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Abstract
Background. Several genome scans have explored the
linkage of chronic kidney disease phenotypes to chromo-
somic regions with disparate results. Genome scan meta-
analysis (GSMA) is a quantitative method to synthesize
linkage results from independent studies and assess their
concordance.
Methods. We searched PubMed to identify genome link-
age analyses of renal function traits in humans, such as
estimated glomerular filtration rate (GFR), albuminuria,
serum creatinine concentration and creatinine clearance.
We contacted authors for numerical data and extracted in-
formation from individual studies. We applied the GSMA
nonparametric approach to combine results across 14 link-
age studies for GFR, 11 linkage studies for albumin crea-
tinine ratio, 11 linkage studies for serum creatinine and 4
linkage studies for creatinine clearance.
Results. No chromosomal region reached genome-wide stat-
istical significance in the main analysis which included all
scans under each phenotype; however, regions on Chromo-
somes 7, 10 and 16 reached suggestive significance for link-
age to two or more phenotypes. Subgroup analyses by disease
status or ethnicity did not yield additional information.
Conclusions. While heterogeneity across populations,
methodologies and study designs likely explain this lack
of agreement, it is possible that linkage scan methodolo-
gies lack the resolution for investigating complex traits.
Combining family-based linkage studies with genome-
wide association studies may be a powerful approach to
detect private mutations contributing to complex renal
phenotypes.
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Introduction

Genetic factors contribute to the development and progres-
sion of chronic kidney disease (CKD). Familial aggrega-
tion of kidney disease has been shown in multiple
epidemiologic studies [1–3], and traits such as estimated
glomerular filtration rate (eGFR) and albuminuria are
modestly heritable [4–6]. While the advent of large
genome-wide association studies has increased the scope
for the identification of kidney disease susceptibility genes
[7], with the exception of mapping by admixture linkage
disequilibrium (LD) [8–10], both association and linkage
approaches have had limited success to date.

A genome-wide linkage scan is an unbiased approach to
interrogate the genome with multiple markers that identify
evenly spaced locations along each of the human chromo-
somes in families with multiple subjects manifesting the
trait of interest. Linkage analysis tests for co-segregation
of the marker with a trait or phenotype of interest within a
family implying physical linkage between the marker and a
phenotype locus. Since the first genome-wide linkage scan
for nephropathy genes in 1998 [11], there have been many
studies addressing a range of kidney phenotypes in a
variety of study populations, ranging from the general
population to populations with underlying comorbidities
such as diabetes or hypertension which could predispose
to CKD. Multiple linkage peaks have been observed with
little overlap both for a single phenotype and for related
CKD phenotypes. Many peaks have not reached genome-
wide significance, possibly due to linkage and population
heterogeneity, small sample sizes and limited power or
because they were simply false positives. Some of the
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major challenges to the linkage approach as applied to
complex genetic diseases include the need for large
numbers of relative pairs to have sufficient power to detect
loci that confer modest effects and a relatively homogenous
population with regard to ethnicity, comorbidity and
distribution of the trait [12, 13].

One approach to compare genetic evidence across linkage
studies is a meta-analysis, preferably with the primary data
from each study. We therefore undertook a collaborative
genome scan meta-analysis (GSMA) [14–16] of existing ge-
nome-wide linkage studies of quantitative CKD traits includ-
ing albuminuria (albumin creatinine ratio, ACR), eGFR,
serum creatinine concentration and creatinine clearance.
These measures exhibit a continuous phenotypic spectrum
and may offer more power than categorization based on arbi-
trarily defined thresholds. The GSMA is an exploratory data
analysis method, which aims to highlight regions containing
susceptibility loci, where further studies can be focused.

