led to diffuse loss of photoreceptors and non-RGC cells, 

features not observed in POAG (Chi, et al., 2010, Meng, et al., 2011). We hypothesized that 

mice with low overexpression of E50K optineurin will more accurately reflect the 

phenotype observed in POAG patients (Rezaie, et al., 2002). Thus, we generated a different 

transgenic mouse using the genomic optineurin locus and promoter in a bacterial artificial 

chromosome (BAC). Near-physiological expression levels and subcellular localization have 

been reported with BACs (Heintz, 2000). The BAC E50K optineurin mouse model 

overcomes limitations of current optineurin and high-IOP glaucoma mouse models, and may 

be useful for studying early POAG pathophysiology.
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2. MATERIALS AND METHODS

2.1 Mouse husbandry

All mouse experiments received approval from the Institutional Animal Care & Use 

Committee (IACUC) at both Duke University and the University of North Carolina (UNC), 

and were conducted according to Association for Research in Vision and Ophthalmology 

guidelines.

2.2 Generation of E50k human optineurin bacterial artificial chromosome transgenic mice

BAC transgenic constructs were generated by recombineering in E. coli (Yu, et al., 2000). 

The BAC clone RP11-1107F3 (Children's Hospital Oakland Research Institute) containing 

the 38 kb human optineurin locus with about 160 kb of 5’ sequence was introduced into the 

bacterial strain EL250. Bacteria containing the BAC were transformed with two linear 

fragments: a 32-bp oligonucleotide (5-

GAGCTCCTGACCAAGAACCACCAGCTGAAAGG-3) homologous to the 3’ end of exon 

4 and containing the E50K mutation in the middle (GAG → AAG), and a fragment 

containing IRES-EGFP followed by a Neomycin selection cassette and flanked by 50 bp 

homology arms for recombination immediately after the optineurin gene's translational stop 

sequence. The 5’ homology sequence was 5-GCCTGACATAGACACGTTACAGATTC 

ACGTGATGGATTGCATCATTTAAGTG-3 while the 3’ sequence was 5-

GTATCACCTCCCCAAAACTGTTGGTAAATGTCAGATTTTTTCCTCCAAGAG-3.

Kanamycin-resistant BAC colonies were analyzed for homologous integration of the IRES-

EGFP-neo cassette by PCR across the respective 5’ and 3’ homology arms. Incorporation of 

the mutant exon 4 sequence was verified by DNA dot blot hybridization of PCR fragments 

amplified with primers located 5’ and 3’ of the point mutation and probing with an 

oligonucleotide matching the wildtype and mutant sequence, respectively (wildtype: 5-

CTCCTGACCGAGAACCACC-3; mutant: 5-CTCCTGACCAAGAACCACC-3) (Costa, et 

al., 2011). The frt-site flanked neo cassette was removed by arabinose induction of Flp 

recombinase in EL250. Field inversion gel electrophoresis (E) and DNA sequencing 

confirmed correct transgene construction and integrity of the BAC sequence. BAC DNA 

was linearized with NotI and purified by isotachophoresis (Ofverstedt, et al., 1984).

BAC DNA was injected into pronuclei of B6/SJL F1 zygotes at a concentration of 1 ng/μl. 

Potential founder mice were genotyped by tail DNA amplification using primers specific for 

the EGFP coding sequence. The following PCR primers were used for genotyping followed 

by DNA sequencing to confirm the E50K mutation: 5’-CATTCCTGCCCCAAGTGTGG-3' 

and 5'-GAATGCTCGTCAAGAAGACAGG-3'. Out of ~20 oocytes with the incorporated 

BAC transgene for E50K mutant human optineurin, two lines were successfully bred and 

backcrossed into the C57BL/6N background for 2-3 generations. BAC transgenic mice were 

aged along with wildtype nontransgenic littermates for 18 months.

2.3 qRT-PCR

Dissected retinas were snap-frozen with cold isopentane on dry ice before mRNA was 

isolated using RNeasy kits (Qiagen) and reverse-transcribed with the ProtoScript kit (New 
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England Biolabs) as per the manufacturers’ directions. Results were normalized to 

housekeeping genes such as cyclophilin and GAPDH. Forward (F) and reverse (R) PCR 

primers are listed below: hOPTN-1 F: CACTGGCACGGCATTGTCTAA, R: 

CTGGGTTTCAATCTCAGAACGAT, hOPTN-2 F: AAAGAGCGTCTAATGGCCTTG, R: 

GTTCAGACACGATGCCCAACA, hOPTN-3 F: CCAAACCTGGACACGTTTACC, R: 

CCTCAAATCTCCCTTTCATGGC, mOPTN-1 F: TCAGGATGACCGAAGGAGAGA, R: 

TGGCTCACAGTCAGTTCTTCA, mOPTN-2 F: 

AGCAAAGAGGTTAAGGAGCGCCTTAAG, R: CAGCTTCTCCACTTCCTCCTCCAA, 

total OPTN-1: F: GGGAATCAGAAGGTGGAGAGACTTGAAGT, R: 

TGAGCCTCTTGAAGCTCCTTAAACAGAGA, Total OPTN-2 F: 

CCATCAGAGCTGAATGAAAAGCAAGAGCT, R: 

TGCCTTATTATGTTCTTGAAGGAGCTTGTTGTG, Cyclophin F: 

GAGCTGTTTGCAGACAAAGTTC, R: CCCTGGCACATGAATCCTGG, GAPDH: F: 

TGGCCTTCCGTGTTCCTAC, R: GAGTTGCTGTTGAAGTCGCA.

