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Abstract
The synchrony of neurons in extrastriate visual cortex is modulated by selective attention even when
there are only small changes in firing rate (Fries, Reynolds, Rorie, & Desimone, 2001). We used
Hodgkin-Huxley type models of cortical neurons to investigate the mechanism by which the degree
of synchrony can be modulated independently of changes in firing rates.

The synchrony of local networks of model cortical interneurons interacting through GABAA
synapses was modulated on a fast timescale by selectively activating a fraction of the interneurons.
The activated interneurons became rapidly synchronized and suppressed the activity of the other
neurons in the network but only if the network was in a restricted range of balanced synaptic
background activity. During stronger background activity, the network did not synchronize, and for
weaker background activity, the network synchronized but did not return to an asynchronous state
after synchronizing. The inhibitory output of the network blocked the activity of pyramidal neurons
during asynchronous network activity, and during synchronous network activity, it enhanced the
impact of the stimulus-related activity of pyramidal cells on receiving cortical areas (Salinas &
Sejnowski, 2001). Synchrony by competition provides a mechanism for controlling synchrony with
minor alterations in rate, which could be useful for information processing.

Because traditional methods such as cross-correlation and the spike field coherence require several
hundred milliseconds of recordings and cannot measure rapid changes in the degree of synchrony,
we introduced a new method to detect rapid changes in the degree of coincidence and precision of
spike timing.

1 Introduction
Selective attention greatly enhances the ability of the visual system to detect visual stimuli and
to store and recall these stimuli. For instance, in change blindness, differences between two
images shown after a brief delay are not visible unless the subject pays attention to the particular
spatial location of the change (Simons, 2000; Rensink, 2000). The neural correlate of selective
attention has recently been studied in macaque monkeys (Connor, Gallant, Preddie, & Van
Essen, 1996; Connor, Preddie, Gallant, & Van Essen, 1997; Luck, Chelazzi, Hillyard, &
Desimone, 1997; McAdams & Maunsell, 1999; Treue & Martinez Trujillo, 1999; Reynolds,
Pasternak, & Desimone, 2000; Fries, Reynolds, Rorie, & Desimone, 2001; Moore &
Armstrong, 2003). A key finding is that attention modulates both the mean firing rate of a
neuron in response to a stimulus (McAdams & Maunsell, 1999; Reynolds et al., 2000) and the

Published as: Neural Comput. 2004 February ; 16(2): 251–275.

H
H

M
I Author M

anuscript
H

H
M

I Author M
anuscript

H
H

M
I Author M

anuscript



coherence of spiking with other neurons responsive to the stimulus (Fries et al., 2001).
Increased synchrony can boost the impact of spikes on subsequent cortical areas to which these
neurons project (Salinas & Sejnowski, 2000, 2001, 2002).

These results suggest that mean activity and the degree of coherence may represent independent
signals that can be independently controlled. It is unclear biophysically what mechanisms are
responsible. For example, when excitatory networks are depolarized, there can be an increase
in synchrony but it is always associated with a large increase in the mean output rate (Aoyagi,
Takekawa, & Fukai, 2003). Here we explore the hypothesis that interneuron networks are
involved in modulating synchrony. The issue of how the interneuron network affects the
pyramical cells is a complex one that is not the subject of this article (but see section 4). We
found that interneuron networks can dynamically modulate their synchrony on timescales of
100 ms with only moderate changes in the mean firing rate. Synchrony arose by competition
between two groups of interneurons and required a specific range of synaptic background
activity. To analyze the temporal dynamics of synchrony modulation, we introduced time-
resolved measures for the degree of coincidence and precision. The sensitivity of these
measures is compared to the spike field coherence (Fries et al., 2001).

2 Methods
2.1 Network Model

The model consisted of a network of N interneurons connected all-to-all. Each neuron had a
sodium INa, a potassium IK, and a leak current IL and was driven by a white noise current η
with mean Ii and variance 2D. The equation for the membrane potential V reads:

(2.1)

Here, Cm = 1μF/cm2 is the membrane capacitance (normalized by area), and Isyn is the synaptic
input from other neurons in the network. For the first NA neurons the current was Ii = IA + δIi
(i = 1,…, NA), and for the remainder, it was Ii = IB + δIi (i = NA + 1,…, N). Heterogeneity in
neural properties was represented by δIi, which was drawn from a gaussian distribution with
a standard deviation σI. IA was increased from I to I + ΔI during a 500 ms interval between t =
1000 and 1500 ms; IB was equal to I for the duration of the simulation. The neurons were
connected by GABAA synapses with unitary strength gsyn/N and time constant τsyn = 10 ms.
The model equations and implementation are exactly as described by Tiesinga and José
(2000a) and are not repeated here. The model used here was adapted from that introduced by
Wang and Buzsáki (1996). The standard set of parameters was N = 1000, NA = 250, NB = N −
NA = 750, I = 0.7 μA/cm2, ΔI = 0.3 μA/cm2, gsyn = 0.4 mS/cm2, σI = 0.02 μA/cm2, and D =
0.02 mV2/ms.

