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Abstract

Ribonucleotides are frequently incorporated into DNA during eukaryotic replication. Here we map 

the genome-wide distribution of these ribonucleotides as markers of replication enzymology in 

budding yeast, using a new 5′-DNA end-mapping method, Hydrolytic End Sequencing. HydEn-

Seq of DNA from ribonucleotide excision repair-deficient strains reveals replicase- and strand-

specific patterns of ribonucleotides in the nuclear genome. These patterns support the role of DNA 

polymerases α and δ in lagging strand replication and of DNA polymerase ε in leading strand 

replication. They identify replication origins, termination zones and variations in ribonucleotide 

incorporation frequency across the genome that exceed three orders of magnitude. HydEn-Seq 

also reveals strand-specific 5′-DNA ends at mitochondrial replication origins, suggesting 

unidirectional replication of a circular genome. Given the conservation of enzymes that 

incorporate and process ribonucleotides in DNA, HydEn-Seq can be used to track replication 

enzymology in other organisms.
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INTRODUCTION

Among the many eukaryotic DNA polymerases (Pols), e.g., 17 in humans and eight in 

budding yeast, three replicate the bulk of the nuclear genome 1,2. Synthesis at replication 

origins is initiated when an RNA primase synthesizes an RNA primer that is extended by 

limited DNA synthesis by Pol α 3. Pol ε is then proposed to catalyze the majority of leading 

strand replication 4–6 in a largely continuous manner. In contrast, the nascent lagging strand 

is synthesized as a series of ~180 nucleotide Okazaki fragments that are initiated by RNA 

primase followed by limited synthesis by Pol α. This is followed by extensive synthesis 

catalyzed by Pol δ 6–8 and subsequent maturation of Okazaki fragments into a continuous 

nascent lagging strand 9. The exact locations of polymerase switching during leading and 

lagging strand replication are under investigation 10,11 but remain uncertain. Equally 

uncertain is polymerase use after replication forks encounter difficult circumstances that 

may require switching to a different replicase or a more specialized DNA polymerase, e.g., 

to copy unusual DNA sequences or to bypass lesions 12,13. Replication enzymology differs 

for the mitochondrial genome, where both DNA strands are replicated by the same replicase, 

Pol γ, by mechanisms that also remain uncertain 14–16.

We have been using mutator alleles of yeast Pols ε, α and δ to infer their roles in nuclear 

DNA replication in vivo. These mutator alleles, pol2-M644G (Pol ε), pol1-L868M (Pol α) 

and pol3-L612M (Pol δ), generate single base replication errors at higher rates than their 

wild type parents. In the absence of mismatch repair (MMR), these errors remain in the 

genome and mark where each replicase synthesized DNA during replication. The results 

(see 6 and references therein) imply that in unstressed yeast cells, Pol ε is the primary 

leading strand replicase and Pols α and δ are primarily responsible for lagging strand 

replication. However, the resolution of this approach for tracking replication enzymology in 

vivo is limited by the high fidelity of replication. For example, the average genome-wide 

replication error rates of the mutator replicases are 1–2 × 10−7 6, such that single base 

replication errors are low-density markers of replication enzymology.

In the present study, we set out to track replication enzymology in vivo at much higher 

resolution using ribonucleotides rather than mutations. This approach takes advantage of 

several facts. The presence of an oxygen atom on the 2′-position of a ribose increases the 

sensitivity of the phosphodiester bond in nucleic acids to alkaline hydrolysis by five orders 

of magnitude. The active sites of Pols α, δ and ε can be engineered to increase the 

probability of ribonucleotide incorporation into DNA, to frequencies as high as 10−2 to 

10−3 17. Disabling Ribonucleotide Excision Repair (RER) prevents removal of 

ribonucleotides from both the nascent leading strand and the nascent lagging strand 17–19. 