Materials and methods

Literature search and eligible whole genome scans

We searched PubMed for whole genome scans on four CKD traits, namely
(estimated) glomerular filtration rate, ACR (urinary albumin), serum
creatinine and creatinine clearance using combinations of the correspond-
ing medical subject heading terms and terms such as ‘genome scan’ or
‘genome search’ and kidney disease, including the above-mentioned CKD
traits (full search strategy provided as Supplement). Searches were limited
to the English language and humans and to the period 01 January 1998 to
29 December 2010. We complemented searches by perusing reference lists
of eligible papers and narrative reviews. Reference lists of relevant original
papers and narrative reviews were studied and experts in the field were
contacted. Investigators were invited to contribute necessary data for analyses.

We included whole genome scans on the aforementioned four
outcomes, provided that they used >300 markers, irrespective of the
statistical analyses employed. We excluded studies that mapped only
specific chromosomes or chromosomal regions (all 22 autosomes had to
be analyzed), genome-wide association studies, studies with <10 families
and studies in people with Mendelian forms of inherited kidney disease.

Definition of outcomes

We included studies that estimated eGFR using the four-variable Modifi-
cation of Diet in Renal Diseases equation [17] and calculated creatinine
clearance with the Cockroft–Gault equation [18]. We accepted all methods
of serum creatinine measurement irrespective of whether assay calibration
was described or not. Studies that analyzed albuminuria as the phenotype
expressed it as the albumin excretion rate, normalized to urinary creatinine
(ACR).

Data abstraction

Bibliographic information (first author, journal and year of publication),
area of recruitment, whether participants were diseased or healthy, number
of probands, number of families or sibpairs (as applicable), reported
outcomes, number of microsatellite markers, the name of the commercial
marker set and the statistical methods and software used in each
publication were recorded. The unit of the analysis was the population
stratum, defined by ‘racial’ descent (European excluding Hispanic,
African-American, American Indian, Hispanic). We retained subgroups
from different recruitment locations as separate strata if they were
analyzed separately in the primary studies. Potential overlaps between
studies were clarified in communication with study authors.

All identified research teams were invited to participate in this collab-
orative meta-analysis. Participating teams contributed sufficient statistics
for each of their population strata. Whenever such data were not provided,
we extracted them from publications, by digitizing graphs of linkage
scores per pter (p terminal) distance in each chromosome using specialized
software and corroborating with results reported in the text and tables. The
reliability and validity of this approach has been previously demonstrated

[19]. Whenever multiple analyses were available, we chose multipoint
LOD scores over other analyses. We also selected results at the longest
follow-up. We chose the more adjusted models over less adjusted ones, in
an effort to select the most comparable analyses across studies. Most
studies did not report unadjusted results.

Genome scan meta-analysis

We synthesized information across genome scans using methods
described previously [15, 16, 20, 21]. Briefly, GSMA analyze chromoso-
mic regions, rather than specific markers. It aligns all 22 autosomes in the
genome and breaks them into 120 regions (bins) of ~30 cM each (a cM is a
unit of distance based on recombination rates). These regions (bins) are the
units of analysis. Larger chromosomes have more bins than smaller ones
(e.g. Chromosome 1 has 10 bins, as it is ~300 cM long, while Chromo-
somes 21 and 22 have only two bins each). We name bins according to
their position in the corresponding chromosome, e.g. Bin 7.2 would be the
second bin on Chromosome 7. In each study, we represent each bin by the
most significant P-value (or equivalent statistic, such as the highest LOD
peak) that corresponds to it.

GSMA uses the relative ranks of the P-values (or other equivalent
statistics) from the linkage analysis over all 120 bins in each study, with
the highest rank being the most significant bin (highest peak) and the
lowest being the least significant bins. If several bins are tied, they are
assigned a common rank. In the GSMA, the bin that has the highest mean
rank across all studies is the one where (on average) most high peaks are
located. To judge the statistical significance of a bin’s mean rank, we
perform a Monte Carlo permutation test [20].