2.4 Immunoblot Analysis

Dissected retinas and brains were flash-frozen with chilled isopentane and stored at −80°C. 

Cell lysates were prepared in RIPA buffer containing protease inhibitors (Roche), and debris 

was cleared with ultracentrifugation. Standard SDS-polyacrylamide gel electrophoresis 

(SDS-PAGE) was performed before immunoblot detection with the Odyssey gel imaging 

system (Li-Cor Biosciences) with infrared detection. The following primary antibodies were 

used at 1:1000 dilution: rabbit OPTN-INT (Abcam), goat anti-OPTN-N (Santa Cruz 

Biotechnology), rabbit OPTN-C (Cayman Chemical), mouse FIP2 for optineurin 

(Transduction Laboratory), and rabbit beta-actin (Sigma).

2.5 Intraocular Pressure Measurement

IOP was measured with a rebound tonometer (iCare Technologies) per manufacturer's 

directions. Since anesthesia is known to alter IOP in both patients and mice (Cone, et al., 

2012), IOP measurements were taken as soon as the mice were sedated sufficiently to 

remain still. At least three measurements were taken per eye per animal. Average values 

were analyzed for statistical significance using Student's t-test.

2.6 Immunohistochemistry of retina cryosections

14 micron sections of retinas were stained using standard immunostaining approach. Briefly, 

the sections were blocked with 4% donkey serum before being incubated in primary 

antibody overnight at 4°C and secondary antibody the next day. The retina sections were 

imaged using a confocal fluorescence microscope. The following antibodies and dilutions 

were utilized: mouse SMI-32 antibody for neurofilament (Covance) 1:2000, rabbit anti-

protein kinase C alpha (Sigma) 1:1000, mouse anti-calretinin (Millipore) 1:1000, rabbit anti-

OPTN-INT (Cayman Chemical) 1:200, and rabbit anti-OPTN-C (Cayman Chemical) 1:200.

2.7 Quantitation of retinal layer thickness

Measurements of each retinal layer and total retinal thickness were performed using 

confocal microscope images of retina sections. Central retina measurements were made 200 
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m from the optic nerve. Peripheral retina measurements were taken 200 μm away from the 

edge of the peripheral retina within the same section. The photoreceptor outer segment layer 

was not quantified due to occasional artifactual retinal detachment resulting from 

histological preparation. Nuclear layers were defined by DAPI staining while the plexiform 

layers were defined as the region in between the DAPI staining.

2.8 Immunohistochemistry of retina flatmount and RGC count

After transcardial perfusion with cold 4% paraformaldehyde, the retina was carefully 

dissected, blocked in 4% donkey serum in 0.1% triton/PBS, incubated in primary antibody 

at 4°C for 3-5 days, and stained with secondary antibody at 4°C. Mouse SMI-32 antibody 

for neurofilament (Covance) was used at a 1:2000 dilution. Multiple tiled images taken with 

a confocal fluorescence microscope were assembled into a mosaic image that covered the 

entire retina flatmount (See brain imaging section below). Counts were performed in a 

blinded fashion within a rectangular region that was 0.25 mm2 in area (500 m × 500 m grid) 

at 1.5 mm from the optic nerve. Counts were made from all four quadrants of each retina 

flatmount in a blinded fashion. RGC densities were calculated and compared for statistical 

significance using the Student's t-test.

2.9 Quantification of Axons in Optic Nerves

Staining for damaged/dead axons in optic nerve cross sections was performed using a 

modified paraphenylenediamine (PPD) protocol as previously described (Anderson, et al., 

2005). Axon counting was performed in 20 non-overlapping representative areas of each 

nerve cross section at x100 magnification. PPD stains all axonal myelin sheath, but darkly 

stains the axoplasm of damaged or dead axons. Axons with and without PPD staining in 

axoplasm were counted to evaluate “damaged/dead” and “healthy” axons, respectively, in a 

blinded fashion. The Student's t-test was utilized to assess statistical significance.