2.2 Statistical Analysis
Spike times were recorded when the membrane potential (V in equation 2.1) crossed 0 mV
from below. tni is the ith spike time by the nth neuron; likewise, tmj is the jth spike time by the
mth neuron. N is the total number of neurons in the network, and Ns is the number of spikes
(by all neurons) generated during a given simulation run. For some calculations, it is convenient
to pool the spike times of all neurons together into one set, {t1,…, t, …, tNs}, ordered from low
to high values. The ordered set is indexed by ν, where ν = 1 is the earliest spike and ν = Ns is
the latest. Most of the statistical quantities determined from the simulations were spike based.
That is, for each measurement yν there is an associated spike time tν. For instance, yν could be
an interspike interval, and tν could be the first spike time of the interval. The specific choices
for y are given below. The simulation runs were divided into three intervals: (I) the baseline
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state, 0 < t < 1000 ms; (II) the activated state, 1000 ms < t < 1500 ms, during which NA of the
neurons received a current step, and (III) return to baseline for 1500 ms < t < Tmax. Here
Tmax is the duration of the simulated trial. Each interval is divided in subintervals A and B, A
is the transient during which the network adapts from the old state to the new state, and B is
the steady state reached after the transient. For instance, IIA is the onset of the synchronous
state, and IIB is the synchronous state itself. Note that the subdivision in A and B depends on
network parameters such as I and D. Averages of y were determined for each of these intervals,
using all the yν associated with a tν in the interval under consideration. Since the tν are ordered,
this is a contiguous set, νb ≤ ν ≤ νe (b stands for begin and e stands for end):

(2.2)

We also determined time-resolved averages, 〈y〉k and 〈t〉k, using a sliding window of length
Tav that was translated along the time axis with increments equal to Tincr. The position of the
sliding window was indicated by the index k, and the sum is over all ν values with (k − 1)
Tincr ≤ tν < (k − 1)Tincr + Tav. For convenience, the set of points (〈t〉k, 〈y〉k) connected by lines
is denoted by y(t). Tav and Tincr are expressed in terms of nav and nincr using the relations Tav
= Tmax/nav and Tincr = (Tmax − Tav)/nincr. We used nav = 30, nincr = 90 and Tmax = 3000 ms.

2.2.1 Standard Spike Train Statistics—The ith interspike interval (ISI) of the nth neuron
is τni = tn,i+1 − tn,i. The mean ISI for neuron n is denoted by τn, and its average across all neurons
is τ. The coefficient of variation (CV) of the ISIs is the standard deviation of the τni across all
neurons divided by τ. The interval τni can be associated with three times: the starting spike time
of the interval, tni, the end spike time of the interval, tn,i+1, and the mean, (tni +tn,i+1)/2. For the
sliding window average, we used tν = (tni +tn,i+1)/2. Each individual ISI was plotted in a scatter
plot as a point with coordinates (tni, τni). The mean firing rate f is defined as the number of
spikes divided by the duration of the measurement interval. The mean firing rate is determined
for each time interval (I–III) for all the N network neurons together, as well as separately for
the NA activated neurons and the NB nonactivated neurons.

2.2.2 Binned Spike Train Statistics—A binned representation Xn(t) of the spike train of
the nth neuron is obtained by setting Xn(t) = 1 when there is a spike time between t − Δt/2 and
t + Δt/2 and Xn(t) = 0 otherwise. We took Δt = 1 ms. The spike time histogram, STH =

(1000Δt/N)X(t), is proportional to the sum of Xn over all neurons,  (since Δt is
expressed in ms, the factor 1000 is necessary so that STH is in Hz). The local field potential
(LFP) is estimated by filtering X by an exponential filter, exp(−t/τ))/τ, with timescale τ = 5 ms.
The sliding window average, σLFP(t), of the standard deviation of the LFP was used as a
synchrony measure. We also determined the normalized autocorrelation, AC(t) = 〈(X(s) −X̄)
(X(s − t) − X̄)〉s/〈(X(s) − X̄)(X(s) − X̄)〉s, where 〈〉s denotes the time average and X̄ = 〈X〉s.

2.2.3 Spectral Measures for Neural Synchrony—The coherence of spike trains with
the underlying network oscillations was determined using the spike-triggered average (STA)
(see Rieke, Warland, de Ruyter van Steveninck, & Bialek, 1997; Dayan & Abbott, 2001, for
details). The STA was calculated by taking the LFP from the full network centered around the
combined spike times of four neurons, two of which were part of the activated group and the
other two were part of the nonactivated group. The STA power spectrum was calculated using
the MATLAB routine psd with standard windowing using a 2,048 point, fast Fourier transform.
The spike field coherence (SFC) is the STA power spectrum divided by the power spectrum
of the LFP (Fries et al., 2001). The SFC for the standard simulations was calculated based on
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300 ms long LFP segments (IB: 700 ms ≤ t ≤ 1000 ms and IIB: 1200 ms ≤ t ≤ 1500 ms). This
was necessary since synchrony was modulated on a fast timescale. Simulations were also
performed for the situation where the baseline state and the activated state both lasted for 2000
ms. The SFC in that case was calculated based on 1500 ms long segments.

2.2.4 Event-Based Measures for Neural Synchrony—During synchronized network
activity, the histogram X(t) contains peaks of high activity—events —during which many
neurons spike at approximately the same time. Spike times tν were clustered in events using
MATLAB’s fuzzy k-means clustering algorithm, fcm (Ripley, 1996). For each cluster k, the
algorithm returns the indices νk, νk + 1,…,νk+1 − 1 of the spike times that are part of the cluster.
The number of spike times Nk = νk+1 − νk in event k and their standard deviation σk was
determined. For low synchrony, peaks in the STH are broad and overlap; as a result, the
clustering procedure could not reliably cluster the spikes into events.

2.2.5 Interspike Distance Synchrony Measures—The CVP measure is based on the
idea that during synchronous states, the minimum distance between spikes of different neurons
is reduced compared with asynchronous states. The interspike interval of the combined set of
network spikes is τν = tν+1−tν. Note that these interspike intervals are between different neurons.
The CV is

where P stands for population and 〈〉ν denotes the average over all intervals. As with regular
ISIs, the interval τν can be identified with three times: tν, tν+1, and the mean (tν + tν+1)/2. For
the sliding window average, CVP(t), the last was used.