For each bin, we also quantified the heterogeneity in the ranks across
available population strata, i.e. a measure of the dispersion of the ranks in the
individual studies around their mean. Intuitively, when this dispersion is
very low, there is agreement among all studies on the rank of the particular
bin. We quantify this dispersion with the Q statistic [15, 16], which is the
sum of the squared differences of ranks from their mean. The distribution of
the Q statistic is not known; we therefore tested whether the Q statistic
implied significantly low heterogeneity based on Monte Carlo permutations.

Subgroup and sensitivity analyses

For each outcome, the main analysis combined all available population
strata. We also performed subgroup analyses by ethnicity, baseline health
status (general population, diabetes, hypertension or either of the latter two).

The eGFR and creatinine clearance are transformation of serum
creatinine; therefore, we also performed a sensitivity analysis where we
treated all three outcomes together. To avoid duplication of information,
we preferred serum creatinine over eGFR over creatinine clearance, where
more than one were reported. Results were very similar with all permuta-
tions of the preferred order of outcomes and are thus not reported in further
detail. We also performed analyses excluding digitized data and using only
data for which primary numerical results were available. Additional sen-
sitivity analyses were carried out using alternate data from studies with
more than one analysis (e.g. using results from analyses with fewer adjust-
ments instead of the most adjusted models), but as their results were very
similar, they are not reported.

Software and analytic details

All Monte Carlo analyses were run for 100 000 permutations. In main
analyses, we weighted bin ranks by the square root of the total number of
subjects in the corresponding stratum (study). Because the optimal weighting
for GSMA is unclear, we also performed unweighted analyses. Inferences
were performed at the a ¼ 0.05 level. Thus, we considered a P-value �0.05
as of suggestive significance, and a P-value �0.00042 (using Bonferroni
corrections for 120 comparisons) as genome-wide significant. Graph digitiz-
ing was performed with Engauge Digitizer (version 2.12, Mark Mitchell,
2002). All analyses and graphs were performed in Intercooled Stata 8.2
(Stata Corp. College Station, TX), using the ‘hegesma’ C plugin for Stata
(developed by author T.A.T.). The Stata plugin has been verified against the
HEGESMA software [16] and also allows for missing bin values.

Results

We included 12 studies corresponding to 22 distinct pop-
ulation (ethnic descent) strata. Table 1 summarizes their
characteristics and additional descriptive data is shown in
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Supplementary Table 2. We obtained data directly from
investigators for six studies (13 population strata) [4, 5,
24–26, 28, 29, 33, 34]. For the remaining studies, we ex-
tracted data from publications. There were 10 European-
descent strata, 5 African-American (AA) strata, 3 Mexican
American (MA) strata and 4 American Indian (AI) strata.
Six studies had been carried out in general population
cohorts and the remaining in populations enriched for
diabetes or hypertension.

Estimated glomerular filtration rate

For the outcome of eGFR, we included data from 14 strata
in our analysis. In weighted analyses that account for the
size of each study, no bin reached genome-wide signifi-
cance (P-value threshold �0.00042) (Figure 1, Table 2).
Six bins (7.2, 7.4, 9.1, 13.4, 14.3 and 16.3, with corre-
sponding chromosomal locations indicated in Table 2)

reached suggestive significance (P-value threshold
�0.05). There was no evidence for low between-scan
heterogeneity (i.e. ranks were in agreement across
population strata beyond what is expected by chance). Bins
9.1 and 7.2 had the smallest P-values for the mean rank
(P ¼ 0.0052 and P ¼ 0.0062, respectively). Unweighted
analyses were similar. Seven bins (the six from the
weighted analyses and Bin 15.4) reached suggestive
significance. Bins 16.3 and 9.1 had the lowest P-values
(P ¼ 0.0063 and P ¼ 0.0102, respectively). Again, none
of the bins with suggestive significance showed evidence
for low between-scan heterogeneity.

Serum creatinine concentration

Weighted analyses among 11 genome scan strata resulted
in 10 bins that reached suggestive significance (Figure 2,
Table 2), although none reached genome-wide significance.