2.10 Cholera-toxin labeling of retinal ganglion cells

Retinal ganglion cell axonal terminals in the brain were labeled in an anterograde fashion by 

injecting fluorescently-labeled recombinant cholera toxin into the eye. Cholera toxin 

conjugated to Alexa Fluor 555 or Alexa Fluor 647 (Life Technologies, formerly Invitrogen) 

at a concentration of 1.0 mg/mL in PBS were injected intraocularly through a 33-gauge 

canula. 1μl of the cholera toxin solution was delivered slowly and in a controlled fashion 

into the eye over 60 seconds using a QSI microprocessor-controlled injector (Stoelting 

Company) to avoid IOP spikes. Mice were killed 2-3 days later to harvest eye and brain 

tissue for histological evaluation.

2.11 Imaging of brain sections

Serial 30 μm brain sections were cut using a cryostat in either a coronal or sagittal 

orientation. Fluorescently-labeled cholera toxin in brain sections were imaged utilizing 

either a Zeiss LSM 510 Inverted Confocal Fluorescence Microscope equipped with a 

motorized stage (Marzhauser scan stage) or a Zeiss Axio Imager with a motorized stage. 

Entire brain sections were imaged with a 5x objective, and multiple tiled images were 

assembled into a mosaic.
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2.12 Visual Evoked Potential (VEP) recording

Mice were implanted with four intracranial electrodes. After craniotomies were drilled with 

a 0.5 mm diameter burr while suspended in a stereotaxic frame, tungsten microelectrodes 

(0.3-0.5 MΩ; FHC) were bilaterally implanted in V1 visual cortex, ±3.00 mm lateral to 

lambda and 0.45 mm below the brain surface. Silver reference electrodes were implanted at 

the brain surface, ±2.00 mm lateral and 1.0 mm posterior to bregma. Electrodes and holding 

post (resting on the skull surface anterior to bregma) were secured to the skull with 

cyanoacrylate (Henkel).

After electrode implantation, mice were given at least 48 hours for recovery. All mice were 

first habituated to the head restraint apparatus 24 hours before VEP recording sessions. 

Awake, non-anesthetized mice were positioned 20 cm from a 21 inch CRT monitor (80 

cd/m2) that displayed computer-generated visual stimuli. Their heads were fixed toward the 

computer monitor by the holding post that was attached to the skull as described above.

Mice were presented with 100% contrast gratings at different spatial frequencies. Visual 

acuity is expressed as spatial frequency of cycles per degree (cpd), where one cycle is 

defined to include a black and white grating. These gratings were rotated 90 degrees on each 

repeated trial to minimize stimulus-selective response potentiation, a phenomenon whereby 

the repeated presentation of the same stimulus can potentiate responses to that selective 

stimulus (Frenkel, et al., 2006). Visual stimuli consisted of full-field square counterphase 

sine gratings (45° or 135°) with a 1 Hz reversal frequency (Vision Research Graphics). Data 

from every implanted mouse were included in the results, using the electrode (1 of 2) that 

generated the larger VEP for 0.05 cpd at 100 % contrast. Visual acuity (0.0, 0.05, 0.15, 0.25, 

0.35, 0.45. 0.55, 0.65, 0.75, 0.85, 0.95, 2.84 cpd at 100% contrast) and contrast sensitivity 

(100, 50, 25, 12, 6, 3, 1.5, 0.8, 0.4, 0.2, 0.1, 0.0 % at 0.05 cpd) were determined by the 

trough to peak VEP amplitude of 102 averaged responses per condition (3 blocks of 34 

stimuli presented in random order with 10 sec breaks). Visual thresholds were determined 

for individual mice using logarithmic (contrast sensitivity) and linear (visual acuity) 

regression analysis interpolated into the noise level (gray screen response). All recordings 

were amplified 1000x, and high and low band filtered at 0.1 Hz and 100 Hz (Grass 

Instruments). Recordings were acquired in with a Micro 1401-3 digitizer in combination 

with Spike2 (Cambridge Electronic Design). The data were analyzed by two-way repeated 

measures ANOVA for statistical significance.

3. RESULTS

3.1 Generation of transgenic mice with low overexpression of E50K human optineurin

A BAC that contained the optineurin promoter region and genomic human OPTN gene was 

used (Figure 1A). Resultant transgenic lines (BAC-hOPTNE50K) were maintained as 

heterozygotes, similar to genotypes of reported POAG patients with the E50K mutation 

(Aung, et al., 2005, Rezaie, et al., 2002).

qRT-PCR was used to assess optineurin mRNA expression levels in isolated retinas from 18 

month-old BAC-hOPTNE50K mice (Figure 1B). E50K hOPTN mRNAs were expressed in 

BAC-hOPTNE50K mice, but not retinas from wildtype littermates, and was 3-fold higher in 
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the first BAC transgenic line compared to the second line. Using mouse-specific PCR 

primers, we found that endogenous mouse optineurin expression levels were similar among 

all genotypes, indicating that the mutant E50K human optineurin transgene does not affect 

endogenous mouse optineurin expression. Primers that recognize both human and mouse 

optineurin showed that total optineurin expression was 1.3-fold higher in line 1 of BAC-

hOPTNE50K mice than wildtype nontransgenic mice.