In an asynchronous network, each neuron fires independently at a constant rate. The sum of
the spike trains is to a good approximation a Poisson spike train, with a coefficient of variation,
CVP, equal to one. For a fully synchronous network with N active neurons oscillating with
period T, the set τν consists of Ns/N −1 intervals equal to T and Ns −Ns/N intervals equal to Δ
→ 0. Hence,

with α = (Ns − 1)/(Ns/N −1) and β = (Ns/N)(N −1)/(Ns − 1). For large Ns, this reduces to
. Thus,  is a measure for synchrony normalized between 0 and 1.

CVP is sensitive to the precision of the network discharge as well as to the degree of
coincidence.

The nearest-neighbor distance of spike tni from the spikes of neuron m is

The minimum is taken over all spike times tmj of neuron m. There are Np = (N −1)Ns different
pairs. Note that each pair is counted twice, Δmni = Δnmj, because it is associated with tni as well
as with tmj.
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The coincidence factor κ is defined as the number of Δmni < P, divided by the maximum number
of coincidences Nc. Here, P is a preset precision, typically equal to 2 ms. The number of
Δmni < P cannot exceed Np; hence, taking Nc = Np = (N − 1)Ns would yield a number between
0 and 1 (note that Ns is now the total number of spikes in the time interval under consideration).
However, when the minimum single-neuron interspike interval is larger than P, the number of
coincidences in a pair of neurons (n, m) cannot be larger than the minimum of the number of
spikes produced by neurons n and m, formally equal to min(Σt Xn(t), Σt Xm(t)). Hence, the
normalization should be

(2.3)

During intervals I and III, when the network dynamics is homogeneous, Np ≈ Nc (the difference
is 10% or less). However, when there is a bimodal distribution of firing rates, this
approximation is not appropriate. The sliding window average κ(t) was calculated based on
Δmni, as described above. The density of coincidences was also determined at a finer temporal
resolution. K(t) was the number of Δmni < P with t − Δt/2 ≤ tni ≤ t + Δt/2 normalized by Np
(Nc could not be estimated reliably for these small intervals).

The κ used here is related to the quantity described in Wang and Buzsáki (1996), denoted here
by κWB:

(2.4)

where Σt denotes the sum over the discrete bins (width Δt). The measure κ used here differs
from κWB in three aspects:

1. κWB is based on discrete bins. Hence, it is possible that two spike times with a distance
less than Δt are in different bins and considered noncoincident (White, Chow, Ritt,
Soto-Treviño, & Kopell, 1998).

2. The normalization of κWB does not work if the mean firing rates of neurons are
significantly different. In that case, κWB would be smaller than 1 even if all the spikes
were coincident. This is because the maximum number of coincident spikes is min

(Σt Xn(t),Σt Xm(t)) rather than , used in equation 2.4. The
normalization by Nc of κ(t) accounts for these effects.

3. The calculation of κ(t) is better suited to track fast changes in synchrony.

An estimate for the dispersion of spike times in an event can be obtained from Δmni. For a given
spike time tni, we take the mean of the NΔ lowest values of Δmni. This value is averaged across
all tni in an averaging time interval of length Tav to obtain Δ(t). When NΔ is somewhat smaller
than the number of neurons firing on each cycle, Δ(t) is proportional to the dispersion in spike
times. Typically it is slightly less than the dispersion obtained directly from clustering. The
relationship between the value of Δ and the dispersion of the spike times on a cycle was studied
using a set of N = 300 deviates of a gaussian probability distribution with a variance of 1. Δ
was equal to 0.53 ± 0.02 for NΔ = 150, asymptoted to 1.13 ± 0.05 for NΔ = 300, and reached
1 for NΔ = 278 (errors were the standard deviation across 100 different realizations).
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3 Results
3.1 Competition Leads to Dynamical Modulation of Synchrony

We study the dynamics of an all-to-all connected interneuron network. Key parameters are
mean level of depolarizing current I, variance 2D of the white noise current, and neuronal
heterogeneity modeled as a dispersion σI in the driving current across neurons. These three
parameters can account for changes occuring in vivo in the level of background synaptic
activity and the effect of neurotransmitters and neuromodulators. Previous work shows that
synchrony is stable only up to σI ≈ 0.10 μA/cm2 (Wang & Buzsáki, 1996) and D ≈ 0.10 mV2/
ms (Tiesinga & José, 2000a); for higher values, only the asynchronous state is stable. For
moderate values of σI and D (below these critical values), synchrony is stable only for a large
enough driving current I.

Based on these results, it is expected that applying a current pulse to the network in a low-
synchrony state will lead to increased synchrony. Representative simulation results are shown
in Figure 1. There were N = 1000 neurons in the network; the other parameters were D = 0.02
mV2/ms and σI = 0.02 μA/cm2. Initially, the driving current was I = 0.7 μA/cm2. In this baseline
state, the mean firing rate per neuron was f = 8.18 Hz with a CV = 0.38. During the time interval
between 1000 ms and 1500 ms, the drive to all neurons was increased to I = 1.0 μA/cm2. The
firing rate increased by approximately 50% to f = 12.25; the CV was 0.25 (see Figure 1A).
There was little change in synchrony. In contrast, when the depolarizing current was increased
to only 250 of the 1000 interneurons, a robust increase in synchrony was observed (see Figure
1B). During that period, the mean firing rate increased only weakly from f = 8.18 Hz to f =
9.48 Hz (CV = 0.40 → 1.55).

It is also possible to induce synchrony by increasing the driving current to all neurons in the
network. However, the necessary increase in current is much higher than used in Figure 1A,
and the resulting firing rate increase is also much higher compared with the competitive
mechanism. In the remainder, we investigate the properties of the synchrony-by-competition
mechanism.