Table 1. Characteristics of included studiesa

Study (ref.) GFR Cr CrCl ACR Population

‘Racial’ descent strata

Markers (set) Analysis (software)Eur Af His AI

SAFHSb [22, 23] Y Y Y Y General
population

– – 848c – 417 (Marshfield) VC (SOLAR)

FHSd [4, 5] Y Y – Y General
population

1055 – – – 401 (Marshfield 9) VC (SOLAR)

SHFSe [24, 25] Y – – Y General
population

– – – 1183;
1161;
1153f

ND (ABI PRISM
Linkage Mapping
Set-MD10 version 2.5)

VC (SOLAR)

Utahe [26] – Y Y – General
population

850g – – – 393 (Marshfield 10) NPL
(GENEHUNTER)

Eurospanb [27] – Y – – General
population

ERF: 1388;
MICROS:
891;
Vis: 580h

ERF: 6008 biallelic;
Illumina Infinium
Linkage assay,
MICROS: 1000 STR’s;
deCODE Icelandic
Genetic Map, Vis: 747
microsatellite; deCODE
Icelandic Genetic Mapi

VC (SOLAR)

FINDe [28, 29] Y – – Y Diabetics 119 218 469 80 404 (Marshfield 8) HE (SIBPAL)
Joslinb [30] – – – Y Diabetics 857 – – – 383 (Marshfield 12) VC (SOLAR)
SAFDGSb [31] Y – Y – Diabetics – – 453 – 382 (CIDRj) VC (SOLAR)
AADMb [32] Y Y Y – Diabetics – 691 – – 372 (CIDR) VC (SOLAR)
DHSe [33] Y – – Y Diabetics,

hypertensives
902 165 – – 411 (Marshfield 13) VC (SOLAR)

HyperGENe [34] Y – – Y Hypertensives 1040 1234 – – 391 (Marshfield) VC (SOLAR)
GENOAb [35] Y – – Y Hypertensives 1022 1351 – – 381 (Marshfield 9) VC (SIMWALK2)

aAs clarified in the Materials and methods section, different strata (by racial descent or within the same racial descent) were included as separate entries in
the genome search meta-analysis. ‘–’ ¼ not examined/not included, AADM, African-American Diabetes Mellitus Study; Af, African-American descent;
AI, American Indian descent; Cr, serum creatinine; CrCl, creatinine clearance; CVD, cardiovascular disease; DHS, Diabetes Heart Study; DM, diabetes
mellitus; GFR, estimated glomerular filtration rate; Eur, European descent; FIND, Family Investigation of Nephropathy and Diabetes; FHS, Framingham
Heart Study; GENOA, Genetic Epidemiology Network of Arteriopathy; HE, Haseman-Elston regression; His, Hispanic (Mexican American) descent;
HTN, hypertensive; HyperGEN, Hypertension Genetic Epidemiology Network Study; ND, no data; NPL, nonparametric linkage; SAFHS, San Antonio
Family Heart Study; SAFDGS, San Antonio Family Diabetes/Gall Bladder Study; SHFS, Strong Heart Family Study; VC, variance components linkage
analysis; STR, short tandem repeat markers; CIDR, Center for Inherited Disease Research.
bMeta-analysis data extracted from digitized graphs.
cTotal of 848 individuals in reference [23] or 486 individuals in reference [22].
dTotal of 1224 individuals in reference [4] and 1055 individuals in reference [5].
eData directly obtained from investigators.
fThree populations from Oklahoma, Arizona and Dakota, respectively (USA) [25]. For GFR, the corresponding numbers are 1210, 1235 and 1220 [24].
gPopulation enriched for CVD. There are three sequential longitudinal waves with 1516, 1193 and 850 analyzed subjects, respectively. Main analyses
used the last wave, sensitivity analyses used the first or second wave instead.
hThree isolated populations in Europe: MICROS study (Italy), ERF study (the Netherlands) and Vis study (Croatia).
iFor map alignment, as the three studies had different genotypes, the deCODE genetic map was used as a reference to align individual maps so that a
common linkage analysis could be performed on the same map, based on 1000 markers.
jThe CIDR genetic map is similar to the Marshfield Genetic map.
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The lowest P-values for the mean rank were found for
bins 9.6 and 7.3 (P ¼ 0.00165 and 0.00285), respectively.
Interestingly, five of six bins in the ninth chromosome
(9.2 through 9.6) were among the 10 bins. None of the
significant bins had evidence for low between-scan hetero-
geneity. Inferences in unweighted analyses were the same

with the exception of Bin 11.4 which did not reach sugges-
tive significance.