Protein levels for E50K hOPTN were assessed using dissected retinas in immunoblot 

analysis (Figure 1C). Using an antibody that recognizes only human optineurin, E50K 

hOPTN was found in both young (2-3 month old, data not shown) and old (18 month old, 

Figure 1C) BAC-hOPTNE50K mice. As expected, no expression of human optineurin was 

observed in retinas from wildtype control littermates. Both mRNA and protein expression 

data show that line 1 of BAC-hOPTNE50K mice is best suitable for characterization 

experiments; subsequent references of BAC-hOPTNE50K below refer to this line.

3.2 E50K optineurin mice exhibit normal eye anatomy and intraocular pressure

We performed slit-lamp biomicroscopy and found no gross clinical abnormalities in BAC-

hOPTNE50K eyes (data not shown). Features found in the DBA/2J glaucoma mouse model, 

such as prominent pigment dispersion and iris atrophy, were not observed in BAC-

hOPTNE50K mice even after 18 months of age.

IOP > 21-22 is often clinially regarded as a glaucoma risk factor clinically and in glaucoma 

mouse animal models (Anderson, et al., 2006, Savinova, et al., 2001). IOP for young (2-3 

months, n = 5 per genotype) and aged (18 months, n = 10 per genotype) BAC-hOPTNE50K 

mice were compared to wildtype littermate controls (Figure 1D). In young BAC-

hOPTNE50K mice, the IOP was 10.6 ± 0.7 mmHg (mean ± S.E.M.) in the right eye (OD) and 

10.5 ± 0.5 mmHg in the left eye (OS). This is similar to 10.5 ± 0.4 OD and 10.5 ± 0.8 OS 

for wildtype control mice (p = 0.77). In 18-month old mice, IOP was 8.4 ± 0.4 mmHg OD 

and 8.0 ± 0.7 mmHg OS for BAC-hOPTNE50K mice and 8.6 ± 0.4 mmHg OD and 9.0 ± 0.5 

mmHg OS for wildtype littermates (Figure 1D). No asymmetries were observed in IOP 

between the right and left eyes for any of the genotypes (p values ranged from 0.2 to 0.7), 

another clinical risk factor for glaucoma. The age-related decrease in IOP are consistent with 

literature reports (Savinova, et al., 2001).

3.3 Localization of E50K hOPTN expression in the retina

Because the expression of E50K human optineurin is driven by a genomic optineurin 

promoter, its expression pattern in the retina should resemble that of endogenous optineurin. 

To assess this, we performed immunolabeling of retina sections from 18-month-old BAC-

hOPTNE50K mice. Brn3a was used to identify RGC nuclei, while DAPI nuclear stain was 

used to identify the ganglion cell layer (GCL), inner nuclear layer (INL), and outer nuclear 

layer (ONL). Using an antibody specific for human optineurin, we did not detect labeling in 

wildtype retinas (Figure 1E, top panels). In contrast, in BAC-hOPTNE50K retinas, 

expression of human E50K optineurin was observed in the ganglion cell layer and the outer 

plexiform layer (OPL). The same immunostaining pattern was observed using an antibody 
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that recognizes both mouse and human optineurin. The staining pattern with this antibody is 

identical in both BAC-hOPTNE50K and wildtype retinas (Figure 1E, bottom panels).

3.4 Low E50K human optineurin expression does not lead to diffuse loss of retinal layers

In optineurin mice with high, ubiquitous overexpression of E50K hOPTN, diffuse loss of 

non-GFL layers resulted in ~ 50% thinner retinas (Chi, et al., 2010). These features are not 

observed in POAG patients (Wax, et al., 1998). Qualitative and quantitative evaluation for 

retinal thickness was performed in BAC-hOPTNE50K (n = 3 animals) and wildtype (n = 4 

animals) retina sections (Figure 2A, 2B). Total retinal thickness was 177 ± 8 m centrally 

(mean ± S.E.M.) and 132 ± 1 m peripherally for BAC-hOPTNE50K mice, which are similar 

to wildtype mice (184 ± 5 m centrally, 129 ± 20 m peripherally). Individual retinal layers 

revealed no significant thickness differences between BAC-hOPTNE50K and wildtype 

littermate mice, with the exception of an increasing trend in the thickness of the RGL and 

ONL in the peripheral retina of BAC-hOPTNE50K mice. Taken together, our data 

demonstrate minimal thinning in non-GCL layers in BAC-hOPTNE50K mice.

3.5 Axonal targeting of retinal ganglion cells in the brain is unaffected by E50K human 
optineurin

RGC axons exit the eye as the optic nerve and terminate at the lateral genicual nucleus and 

the superior colliculus. To assess whether E50K human optineurin disrupts this RGC 

anatomy centrally, we examined the brain after intraocular injections of fluorescently-

labeled cholera toxin as an anterograde tracer (Huberman, et al., 2009) in old BAC-

hOPTNE50K and wildtype mice (n = 3 animals per genotypes). In coronal brain sections 

from BAC-hOPTNE50K mice, RGC axon terminals were detected in the superior colliculus 

and lateral geniculate nucleus, indistinguishable from wildtype mice. When each eye was 

injected with a different fluorescent tracer, distinct ipsilateral and contralateral RGC axonal 

projections were visualized at a small binocular zone in the lateral geniculate nucleus 

(Figure 2C). Sagittal brain sections also localized RGC axon terminals to the superior 

colliculus (Figure 2D). Therefore, E50K optineurin does not alter RGC axonal pathfinding 

in the brain.