3.2 Synchrony Modulation by Competition
We have labeled four distinct time intervals in the histogram shown in Figure 1B. The
rastergram for all neurons and histograms for the activated and non-activated neurons are
shown separately in Figure 2 for the time interval between 500 ms and 2000 ms. (IA) 0 < t <
500 ms. The membrane potential of the neurons at t = 0 was drawn for each neuron
independently from a uniform distribution between −70 mV and −50 mV. Initially, the network
was partially synchronized due to the particular realization of the initial condition. The amount
of synchrony decreased over the course of 500 ms. (IB) 500 < t < 1000 ms: During the baseline
state there was only weak synchrony. (II) 1000 < t < 1500 ms: A subset of NA = 250 neurons
gets activated. Their firing rate increased, and they became synchronized within 200 ms.
Initially, the NB = 750 nonactivated neurons were completely suppressed by the low-
synchronous activated neurons, but as the synchrony of the activated neurons increased, the
nonactivated neurons resumed firing, albeit at a much lower rate. (IIIA) 1500 < t < 1700 ms:
The additional drive to the activated neurons was reduced back to baseline. Their firing rate
decreased, which released the nonactivated neurons from inhibition. Because their membrane
potentials were similar, the network was transiently synchronized. Over the course of 200 ms,
the network returned to the asynchronous state. During the baseline state, there were brief
episodes of spontaneously enhanced synchrony (see below).

The changes in network dynamics are mimicked in the distribution of interspike intervals (see
Figure 2B). The interspike intervals (ISI) are shown as dots in a scatter plot (see Figure 2Ba).
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The sliding window averages of the mean ISI and its coefficient of variation are shown in
Figures 2Bb and 2Bc, respectively. In the baseline state, the ISI distribution was homogeneous,
but it had a large dispersion (see Figure 2Ba). However, during the synchronized period, the
distribution became bimodal: a set of short intervals with a small dispersion corresponding to
the activated neurons and a set of long intervals with a large dispersion due to cycle skipping
associated with the nonactivated neurons (see Figure 2Ba). The sliding window average of the
mean ISI was sensitive to the onset and offset of bimodality associated with synchrony (see
Figure 2Bb). Similarly, the CV of the intervals increased during the synchronized period
because of the onset of bimodality in the ISI distribution (see Figure 2Bc). However, these
time-resolved statistics are not a good measure of synchrony, since synchrony may increase
without introducing bimodality in the ISIs.

3.3 Spectral Analysis of Synchrony
In the experimental analysis of attentional modulation of synchrony, there was an increase in
the coherence of multiunit spike trains with the local field potential (LFP) in response to the
attended stimuli (Fries et al., 2001). Here we used a filtered version of the spike time histogram
(STH) as an estimate for the LFP, and we used the spikes obtained by combining spike trains
of four neurons (two activated, two nonactivated) as the multiunit spike train (see Figure 3A).
The autocorrelation function AC(t) of the spike time histogram during a 300 ms long
synchronized period showed strong periodic peaks, whereas during an equally long
asynchronous period, the AC showed periodic modulations but at a much lower amplitude (see
Figure 3B). Hence, the AC was sensitive to synchrony. The spike-triggered average (STA) of
the LFP triggered on the multiunit spike train was also determined for the same period. The
spike field coherence (SFC) is the power spectrum of the STA divided by that of the LFP. For
the 300 ms segments used before, there was no clear difference in the SFC between the
synchronized and asynchronized segments across a single trial (results not shown). The
analysis was also performed on 1500 ms long segments from a longer simulation of the same
network (see Figures 3C and 3D). The SFC in the gamma frequency band (30–60 Hz) was two
orders of magnitude larger for the synchronized segment compared with the asynchronous
segment. For our simulation data, the SFC is not a robust measure for changes in synchrony
on a 100 ms timescale, but it does work well when longer time intervals are available for
averaging.

3.4 Spike-Distance Based Synchrony Measures
During the synchronous state, many neurons fire at similar times; hence, the distance between
spikes of different neurons is reduced compared with the asynchronous state. We calculate two
synchrony measures using this fact (see section 2).

The coefficient of variation CVP is obtained by pooling the spike times of all neurons, ordering
them from low to high values and then calculating the coefficient of variation of the resulting
interspike intervals (see section 2). For an asynchronous population, the combined spike train
will form a Poisson process with CVP = 1. For a synchronized network, there will be many
small intervals between spikes in a peak and a few long intervals between the first spike of the
next peak and the last spike of the preceding peak, yielding  (here, N is the number
of neurons that fire on a given cycle). Note that CVP is different from the CV shown in Figure
2Bc: the latter is based on the interspike intervals between spikes of the same neurons. The
sliding window average of CVP could resolve fast changes in neural synchrony and was
sensitive to the transient synchrony at the start of the simulation and an episode of spontaneous
synchrony at t ≈ 2800 ms (the circle in Figure 4A). The oscillations in the LFP also increased
during synchrony. Hence, the sliding window average σLFP of the standard deviation of the
LFP was also sensitive to changes in synchrony (see Figure 4B). There are two different aspects
of synchrony: the number of coincidences (the number of neurons firing at approximately the
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same time) and the temporal dispersion of the spike times. CVP and σLFP confound these
aspects.

For CVP, only the distance between a given spike and the closest other spike time is taken into
account. A new time-resolved coincidence measure that is an extension of CVP takes into
account the nearest spike time for all other neurons separately. Hence, for each spike tni (ith
spike of nth neuron), there are N − 1 nearest distances Δmni (m = 1,…, n − 1, n + 1,…, N; see
section 2). We determined the set of Δmni smaller than P = 2 ms. The density K(t) of the
coincident pairs and the sliding window average κ(t) are shown in Figures 4C and D,
respectively. κ(t) was normalized by the number of expected coincidences, as explained in
section 2. Note that when κ(t) was normalized by the total number of pairs (Np; see section 2),
it significantly underestimated the number of coincidences during interval II (filled circles
versus solid line in Figure 4D). An estimate of the jitter Δ(t) (the inverse of the precision) was
obtained by calculating the mean distance of the NΔ = 100 nearest spike times to a given spike
time and averaging over all spike times (see Figure 4E).