Creatinine clearance

For the outcome of creatinine clearance, four genome scan
strata were included in the meta-analyses. In weighted

Fig. 1. GSMA for GFR. Weighted average ranks from 14 population strata. Vertical lines separate autosomes. The horizontal dashed reference line indicates
weighted average ranks at the 95% significance level. Open circles represent bins where no evidence for low between-scan heterogeneity was found with the
heterogeneity metric (unadjusted for the bin’s mean rank, at the 0.05 level). Filled circles indicate evidence for low heterogeneity (P � 0.05).

Table 2. Bins attaining suggestive significance (P � 0.05) in weighted analysesa

Phenotype; bin Chromosomal location

Average rank
P-value for low
heterogeneityObserved P-value

eGFR
9.1 9p24.3–9p22.3 84 0.0052 0.4145
7.2 7p15.3–7p13 83 0.0062 0.6830
16.3 16q12.2–16q23.1 82 0.0072 0.5705
13.4 13q33.1–13q34 78 0.0250 0.6052
14.3 14q23.3–14q32.12 77 0.0298 0.5067
7.4 7q11.23–7q22.3 76 0.0401 0.2298

Serum creatinine
9.6 9q34.11–9q34.3 88 0.0017 0.4266
7.3 7p13–7q11.23 86 0.0029 0.8663
16.4 16q23.1–16q24.1 81 0.0119 0.8982
9.4 9q21.32–9q31.2 80 0.0151 0.7710
10.3 10p11.23–10q22.1 79 0.0185 0.5645
9.5 9q31.2–9q34.11 78 0.0278 0.4132
9.2 9p22.3–9p21.1 78 0.0306 0.9721
9.3 9p21.1–9q21.32 78 0.0308 0.9793
11.4 11q13.3–11q22.1 77 0.0376 0.8685
11.3 11p12–11q13.3 76 0.0452 0.7713

Creatinine clearance
7.3 7p13–7q11.23 93 0.0195 0.6463
6.6 6q25.3–6q27 91 0.0310 0.5524
16.4 16q23.1–16q24.1 91 0.0315 0.6064
10.4 10q22.1–10q23.32 90 0.0337 0.9859
2.6 2q21.1–2q24.1 88 0.0409 0.7208

ACR
10.4 10q22.1–10q23.32 82 0.0145 0.9425
7.5 7q22.3–7q34 82 0.0154 0.3294
3.6 3q21.2–3q25.32 81 0.0190 0.3643
7.4 7q11.23–7q22.3 81 0.0205 0.5862
1.2 1p36.21–1p35.2 79 0.0305 0.1693

aGFR, glomerular filtration rate. The threshold for genome-wide significance would be P-value �0.05/120 ¼ 0.00042. No bin attained this level in the
main analysis.
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analyses, five bins reached suggestive significance for
mean rank (Figure 3; Table 2) with bins 7.3 and 6.6 having
the lowest P-values (P ¼ 0.0195 and 0.0310, respectively).
No bin reached genome-wide significance. There was
evidence for statistically significant high between-scan
heterogeneity with all three metrics for Bin 10.4. None of
the significant bins had evidence for low between-scan
heterogeneity. Inferences in unweighted analyses were
the same with the exception of Bin 2.6 which did not reach
suggestive significance.