3.6 Age-related loss of retinal ganglion cells in mice with E50K human optineurin

A key histological feature of POAG is age-related loss of RGCs; thus we next compared the 

number of RGCs in BAC-hOPTNE50K mouse retinas to wildtype retinas. While many RGC 

markers have been reported, none are completely specific for RGCs (Coombs, et al., 2006, 

Diao, et al., 2004, Sun, et al., 2002). We used the well-established standard of SMI-32 

antibody (Jakobs, et al., 2005, Lin, et al., 2004) to identify a subset of representative RGCs 

in retina flatmount for cell counting.

Representative retina flatmounts from young (2-3 months) and aged (>18 months) mice are 

shown for BAC-hOPTNE50K mice and wildtype littermates in Figure 3A. In both young 

BAC-hOPTNE50K and wildtype mice, retina flatmounts revealed that RGC soma and axons 

are robustly labeled by SMI-32 and appeared morphologically healthy. RGC axons were 

readily identified as they extend toward the optic nerve located at the center of the mouse 

retina. In contrast, retinas from older mice exhibited an overall reduction in SMI-32 labeled 
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RGCs in both BAC-hOPTNE50K and wildtype mice. However, the reduction in aged BAC-

hOPTNE50K mice was more pronounced.

Quantitative analysis of RGC cell density revealed that BAC-hOPTNE50K retinas showed 

RGC loss that was greater than expected for normal, age-related attrition (Figure 3B). A 

comparison between the two genotypes revealed no difference in RGCs between young 

BAC-hOPTNE50K and wildtype controls (mean ± S.E.M.; wildtype 166 ± 18 RGCs per 

mm2; BAC-hOPTNE50K 190 ± 19 RGCs per mm2; p = 0.38). In contrast, 18-month-old 

mice expressing E50K mutant optineurin had a significant decrease (~40%) in RGC density 

relative to wildtype littermates (wildtype 124 ± 9 RGCs per mm2; BAC-hOPTNE50K 76 ± 

14 RGCs per mm2; p<0.02). The age-related decreased in RGC survival was more 

pronounced in BAC-hOPTNE50K mice (p = 0.001) than in wildtype mice (p = 0.07). Taken 

together, the expression of mutant E50K optineurin enhanced aged-dependent RGC loss.

3.7 Mutant optineurin induces more axonal damage

We next determined if differential loss of RGCs in 18-month old BAC-hOPTNE50K mice is 

associated with axonal damage or loss. In aged BAC-hOPTNE50K (n = 4 animals, 8 optic 

nerves) and nontransgenic wildtype littermate (n = 6 animals, 11 optic nerves) mice, 

paraphenylenediamine (PPD) staining was performed in optic nerve sections (Figure 4A). 

PPD stains axonal myelin sheath to facilitate visualization of axonal cross-sections for 

counting. Also, PPD darkly stains the axoplasm of stressed or degenerating axons 

(Anderson, et al., 2005).

By counting axons with a clear axoplasm, the number of “healthy” axons was assessed 

(Figure 4B). No statistically-significant difference was observed as optic nerves from both 

genotypes showed similar number of healthy axons (mean ± S.E.M.; 32,258 ± 2,338 for 

BAC-hOPTNE50K and 28,445 ± 2,740 for wildtype mice; p = 0.33). Quantitation of PPD-

stained axons (Figure 4C) showed that there are more stressed or degenerating axons in 

optic nerves from BAC-hOPTNE50K than wildtype mice (mean ± SEM; 1235 ± 152 for 

BAC-hOPTNE50K and 684 ±170 for wildtype; p = 0.03). Thus the data revealed that 

although age-dependent RGC loss occurred in both BAC-hOPTNE50K and nontransgenic 

mice after 18 months, E50K hOPTN induced a larger number of stressed or degenerating 

axons.