The number of coincidences and the dispersion of spike times were calculated using a clustering
algorithm for comparison purposes. During the synchronous state, peaks of elevated firing rate
occur in the STH (see Figure 5A). The spikes that are part of a peak were determined using a
fuzzy k-means clustering algorithm. The number of peaks during a particular time interval was
determined by visual inspection and supplied as a parameter to the algorithm. The number
Nk of neurons firing on a particular cycle and their temporal dispersion σk were calculated and
plotted as a function of the centroid of the peak (see Figure 5B). After the onset of the current
pulse, the jitter σk decreased over time, whereas the number of neurons Nk firing per cycle
remained approximately constant. Likewise, when the current pulse was turned off, the jitter
increased and did so at a much faster rate of change. Changes in synchrony can be resolved on
a cycle-by-cycle basis using the jitter. The temporal modulation of Δ(t) (see Figure 4E) closely
mimics that of σk, shown in Figure 5B.

3.5 Synaptic Background Activity is Necessary for Dynamic Changes in Synchrony
High synchrony occurs when the network discharge has a jitter (σk or Δ) of less than 5 ms; for
low synchrony, the network discharges with strong temporal modulation of the firing rate but
with a jitter of more than 5 ms. Asynchronous network discharge does not have significant
firing rate modulations.

The neurons in the network received incoherent background activity, which was studied by
systematically varying the variance D of a balanced white noise current. Increasing the
variability in the input current without increasing the mean input current corresponded to a
larger value of D (Tiesinga, José, & Sejnowski, 2000; Chance, Abbott, & Reyes, 2002).

For each value of D, a current pulse of ΔI = 0.3 μA/cm2 was applied to 250 out of 1000 neurons
during the time interval between 1000 ms and 1500 ms. As before, the simulation was run for
3000 ms and divided into three intervals, I–III. During the first (I) and third (III) intervals, the
network was in its baseline state, and during the second (II) interval, it was in its activated
state. The spike time histograms are shown in Figure 6A.

For D = 0 mV2/ms, the network synchronized during the first interval and remained
synchronized throughout the second and third intervals. During the second interval, the network
splits into two populations with different firing rates (f = 38 Hz for activated neurons, whereas
the nonactivated population spiked on only 1 in 13 cycles of the network oscillation). Because
there was neural heterogeneity, σI = 0.02μA/cm2, the jitter σk was nonzero, but CVP was close
to its fully synchronized value, .
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For D = 0.0004 mV2/ms, network synchrony was stable for the baseline network state. Starting
from a synchronized state, the network remained synchronized, and starting from an
asynchronous state, it became synchronized over time. During the first interval, the network
synchronized; synchrony increased even more during the second interval, and in the third
interval the degree of synchrony continued to increase. At the start of the third interval, the
nonactivated neurons all had a similar voltage. Once these neurons were released from the
inhibition projected by the activated neurons, they immediately synchronized into a two-cluster
state (see below). The mean firing rate was doubled compared with that during the first interval.

For D = 0.0084 mV2/ms, the network converged to a low-synchrony state during the first
interval. The network switched to a high-synchrony state during the second interval. In the
third interval, the network returned slowly to the low-synchrony state. The dynamics for D =
0.0164 mV2/ms was similar, except that the return to the low-synchrony state during the third
interval was faster. The same holds for D = 0.0284 mV2/ms, except that the degree of synchrony
reached during the second interval was reduced.

For D = 0.0364 mV2/ms, the network was in an asynchronous state during the first and third
intervals. The current pulse during the second interval was unable to drive the network to a
synchronous state.

The network dynamics for different values of D is also reflected in the time-resolved
coincidence measure κ(t) and jitter Δ(t). The state with dynamic modulation of synchrony is
characterized by low values of κ(t) and high values of Δ(t) during the first and third intervals
and high values of &kappa;(t) and low values of Δ(t) during the second interval. This is the
case only for the curves with D = 0.084 mV2/ms and D = 0.0204 mV2/ms (see Figure 6B).

In Figure 7, the mean firing rate and synchrony measures CVP, κ, and Δ are plotted versus D
for the intervals IB, II, and IIIB. For D < 0.005 mV2/ms, there was multistability. Depending
on the distribution of initial voltages across the neurons, the network converged to states with
two, three, or more clusters present (these clusters should not be confused with those obtained
in the preceding section using a clustering procedure). For instance, in a two-cluster state,
neurons fired once every two cycles, yielding a firing rate of approximately 20 Hz. Each neuron
was in the cluster that was active on either even cycles or odd cycles. The dynamics of states
with a higher number of clusters is similar (Kopell & LeMasson, 1994). The number of clusters
in IB depended on the initial condition. f, CVP, κ, and Δ had different values depending on the
number of clusters. The graphs of these quantities versus D would have a ragged appearance
due to the sensitivity to initial conditions. Hence, we did not plot them in Figure 7 for small
D values in intervals I and II. However, after the application of the current pulse during the
second interval, the network settled into the most synchronous state with the highest firing rate.
As a result, the network state reached in IIIB did not depend on initial conditions. For higher
D values, these synchronized states became unstable, and the firing rate as well as the values
of CVP and κ in the third interval dropped precipitously (see Figure 7, arrow).