Albumin creatinine ratio

The meta-analysis for ACR was based on 11 genome scan
strata. Five bins reached suggestive significance (1.2, 3.6,
7.4, 7.5 and 10.4), but none achieved genome-wide levels
and none had significantly low between-scan heterogene-
ity. The smallest P-values were found for bins 10.4 and 7.5
(P ¼ 0.0145 and 0.0154, respectively; Figure 4, Table 2).
Unweighted analyses were very similar, with six bins
reaching suggestive significance (the aforementioned 5
and 20.2), again with no evidence for low between-scan
heterogeneity.

Subgroup analyses

Figure 5 summarizes results of weighted main and sub-
group analyses across all four phenotypes (the correspond-
ing figure for unweighted analysis was similar—data not
shown). Inferences on significance are not corrected for
multiple comparisons. As shown in the figure, several bins
were repeatedly identified as of suggestive statistical
significance across subgroups and even across phenotypes.
For example, Bin 7.4 reached suggestive significance in
nine analyses for the outcomes of eGFR, ACR or serum
creatinine concentration, Bin 7.3 reached at least sugges-
tive significance in six analyses for all four outcomes, Bin
10.4 reached suggestive significance in six analyses for
ACR, serum creatinine concentration and creatinine clear-
ance and Bin 16.4 reached suggestive significance in seven
analyses for eGFR, serum creatinine concentration and
creatinine clearance. Bins 1.1, 7.3, and 7.5 reached
genome-wide significance in the subgroups of AI descent
for eGFR, hypertension or diabetes for serum creatinine
concentration and African descent for ACR, respectively.

Sensitivity analyses

We also analyzed data on eGFR, creatinine clearance and
serum creatinine together. Over the 21 genome scan strata
in weighted analyses, 8 bins reached suggestive significance
for mean rank (Bins 7.2, 7.3, 9.1, 13.4, 15.4, 16.3, 16.4 and
22.1), with Bins 9.1 and 16.3 having the lowest P-values
(P ¼ 0.0020 and 0.0019, respectively). No bin reached ge-
nome-wide significance. None of the significant bins had
evidence for low between-scan heterogeneity. Inferences in
unweighted analyses were very similar (not reported).

Analyses excluding digitized data found no genome-
wide significant results. In weighted analyses, the bins with
significantly high mean rank for eGFR (n¼ 10 strata) were
1.2, 3.4, 3.5, 7.2, 7.4, 9.1, 12.3, 13.4, 14.3 and 16.3 with
Bin 9.1 having the highest rank. The respective results for

serum creatinine (n¼ 4 strata) were 4.7, 7.2, 7.4, 12.5 and
13.2 with Bin 13.2 having the highest mean rank. For
ACR, among eight strata the corresponding bins were
1.2 and 12.3 with 1.2 having the highest mean rank. Only
one stratum was available for creatinine clearance (no
GSMA possible). Weighted analyses were similar (not
reported).

Discussion

Herein we summarized the findings of 22 genome scans
from 12 studies for four kidney disease phenotypes. No
chromosomal region (bin) reached genome-wide statistical
significance in the main analyses which combined across
different population strata. Six bins reached suggestive
significance for eGFR, 5 for ACR, 10 for serum creatinine
concentration and 5 for creatinine clearance in Chromo-
somes 1, 2, 3, 7, 9, 10, 11, 13, 14 and 16. Four bins, 7.3,
7.4, 10.4 and 16.4, reached suggestive significance for at
least two phenotypes. Despite signals of genome-wide
significance in subgroup analyses (Bins 1.1, 7.3 and 7.5),
our main analyses do not pinpoint specific cytogenetic
regions as linked with the examined renal phenotypes.
The conducted genome scans did not agree beyond chance
in the cytogenetic locations they prioritized.