3.8 Functional visual impairment in BAC E50K optineurin mice

We next assessed visual function by measuring visual-evoked potential (VEPs) directly from 

electrodes implanted in the visual cortex in non-anesthesized mice (Cho, et al., 2009, 

Frenkel and Bear, 2004). Aged 18-month BAC-hOPTNE50K mice (n = 8 animals) exhibited 

a significant decrease in contrast sensitivity relative to wildtype littermates (n = 11 animals) 

across a range of contrasts (p<0.05 to 0.005; Figure 5A) although acuity thresholds were 

similar between the two genotypes. The visual acuity threshold (E50K, 0.56 cpd, n = 8; WT, 

0.58 cpd, n = 11; Figure 5B) was comparable to the 0.6 cpd reported in the literature 

(Porciatti, et al., 2002, Prusky, et al., 2000). Despite normal acuity thresholds, aged BAC-

hOPTNE50K mice did exhibit an attenuated visual acuity response at 0.05 cpd as compared 

to wildtype littermates, but not other acuity levels (Figure 5B).
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Because nerve conduction and axon potential propagation is impaired in many optic nerve 

diseases, we also measured the latency between the presentation of a visual stimulus and the 

detection of the initial electrophysiological response (Gow, et al., 1999, Strain and Tedford, 

1993). The latency of visual responses is based on time to initiation of the VEP response 

(“Time to VEP”), latency to the first maximal response (“Time to N1”), and latency to the 

second maximal response (“Time to P1”). Both BAC-hOPTNE50K (n = 8 animals) and 

wildtype littermate mice (n = 11 animals) exhibited similar latencies (Figure 5C). The “Time 

to VEP,” “Time to N1,” and “Time to P1” were 20.45 ms ± 0.36, 41.45 ms ± 2.32, and 

116.99 ms ± 6.00 for BAC-hOPTNE50K and 21.71 ms ± 0.47, 43.17 ms ± 0.84, and 113.28 

ms ± 3.08 for wildtype littermates (mean ± S.E.M.). None of these measurements were 

significantly different between genotypes. Taken together, intracranial VEP responses show 

that low-overexpression of E50K mutant human optineurin results in selective visual 

impairment in contrast sensitivity, but does not have a quantifiable effect on nerve 

conduction velocity.

4. DISCUSSION

4.1 POAG phenotype with low overexpression of E50K optineurin

POAG disease findings include functional visual impairment, loss of RGCs, no loss of other 

retinal cell types such as photoreceptors, and a normal gross eye anatomy without 

pathological features such as angle closure, pigment dispersion, inflammation, or trauma 

(AAO, 2010, Kendell, et al., 1995, Kerrigan, et al., 1997, Quigley, 1999, Wax, et al., 1998). 

These clinical features and low IOP were observed in BAC-hOPTNE50K mice. In contrast to 

optineurin mice in previous reports, no diffuse thinning of non-GCL layers was found (Chi, 

et al., 2010, Meng, et al., 2011).

While significant RGC and axonal loss (>80-90%) is typically reported in high-pressure 

glaucoma animal models, it is not surprising that BAC-hOPTNE50K mice showed a mild 

glaucoma phenotype. First, without high IOP, progressive RGC neurodegeneration likely 

occurred at a slower rate and possibly through a different disease mechanism. Second, BAC-

hOPTNE50K mice also express normal mouse OPTN alleles, which may partially 

compensate for disrupted biochemical pathways resulting from E50K optineurin. Thus, we 

predict greater RGC loss in BAC-hOPTNE50K mice with suppression of endogenous normal 

mouse OPTN as well as additional glaucoma stressors, such as increased IOP.

4.2 Assessing neurodegeneration in POAG

The lack of a reliable marker limits quantitative assessment of RGC loss in any glaucoma 

mouse model. Recent reports have identified >20 RGC subtypes that can be identified 

electrophysiologically or morphologically, but no specific biochemical markers have been 

identified for each RGC subtype or for all RGCs in general (Coombs, et al., 2006, Sun, et 

al., 2002). The use of the SMI-32 antibody to morphologically identify a subset of RGCs 

(Coombs, et al., 2006) to assess representative RGC loss in mice is well-established (Jakobs, 

et al., 2005, Lin and Peng, 2013). Using the SMI-32 antibody, our RGC density 

measurement in wildtype retinas are comparable to literature reports of 80-110 RGCs per 
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mm2 (Lin and Peng, 2013, Lin, et al., 2004). With the four intracranial VEP electrode 

implants, retrograde labeling of RGCs was not possible in our experiments.

Another approach for estimating RGC loss in glaucoma is counting RGC axons in the optic 

nerve after PPD staining (Anderson, et al., 2005, Howell, et al., 2007). We found a higher 

number of PPD-stained axons in aged BAC-hOPTNE50K mice than wildtype ones. 

Interestingly, both genotypes have fewer “healthy” axons than previous reports, which 

ranged from 4.06 × 104 (Inman, et al., 2006), 4.8 × 104 (Jeon, et al., 1998), 5.46 × 104 

(Williams, et al., 1996), and 5.7 × 104 axons (Mabuchi, et al., 2004). Thus, our data showed 

an age-related loss of RGCs in both genotypes, which is enhanced by E50K hOPTN 

expression as evidenced by PPD staining and RGC counts. It is possible a subset of 

“healthy” axons in BAC-hOPTNE50K mice might be dysfunctional, but not sufficiently 

enough to be stained by PPD.