RER defective yeast cells are viable, including those encoding replicases that are 

promiscuous for ribonucleotide incorporation. These facts led us to propose 20 that 
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ribonucleotides can be used as high-density markers of DNA polymerization reactions in 

vivo. Here we demonstrate that this is indeed the case, using a newly developed method to 

map ribonucleotides in the yeast genome at single nucleotide resolution. Initial results 

support the strand assignments for the nuclear replicases, confirm nuclear replication origins 

and identify new origins, reveal the locations of replication termination zones, quantify 

ribonucleotide incorporation for each of the four bases, establish that the distribution of 

ribonucleotides across the genome is non-uniform, and provide new information that is 

likely to be relevant to mitochondrial DNA replication.

RESULTS

Genome-wide mapping of ribonucleotides in DNA by HydEn-Seq

The new genome-wide mapping method, which we call HydEn-Seq (for Hydrolytic DNA 

End Sequencing (Fig. 1a, Supplementary Table 1), has been used to map ribonucleotides in 

five pairs of RER-deficient (rnh201Δ) versus RER-proficient (RNH201) yeast strains 

(Supplementary Table 2). One pair encodes wild type Pols α, δ and ε. A second pair encodes 

pol2-M644L, a Pol ε variant that incorporates fewer ribonucleotides than does a wild type 

strain 18. A third pair encodes pol2-M644G, a Pol ε variant that is promiscuous for 

ribonucleotide incorporation 18,21. A fourth pair encodes a pol3-L612G variant in which 

leucine 612 in the Pol δ active site is replaced with glycine, based on the prediction that like 

the analogous pol2-M644G (Pol ε) variant 18, the pol3-L612G variant would be even more 

promiscuous for ribonucleotide incorporation than our previously studied pol3-L612M 

allele 22. The fifth pair encodes a pol1-Y869A variant with alanine substituted for the “steric 

gate” tyrosine in the Pol α active site that normally prevents ribonucleotide incorporation 23. 

This allele is used to increase the frequency of ribonucleotide incorporation by Pol α over 

that observed in our previously studied pol1-L868M variant 17.

Alkaline hydrolysis of genomic DNA followed by electrophoresis in an alkaline agarose gel 

reveals that the genomes of all five rnh201Δ mutant strains contain more alkali-sensitive 

sites than their RNH201+ parents (Fig. 1b). Importantly, the genomes of the double mutant 

pol1-Y869A rnh201Δ, pol2-M644G rnh201Δ and pol3-L612G rnh201Δ strains contain many 

more alkali-sensitive sites than the strains with either single mutation alone (Fig. 1b,c,d), 

such that most of the 5′-DNA ends in these strains result from alkaline hydrolysis of 

ribonucleotides incorporated during replication by the variant derivatives of Pols α, δ or ε, 

respectively. This contrasts with the pol2-M644L rnh201Δ mutant strain, which harbors 

fewer ribonucleotides than the other rnh201Δ strains with variant replicases.

The locations of the 5′-DNA ends in the genomes of these strains were mapped by HydEn-

Seq (Fig. 1a). Genomic DNA samples were hydrolyzed with 0.3M KOH 24, libraries were 

prepared from the resulting single-stranded DNA fragments, and 50 base, paired-end 

sequencing was performed on an Illumina HiSeq2500 instrument to identify the location of 

the 5′-DNA ends. Ribonucleotides are located immediately adjacent to the 5′-DNA ends 

(Fig. 1a). Two or more independent libraries were analyzed for each strain (Supplementary 

Table 3), with replicate libraries yielding similar results (Supplementary Table 4). 

Alignment of the fragments to a well-annotated reference genome 6 identified the DNA 

strand to which fragments align, and the location and identity of ribonucleotides in the 
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genome. Read counts, scaled using the number of 5′-ends at the ends of chromosomes 

(Methods), confirm the relative ribonucleotide densities anticipated by agarose gel 

electrophoresis.

Strand specificity and origin identification

DNA fragments from the pol2-M644G rnh201Δ strain align with the two DNA strands in 

the nuclear genome in an alternating pattern complementary to alignments for the pol1-

Y869A rnh201Δ and pol3-L612G rnh20Δ strains (Fig. 2, chromosome 10; Supplementary 

Fig. 1, 5′-DNA end read counts corresponding the Fig. 2, bottom; Fig. 3, all 16 

chromosomes; Fig. 4a, heat maps). In contrast, a strand-specific pattern is not observed in 

the pol2-M644L rnh201Δ strain (Fig. 4a) or in RER-proficient strains (Supplementary Fig. 