Comparison of results with findings of primary studies
and with GWAS results

Because no single bin attained genome-wide significance
in the main analysis, we focused our attention on bins that
reached suggestive significance for more than one
phenotype (bins in Chromosomes 7, 10 and 16). Table 3
outlines previous genome scans for renal phenotypes
with linkage findings which have reached genome-wide
significance. Signals appear spread out across the genome
although there are repeated signals on Chromosomes 2, 7
and 22 across phenotypes. Notably, apart from regions on
Chromosome 7, most high LOD scores in Table 3 are in
regions that are not selected in our meta-analysis, in large
part attributable to heterogeneity across studies. For
example, two studies found genome-wide significance
for linkage to eGFR and serum creatinine on Chromo-
some 2 [29, 33], in the cytogenetic location correspond-
ing to Bin 2.3. This bin was close to reaching suggestive
significance in the meta-analysis (Figure 1), but with
indications for high between-scan heterogeneity (P-value
for heterogeneity �0.90).

Recent associations have been identified between CKD
phenotypes and markers on Chromosome 16 [7] and
Chromosome 22 [8–10, 38–40]. In our meta-analysis, we
showed suggestive significance for eGFR in several sub-
group analyses for bins 16.3 and 16.4, although none of the
individual studies in Table 3 had a peak in Chromosome
16. On the other hand, two studies as shown in Table 3,
reported linkage peaks in Chromosome 22 [41, 42] and we
noted suggestive significance for bin 22.1 when data on
eGFR, creatinine clearance and serum creatinine were com-
bined. We did not note any other overlap with loci identi-
fied in recent meta-analysis of genome-wide association
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Fig. 2. GSMA for serum creatinine. Weighted average ranks from 11 population strata. Layout similar to Figure 1.

Fig. 4. GSMA for ACR. Weighted average ranks from 11 population strata. Layout similar to Figure 1.

Fig. 3. GSMA for creatinine clearance. Weighted average ranks from four population strata. Layout similar to Figure 1.
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data for CKD [43, 44]. Kitsios and Zintzaras have inves-
tigated the agreement between genome-wide linkage scans
and genome-wide association studies and noted ‘genomic
convergence’ in 2 of 19 phenotypes. Although conver-
gence could support true genetic effects, lack of congru-
ence may reflect that these studies are designed to answer
different questions (association studies are aimed at identi-
fying common variants involved in disease etiology with
small effects, whereas linkage approaches attempt to iden-
tify rare variants with larger effects) and employ different
approaches. Perhaps the two types of research are better
viewed as complementary in elucidating the genetics of
common complex disease [45, 46].

Issues affecting the results and their interpretation

The genome scan meta-analysis has been applied to other
complex phenotypes [21, 41, 42, 47–50] with the identi-
fication of several novel loci; loci with genome-wide sig-
nificance have been identified in autism [21], hypertension
[49] and inflammatory bowel disease and celiac disease
[38, 50], schizophrenia [39], multiple sclerosis [40] and
asthma and atopy [51]. However, diverse linkage signals
across scans, possibly suggesting genetic heterogeneity
across subsyndromes and subpopulations have been noted
as a factor limiting effective synthesis of linkage data.

In our approach, we combined data across strata of dif-
ferent racial descent and health status. GSMA can identify
regions that give weak but consistent linkage signals in
multiple genome scans [42] but will not identify linked
regions that are present in only a subset of scans for exam-
ple because of population-specific effects [20]. Several
studies included in the GSMA increased their statistical
power by combining data across racial groups [28, 29,
33, 34]. While we employed a similar approach, we appre-
ciate that combining across racial subgroups also increased

heterogeneity. We therefore performed subgroup analyses
by race and health status to explore subgroup-specific
signals. In contrast to association studies, linkage analyses
are family-based and therefore immune to population strat-
ification. However, it is now appreciated that they may be
affected by differences in LD patterns and range (admixture
LD [52]) as well as allele frequencies across different
ethnic groups which could potentially add to the heteroge-
neity of the linkage signal.