We performed VEPs to assess visual function in BAC-hOPTNE50K mice. It is notable that 

visual impairment in BAC-hOPTNE50K mice was quite specific for one visual modality 

(contrast sensitivity) but less for another (visual acuity). This VEP finding is consistent with 

the clinical presentation of POAG (Abdullah, et al., 2014, Horn, et al., 2006, Quigley, 1999, 

Tyler, 1981). Additionally, BAC-hOPTNE50K mice exhibited normal conduction velocity. 

While no demyelinating pathology is found in the optic nerve of POAG patients (Quigley 

and Green, 1979), it remains to be determined whether POAG patients exhibit delayed VEP 

latency. Depending on study methodology and patient population, both clinically significant 

and insignificant latencies have been reported (Grippo, et al., 2006, Horn, et al., 2006, Parisi, 

et al., 2006).

4.3 Possible neurodegenerative disease mechanisms in POAG

The pathophysiology for POAG remains remarkably elusive, but studying OPTN's in vivo 

role may lead to mechanistic clues. Disrupted protein trafficking has been proposed as a 

glaucoma disease mechanism (Quigley and Addicks, 1980), and optineurin itself functions 

as an adaptor protein for motor-based vesicular transport (Chibalina, et al., 2010, Chibalina, 

et al., 2008, Sahlender, et al., 2005). Loss of OPTN in zebrafish disrupts axonal trafficking 

in the spinal cord (Paulus and Link, 2014), and OPTN knockdown results in loss of cultured 

neurons (Akizuki, et al., 2013). Alternatively, optineurin might alter NFκB activity 

(Sudhakar, et al., 2009, Zhu, et al., 2007). Signaling components of the NFκB pathway, such 

as TNFα and TBK1, are also associated with glaucoma and interacts with optineurin 

(Klingseisen, et al., 2012, Morton, et al., 2008, Tezel, et al., 2001). Other functions for 

optineurin include: a K63-polyubiquitin-chain binding protein (Nagabhushana, et al., 2011, 

Zhu, et al., 2007), a negative checkpoint for cytokinesis (Kachaner, et al., 2012), and an 

autophagy/mitophagy receptor (Korac, et al., 2013, Wild, et al., 2011, Wong and Holzbaur, 

2014). The BAC-hOPTNE50K mouse can facilitate future investigations into these pathways.

In summary, we have generated and characterized an optineurin mouse that will help define 

the pathophysiology of RGC degeneration in low-pressure POAG. Future work may reveal 

novel molecules that can be exploited as disease biomarkers or therapeutic targets. More 

broadly, given optineurin's genetic association with familial amyotrophic lateral sclerosis 

and potential involvement in Huntington's and Alzheimer's diseases (Liu and Tian, 2011, 
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Mori, et al., 2012, Osawa, et al., 2011), elucidating in vivo mechanisms of optineurin-

associated RGC loss in glaucoma may also reveal mechanistic insights and therapeutic 

strategies for other neurodegenerative diseases.
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Highlights

• We generated a transgenic mouse model expressing disease-associated E50K 

mutation in optineurin

• This mouse model showed features of low pressure primary open angle 

glaucoma with aging

• E50K optineurin enhanced age-dependent loss of retinal ganglion cells and 

degenerating axons

• Compared to nontransgenic littermates, E50K optineurin mice showed 

functional visual impairment

• This mouse will be very useful to dissect disease mechanism in low pressure 

primary open angle glaucoma.
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Figure 1. Generation and characterization of BAC hOPTNE50K transgenic mice
(A) BAC transgenic mice expressing disease-associated mutant E50K human optineurin 

(BAC hOPTNE50K) were generated by using genomic sequences coding for the optineurin 

promoter region and the human OPTN locus. (B) Quantification of human optineurin mRNA 

in 18-month old BAC hOPTNE50K (E50K) and wildtype (WT) mice. E50K hOPTN 

overexpression was observed in line I, but not line II (E50K I, E50K II). Mouse OPTN 

(mOPTN) transcripts were similar in all three genotypes (n = 3 for each genotypes). Data 

presented as mean ± S.E.M. (C) Optineurin protein expression in isolated retinas from 18 
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month old mice were analyzed by immunoblot analysis. Shown are two different animals for 

each genotype. Using an antibody that recognizes human optineurin but not mouse 

optineurin, the expression of the BAC transgene was observed in retinas from line I of BAC 

hOPTNE50K mice.

(D) In young, 2-3 month old E50K and WT mice (n = 5 per genotype), the IOP was similar 

between the two gentoypes (p = 0.77) and between the right (OD) and left (OS) eyes within 

each genotype (p = 0.39 for E50K; p = 0.88 for WT). Similarly, in aged 18-month old E50K 

(n = 11) and WT (n = 10) mice, the IOP was not different between different genotypes (p = 

0.05) or between the right and left eyes within each genotype (p = 0.39 for E50K; p = 0.20 

for WT). (E) hOPTN expression pattern is similar to endogenous mouse OPTN. 