In summary, synchrony can be modulated in time only for a finite region of background activity
consistent with D values around D = 0.02 mV2/ms. For weaker background activity, it is
possible to increase synchrony, but it cannot be shut off. Furthermore, the firing rate during
synchrony is much higher compared with that for lower synchrony. For stronger background
activity, synchrony cannot be established.
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4 Discussion
4.1 Measuring Synchrony

Physiological correlates of attention have been observed in the response of cortical neurons in
macaque monkeys to either orientated gratings (area V4) or random dot patterns moving in
different directions (area MT) (McAdams & Maunsell, 1999; Treue & Martinez Trujillo,
1999). When attention is directed into the receptive field of the recorded neuron, the gain of
the firing rate response may increase (McAdams & Maunsell, 1999; Treue & Martinez Trujillo,
1999), as well as the coherence of the neuron’s discharge with the local field potential (Fries
et al., 2001). The coherence was quantified using the SFC, the power spectrum of the spike
triggered average divided by that of the local field potential. The experimental recordings were
500 ms to 5000 ms in duration—long enough to get statistical differences with attention focused
either into the receptive field or outside the receptive field. Here we study how synchrony can
be modulated dynamically as it would be during normal behavior. The speed with which
attention can be covertly shifted is quite rapid—in the range of a few hundred ms (Shi &
Sperling, 2002). Attentional shifts caused by sudden changes in stimulus properties, such as
brightness and motion, can be as low as 100 ms. For our simulations, the SFC across a single
trial could not resolve rapid changes in synchrony that were obvious from visual inspection of
the spike time histogram.

For oscillatory synchrony in the gamma frequency range, the fastest timescale on which
synchrony can change is the cycle length. Event-based methods could resolve changes in
synchrony on these timescales (see Figure 5). We introduced two nonevent-based measures
that could track the temporal dynamics of synchrony on timescales of about 100 ms: the sliding
window average of the standard deviation of the LFP and CVP. These measures were able to
resolve the changes in synchrony that were visible in the spike time histogram. These measures
confound two different aspects of synchrony: the number of coincident spikes per event and
their temporal dispersion corresponding to Nk and σk, respectively, in the event-based analysis.
Either increasing the number of spikes or decreasing their temporal dispersion will lead to
increases in the value of σLFP or CVP. However, the distribution of the pairwise distances
between spikes used to define κ and Δ distinguishes between changes in the number of
coincident neurons and the temporal dispersion. There were two parameter values—P, the
precision of the coincidences, and NΔ, the number of pairwise distances—in the average for
Δ. For κ, all Np = (N − 1)Ns ~ N2 f Tmax pairwise distances need to be determined. The
computational load increases quadratically with network size N and linearly with firing rate f
and the length Tmax of the measurement interval; hence, it is less efficient than CVP. κ(t) is a
time-resolved version of the quantity used by Wang and Buszáki (1996). We adapted κ so that
it was correctly normalized for networks with a bimodal distribution of firing rates.

In summary, CVP is a fast and easy statistic to quantify synchrony modulations, but κ(t) and
Δ(t) delineate changes in temporal dispersion from changes in the number of coincident spikes.

4.2 Modulating Synchrony
The synchronization properties of model networks of interneurons has recently been
intensively investigated (Traub, Whittington, Colling, Buzski, & Jeffreys, 1996; Wang &
Buzsáki, 1996; White, Chow, Ritt, Soto-Treviño, & Kopell, 1998; Chow, 1998; Ermentrout &
Kopell, 1998; Brunel & Hakim, 1999; Kopell, Ermentrout, Whittington, & Traub, 2000; White,
Banks, Pearce, & Kopell, 2000; Tiesinga & José, 2000a; Hansel & Golomb, 2000; Bressloff
& Coombes, 2000; Gerstner, 2000; Tiesinga, Fellous, José, & Sejnowski, 2001; Aradi,
Santhakumar, Chen, & Soltesz, 2002; Bartos et al., 2002; Borgers & Kopell, 2003; Olufsen,
Whittington, Camperi, & Kopell, 2003; Hansel & Mato, 2003; Fransen, 2003). The degree of
synchrony, and its robustness against noise (D) and heterogeneity (σI), depends primarily on
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the synaptic coupling strength gsyn and degree of depolarization I (Wang & Buzsáki, 1996;
White et al., 1998; Tiesinga & José, 2000a). For I = 0.7 μA/cm2, gsyn = 0.4 mS/cm2, the network
studied here is asynchronous (with D = 0.02 mV2/ms and σI = 0.02 μA/cm2). During the
application of a current pulse to the NA network neurons, the other NB neurons were almost
completely suppressed. Hence, the full network behaves approximately as a network of NA
neurons with effective synaptic coupling gef f = (NA/N)gsyn = 0.1 mS/cm2 and driving current
I = 1.0 μA/cm2. For these parameters, the network is synchronous (Wang & Buzsáki, 1996;
Tiesinga & José, 2000a).

Synchrony by competition is effective when the baseline state is asynchronous and reached
quickly from a synchronized network state (corresponding to an initial condition with all
neurons having a similar membrane potential). The activated state should be synchronous and
should be established quickly from an asynchronous state (corresponding to an initial condition
with a wide dispersion of membrane potential across different neurons). In a previous study
(Tiesinga & José, 2000a), the focus was on the degree of synchronization in the asymptotic
state of the network. Here, we study a network with competition between otherwise identical
neurons, and the focus is on the speed with which the network can switch between synchronous
and asynchronous states.

The strength of the white noise current D, corresponding to the level of balanced synaptic
background activity, was critical. In the noiseless network (D = 0), there are multiple stable
cluster states. For the baseline state, we found states with two, three, or four approximately
equal-sized clusters that were reached from the set of random initial conditions used in the
simulations (Golomb & Rinzel, 1993, 1994; Kopell & LeMasson, 1994; van Vreeswijk,
1996; Tiesinga & José, 2000b). The cluster states were stable against weak noise. The transition
to the activated state could switch the baseline state from one cluster state to another, but it
would not affect the degree of synchrony. The firing rate did, however, vary strongly. For
strong noise, neither the baseline nor the activated state was synchronized. Only for
intermediate noise strengths could the degree of synchrony be modulated. In this regime, the
degree of synchrony reached during the activated state decreased with increasing D, but the
transition from the synchronized state to the asynchronous state during interval IIIA was
speeded up.