The synthesized outcomes in this study are surrogates of
kidney disease. eGFR values depend on the estimating
equation and factors such as race [53]; similarly, micro-
albuminuria can reverse [54] and may not uniformly corre-
late with severity of CKD; [55] treatment with inhibitors of
the renin angiotensin system could minimize variability of
both eGFR and ACR; finally, most studies have relied on
single measurements which do not capture either the
marked day to day variability of ACR or the change in
eGFR over time [56]. Any of these factors may have
impacted the results of the original study and accordingly
the results of the meta-analysis.

Most included studies did not report unadjusted analy-
ses, and therefore it is not possible to explore whether the
negative findings of the meta-analysis are related to the
choice of the analytic models in the primary studies. For
example, if one adjusts for a factor that is in the path
between the genetic information and the examined
outcome, the relationship of the genetic information and
the outcome could be ‘masked’. In studies which reported
information from unadjusted analyses, the relative ranking
across genetic markers was very similar to those from
adjusted analyses.

An additional element of heterogeneity may have been
introduced by combining original and digitized data. Digi-
tizing is as best as accurate as the digitized figure. If the
figure is of poor quality, digitizing may introduce errors

Fig. 5. Summary of inferences in main and subgroup analyses across all phenotypes. Shown are all main and subgroup analyses (vertical axis) and the
bins that reached at least suggestive significance in any main analysis, genome-wide significance in any analysis or suggestive significance in at least
three of the subgroup analyses across all phenotypes (horizontal axis). Bins that reached suggestive significance only in one or two subgroup analyses are
not shown. Cells with open circles: suggestive significance (P-value � 0.05); cells with filled circles: genome-wide significance (P-value � 0.00042).
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compared to the primary data. In our case, almost all figures
were of good quality. Limiting the analyses to the 13 strata
from which we had primary data did not change the main
findings. Nevertheless, it would be desirable that primary
studies publish Supplementary material with tabular data or
with complete and good quality graphs.

Finally, we used bin sizes of ~30 cM. While this choice
is somewhat arbitrary, it has some motivations from theory
and simulation studies. The question of bin size for GSMA
has been empirically explored by Hermanowski et al. [40]
and discussed by Wise et al. [14] who recommended a bin
width of ~30 cM, being wide enough to limit the correla-
tion between adjacent bins and not too wide to avoid
including distinct peak LOD scores from different studies
within the same bin. Overall, the effect of different bin
definitions is likely to be minor compared to other sources
of error and heterogeneity in the genome-wide linkage
studies analyzed [57].

Conclusion

To our knowledge, this is the first study to combine the
findings from numerous existing genome linkage scans

conducted for continuous traits of renal phenotypes. Over-
all, even after combining 22 genome scans, little evidence
of consistent linkage on specific chromosomal regions was
detected. While heterogeneity across populations, method-
ologies and study designs likely explains this lack of
agreement, it is also possible that genome-wide scan meth-
odologies have insufficient resolution for investigating
complex renal phenotypes. Used in a complementary role
to genome-wide association approaches, they may be val-
uable for uncovering private gene mutations that contribute
to renal phenotypes within families.

Supplementary data

Supplementary data is available online at http://ndt.
oxfordjournals.org/.
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Abstract
Background. IgA nephropathy is characterized by a high
heterogeneity of clinical expression with 10–30% of patients
progressing to end-stage renal failure. The gene of the FcaRI
or CD89 presents a single-nucleotide polymorphism respon-
sible for a proinflammatory phenotype of neutrophils in vitro
and ex vivo. The aim of our study was to assess whether this
CD89 polymorphism 844 A->G is (i) a marker of disease sus-
ceptibility and/or (ii) associated with a more severe prognosis.

Methods. All patients diagnosed with IgA nephropathy
and for whom DNA frozen sample was available were
included in this European monocentric retrospective
analysis and compared to a cohort of healthy volunteers.
Allelic discrimination was performed by real-time quan-
titative polymerase chain reaction (Applied Biosys-
tems�). We first compared the distribution of A and
G alleles between patients and volunteers and then
studied the relationships between alleles and renal
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