Immunofluorescent labeling in retina cryosections from 18-month old wildtype (WT) or 

BAC-hOPTNE50K (E50K) mice. Brn3a was used as a marker for retinal ganglion cells. 

Using an antibody specific for human optineurin (hOPTN), immunoreactivity was observed 

only in BAC-hOPTNE50K but not wildtype retinas (top panels). Mouse OPTN expression 

was observed with a different antibody that recognizes both human and mouse optineurin 

(bottom panels). n=3 animals per genotype. Scale bars 50 m.
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Figure 2. BAC hOPTNE50K retinas exhibit normal retina layers and RGC axon projections
(A) Normal gross histological layers in retinas from 18-month old BAC hOPTNE50K (E50K) 

and wildtype (WT) mice. PKCα staining (green) labeled bipolar cells while calretinin (red) 

identifies amacrine cells, RGC, and the three dendritic strata between sublaminae of the IPL. 

No significant decreases in photoreceptors nuclei were observed in the ONL. Scale bar, 50 

m. (B) Quantitation of retinal layers show they were grossly similar for both genotypes, 

except GCL and ONL layers in peripheral BAC hOPTNE50K retinas, which were slightly 

increased. Data presented as mean ± S.E.M. (C) Fluorescently-labeled cholera toxin (ct) was 
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used as an anterograde tracer. Ct-A595 (red) was injected into the right eye while ct-A647 

(cyan) was injected into the left eye to visualize ipsilateral and contralateral RGC axonal 

projections in the brains of old (>18 months) BAC hOPTNE50K and wildtype mice (n = 3 

animals per genotype). Coronal brain sections showed normal RGC terminals from both 

eyes are found in the binocular area labeled by both red and cyan fluorescence. (D) Sagital 

brain sections showing Ct-A595 in the superior colliculus (SC) with blue DAPI nuclear 

stain. Occasional segmental loss of fluorescence is observed in BAC hOPTNE50K mice. 

Scale bar, 1 mm, 500 μm (high magnification).
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Figure 3. ression of E50K optineurin induced an age-related loss of retinal ganglion cells
(A) Representative retinal flatmounts from young and aged wildtype (WT) and BAC 

hOPTNE50K (E50K) mice are shown. RGCs are labeled with the SMI-32 antibody. 

Magnified regions of retinas are indicated by the white box. RGC axons course toward the 

center of the retina to exit the eye through the optic nerve. Aged BAC hOPTNE50K retinas 

exhibited fewer RGCs with smaller somas and thinner axons than WT controls. Scale bar, 

500 m, 100 m (high magnification). (B) Quantitative analysis of RGC density showing a 
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decrease in aged BAC hOPTNE50K mice. Data represent means ± SEM, 5 animals per 

genotype per age group, * p<0.02, ** p < 0.001.
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Figure 4. E50K optineurin is associated with a higher number of damaged axons
(A) Paraphenylenediamine (PPD) staining in representative optic nerve cross sections from 

wildtype (WT) and BAC hOPTNE50K (E50K) mice. PPD stains the axoplasm of damaged or 

dead axons (arrows). Scale bar, 10 μm. (B) Axon counts of healthy axons showed no 

significant difference between the two genotypes (p = 0.33). However, there was a higher 

number of damaged or degenerated axons by PPD staining (* p = 0.03) in BAC hOPTNE50K 

mice (n = 4 animals, 8 optic nerves) than wildtype littermates (n = 6 animals, 11 optic 

nerves). Data represent means ± SEM.
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Figure 5. Mice expressing E50K human mutant optineurin demonstrate functional visual 
impairment
(A) Contrast sensitivity testing by VEP. (A1) Representative VEP waveforms recorded. (A2 

& A3) Visual responsiveness to patterned stimuli of decreasing contrast was significantly 

diminished in BAC hOPTNE50K mice compared to wildtype littermates between the range 

of 100 to 12 percent contrast (p = 0.008). Note that the x-axis is plotted logarithmically. 

(A4) Logarithmic regression shows normal contrast sensitivity threshold. (B) Visual acuity 

testing by VEP as spatial frequency in cycles per degree (cpd). (B1) Representative VEP 

waveforms. (B2 & B3) VEP responses were reduced at 0.05 cpd in BAC hOPTNE50K mice 
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(p < 0.001), but were comparable at other spatial frequencies to wildtype littermates. (B4) 

Linear regression showed similar visual acuity threshold for both genotypes. (C) VEP 

waveform latency revealed no delay in nerve conduction in 18-month old BAC hOPTNE50K 

mice. (C1) The averaged VEP waveform shows the initiation of the VEP which is when the 

visual signal was first detected in the primary visual cortex following visual stimulation. 

(C2-C4) There was no temporal delay in the initiation of the visual cortical response (Time 

to VEP), the negative peak (Time to N1) or positive peak (Time to P1) following visual 

stimulation. n = 11 WT, n = 8 for E50K, data represent means ± SEM. **p < 0.01, ***p < 

0.001.
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