For what parameters values can synchrony by competition be obtained? We varied the value
of the amplitude of the current pulse, ΔI; the mean of the common driving current, I; the number
of activated neurons, NA; the total number of neurons in the network, N; and the strength of
synaptic coupling, gsyn (data not shown). For large networks, N > 100, with all-to-all coupling,
the network state did not depend on N (Tiesinga & José, 2000a). Let us denote the firing rate
of the baseline network by f1 and that of the NA neurons in the activated network by f2. f2 should
be below but within 10% of the oscillation frequency (40 Hz for gamma frequency range).
Mean activity was constant when f1/f2 ≈ NA/N. Networks with NA > 100 robustly synchronize
(Wang & Buzsáki, 1996), and we found that N/NA > 2 works best. The values of I, gsyn, and
ΔI are less critical: I and gsyn should lead to a firing rate f1 in the appropriate range, whereas
I + ΔI and (NA/N)gsyn should lead to a synchronous state with a firing rate equal to f2. This is
possible since the higher firing rate state is usually more synchronous (Tiesinga & José,
2000a). The specific value of ΔI determines how fast synchrony is attained in interval II.

These parameter values are specific to the model used in our investigation. This raises the issue
whether and to what extent the results reported here generalize to other models. When the
maximum conductance of the sodium and potassium currents in the model were varied by less
than 10%, we obtained similar results to those reported here. Hence, there is robustness against
small changes in model neuron parameters. The key requirements are that the model network
has a synchronous state in the gamma frequency range and an asynchronous state and that the
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degree of synchrony depends on the coupling strength and driving current. These properties
hold across different Hodgkin-Huxley-type models (Wang & Buzsáki, 1996; White et al.,
1998) and for leaky integrate-and-fire model neurons (Brunel & Hakim, 1999; Hansel &
Golomb, 2000). This suggests that synchrony modulation by competition will also be present
in these models.

The firing rate of neurons recorded in vitro adapts in response to a sustained tonic depolarizing
current: at the onset of current injection, neurons fire at a high rate but the rate decreases and
saturates at a lower value (McCormick, Connors, Lighthall, & Prince, 1985; Shepherd,
1998). The role of adaptation in synchronous oscillations has been studied in models (van
Vreeswijk & Hansel, 2001; Fuhrman, Markram, & Tsodyks, 2002). We expect that synchrony
modulation by competition also works in the presence of adaptation, but that the temporal
dynamics of the transition between the activated and nonactivated states may be different.
Further investigation of this issue is needed.

4.3 Functional Consequences of Temporal Modulation of Synchrony
The driving hypothesis of this investigation is that attention modulates the synchrony of cortical
interneuron networks. We have shown that inhibitory networks can modulate their synchrony
on timescales of the order 100 ms without increasing their mean activity. The question is, How
do these synchrony modulations relate to the effects of attention on putative pyramidal neurons
recorded in vivo (Connor et al., 1996, 1997; Luck et al., 1997; McAdams & Maunsell, 1999;
Treue & Martinez Trujillo, 1999; Reynolds et al., 2000; Fries et al., 2001)?

Attentional modulation can be studied in models using the following conceptual framework.
The neuron is thought to receive two sets of inputs: predominantly excitatory, stimulus-related
inputs from upstream cortical areas and modulatory synaptic inputs (Chance et al., 2002). Some
of the modulatory inputs are from local interneuron networks that project to the principal output
neurons in cortical layer 2/3 (Galarreta & Hestrin, 2001). The response to stimulus-related
inputs can be characterized using the firing rate versus input (f – I) curve. The f – I curve is
determined by measuring the firing rate while the amplitude I of the tonic depolarizing current
is systematically varied (sometimes the firing rate of presynaptic excitatory afferents is varied
instead). Modulatory inputs alter the f – I curve, leading to a different firing rate in response
to the same input. The modulatory changes fall in two categories: leftward shifts of the f – I
curve, leading to higher sensitivity as the neuron can respond to weaker inputs, and gain
changes, where the firing rate response to any input is multiplied by a constant factor. The
attentional modulation of firing rate tuning curve observed in McAdams and Maunsell
(1999) and Treue and Martinez Trujillo (1999) can be explained as a multiplicative gain change
of the f – I curve.

Recent investigations reveal that the gain of the f – I curve is modulated by the amount of tonic
inhibition that a neuron receives (Prescott & DeKoninck, 2003; Mitchell & Silver, 2003).
However, measurements of the LFP (Fries et al., 2001) indicate that neurons receive temporally
patterned inputs in the gamma frequency range. The spike time coherence in the gamma-
frequency range increased with attention (Fries et al., 2001). Our hypothesis is that the
modulations in gamma-frequency coherence are due to synchrony modulation of local
interneuron networks. We studied the f – I curves and the coherence with the LFP of model
neurons receiving synchronous inhibition in the gamma-frequency range (José, Tiesinga,
Fellous, Salinas, & Sejnowski, 2002). The results are summarized here, full details will be
reported elsewhere. We found that changing the degree of synchrony, quantified as the jitter
(σk in Figure 5), led to gain changes as well as shifts. The mean number of inputs per oscillation
cycle (Nk in Figure 5) determined whether the change in gain dominated the shift or vice versa.
For Nk > 50, the modulation of the f – I curve was shift dominated. In that case, the firing rate
of output neurons could saturate for strong inputs, and an increase in synchrony led to enhanced
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coherence with the LFP but not to an increase in firing rate. For weak inputs, the input
synchrony acted as as a gate. For low-synchrony inhibitory inputs, the receiving cortical neuron
was shut down, whereas for high synchrony, it could transmit stimulus-related information in
its output. For Nk ≈ 10, there were large changes in the gain of the f – I curve that were consistent
with the gain modulation of orientation tuning curves reported in McAdams and Maunsell
(1999). The modulation of firing rate with input synchrony depended on the oscillation
frequency of the interneuron network. We found that the strongest modulation was obtained
with oscillations in the gamma-frequency range.

To summarize, synchrony by competition in the gamma-frequency range can selectively gate
cortical information flow at approximately constant metabolic expense in the interneuron
networks. Further investigation is necessary to determine what type of regulation can be
performed using this mechanism.
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Figure 1.
Competition dynamically modulates synchrony. (A) Driving current I = 0.7 μA/cm2 was
increased to I = 1.0 μA/cm2 during the time interval between 1000 ms and 1500 ms (indicated
by the bar in B). (B) Driving current to NA = 250 out of N = 1000 neurons was increased from
I = 0.7 μA/cm2 to I = 1.0 μA/cm2. The other neurons remained at baseline. Roman numerals
in B are explained in the text. Parameters for these simulations were σI = 0.02 μA/cm2, D =
0.02 mV2/ms, gsyn = 0.4 mS/cm2, and τsyn = 10 ms.
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Figure 2.
Mechanism for synchrony modulation by competition. (A) Firing rate dynamics. (a)
Rastergram showing the spike trains of 200 out of the 1000 neurons. The bottom 50 neurons
were activated by the current pulse, and the top 150 neurons received baseline current
throughout the simulation. Spike time histogram of the (b) 250 activated neurons and (c) 750
nonactivated neurons. (B) Dynamics of the interspike interval (ISI) statistics. (a) Scatter plot:
The y-coordinate is the length of the interval, and the x-coordinate is the starting spike time of
the interval. Sliding window average of the (b) mean τ and (c) coefficient of variation CV of
the interspike intervals. Data are from the simulation results shown in Figure 1B.
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Figure 3.
Spike field coherence (SFC) is increased during the synchronous episode. (A, top) The
simulated local field potential (LFP) was calculated by convolving the spike time histogram
with an exponential filter (time constant 5 ms). (A, bottom) Simulated multiunit recording
consisting of the combined spike trains of two activated and two nonactivated neurons. (B)
Autocorrelation of the spike time histogram during (solid line) synchronous period (IIB, 1200–
1500 ms) and (dotted line) asynchronous period (IB, 700–1000 ms). (C, D) Spike-triggered
average (STA) of the LFP triggered on the simulated multiunit recording and the resulting SFC
during (solid line) a 1500 ms long synchronous period and (dashed line) an asynchronous
period of equal length. Data for A and B are from the simulation results shown in Figure 1B.
Data in C and D are from a 6000 ms long simulation with the same parameters, except that the
current pulse was applied during the time interval between 2000 and 4000 ms. The synchronous
period used for analysis was between 2500 and 4000 ms, and the asynchronous period was
4500 to 6000 ms.
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Figure 4.
Spike distance measures can track synchrony modulation on fast timescales. (A) Sliding
window average of the coefficient of variation (CVP) of the interspike intervals between all
the network neurons. The arrow points to the decay of transient synchrony due to the initial
condition, and the circle highlights an episode of spontaneously elevated synchrony. (B)
Sliding window average σLFP of the standard deviation in the local field potential (LFP). The
number of spike pairs with a distance Δmni smaller than 2 ms plotted as (C) a histogram K(t)
(bin width was 1 ms) and (D) a sliding window average κ(t). The small circles in D are κ
normalized by Nc, and the solid line is κ normalized by Np. (E) The sliding window average
Δ(t) of the mean distance of the NΔ = 100 closest spike times to the given spike time. The
analysis in A and B used all the spike data, whereas the analysis in C and E was based on the
spike trains of 125 activated neurons and 375 nonactivated neurons. Data are from the
simulation results shown in Figure 1B.
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Figure 5.
Clustering of spike times during the onset of the synchronized period. Each event corresponds
to a cycle of the network oscillation. (A) Spike time histogram with the odd-numbered clusters
shown in black and the even-numbered in white. (B, left-hand side scale) The standard
deviation σk of the spike times and (B, right-hand side scale) the number Nk of neurons that
spiked during a cycle plotted versus the mean spike time during a cycle. The oscillation period
between 1200 ms and 1500 ms was 27.5 ms. Data are from the simulation results shown in
Figure 1B.
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Figure 6.
Synaptic background activity is required for fast synchrony modulation. (A) Five spike time
histograms with D increasing from top to bottom. The value of D is indicated in the top left
corner of each graph. (B) Sliding window average of (a) the number κ(t) of coincidences and
(b) the estimate Δ(t) of spike time dispersion for D = (1) 0.0004, (2) 0.0044, (3) 0.0084, (4)
0.0204 and (5) 0.0364 (D values are in mV2/ms). A current pulse ΔI = 0.3μA/cm2 was applied
to 250 of the 1000 neurons during the time interval between t = 1000 ms and 1500 ms (indicated
by the bar in each graph). Network parameters are the same as in Figure 1B except that D is
varied.
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Figure 7.
Optimal level of synaptic background activity required for synchrony modulation. (A) The
mean firing rate f and (B) CVP (C) κ and (D) Δ versus noise strength D for three time intervals:
(IB, circles) 500–1000 ms, (II, squares) 1000–1500 ms and (IIIB, diamonds) 2000–3000 ms.
The inset in B is a close-up. Network parameters are the same as in Figure 1B except that D is
varied.

Tiesinga and Sejnowski Page 22

Neural Comput. Author manuscript; available in PMC 2010 May 13.

H
H

M
I Author M

anuscript
H

H
M

I Author M
anuscript

H
H

M
I Author M

anuscript