2). Thus the majority of 5′-DNA ends in the pol2-M644G rnh201Δ, pol1-Y869A rnh201Δ 

and pol3-L612G rnh20Δ strains are due to ribonucleotides incorporated during replication 

that are not removed because RER is defective. Comparing ribonucleotide maps in these 

three strains reveals numerous strand-specific transitions (diamonds in Figs. 2 and 3). 

Among these are 294 transitions that correspond to confirmed replication origins in the yeast 

origin database 25. Transitions are also observed at 72 locations (Fig. 3, listed in 

Supplementary Table 5) that have not yet been reported to be origins, but may be origins 

that are used in some cells in the population.

The ribonucleotide maps in the three rnh201Δ strains encoding the variant replicases 

strongly support earlier interpretations based on replication errors 4–7, that Pol ε synthesizes 

the majority of the nascent leading strand and Pols α and δ synthesize the majority of the 

nascent lagging strand of the budding yeast nuclear genome. Thus HydEn-Seq confirms a 

fundamental aspect of yeast replication enzymology. The evolutionary conservation among 

eukaryotic nuclear replicases and among type 2 RNases H in all three kingdoms of life 

(Supplementary Figure 3), suggests that the HydEn-Seq strategy used here may be 

applicable to tracking replication enzymology and identifying origins in other organisms. 

The ribonucleotide map in pol1-Y869A rnh201Δ strain further demonstrates that when RER 

is deficient, some DNA synthesized by Y869A Pol α survives Okazaki fragment maturation 

and resides in the mature lagging strand. This same conclusion was reached in earlier 

studies 6,7,26–28 that monitored replication errors rather than ribonucleotides using pol3-

L612M strains that were either proficient or deficient in MMR but were RER proficient. It 

remains to be determined if DNA synthesized by Pol α survives Okazaki fragment 

maturation in wild type yeast.

Polymerase use at replication origins and termination zones

Heat maps (Fig. 4a) and meta-analyses of 5′-DNA ends in 50 base pair bins (Fig. 4b) reveal 

where strand switches at origins occur in all three replicase variant backgrounds. These 

transitions occur over several hundred base pairs centered on the Autonomously Replicating 

Sequence (ARS) Consensus Sequence (ACS, orange line in Fig. 4b). The results in the pol1-

Y869A rnh201Δ strain are consistent with a role for Pol α in initiating synthesis on both 

strands at origins. The breadth of the strand transition at origins in this strain suggests that in 

a cell population, initiation occurs within a zone rather than at a single base pair. Deeper 

coverage of 5′-DNA ends in the future should allow higher resolution mapping, to 
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investigate whether initiation occurs at a single base pair at some origins, as previously 

reported for one origin on chromosome 4 29. The strand transition at origins is much sharper 

in the pol2-M644G rnh201Δ strain than in the pol3-L612G rnh201Δ strain. Investigating this 

difference may eventually provide information that complements recent biochemical studies 

of initiation of leading and lagging strand replication (see 2 and references therein).

HydEn-Seq also reveals where mergers occur between forks arriving from adjacent origins 

and moving in opposite directions. The results suggest that termination occurs in zones that 

vary in location and breadth. In some cases (e.g., Fig. 2a, bottom right), the termination zone 

is broad and equidistant from adjacent origins, while in other cases (e.g., Fig. 2a, bottom 

left) the zone is narrower and or closer to one origin than the other. HydEn-Seq offers the 

opportunity to explore the mechanisms and genetic controls underlying these variations.

Ribonucleotide incorporation in wild type yeast

Studies of ribonucleotide incorporation in vitro by wild type Pols α, δ and ε predict that 

there should be 2.3 times more ribonucleotides incorporated into the nascent leading strand 

as compared to the nascent lagging strand 24. This prediction is supported by results in the 

RER-defective (rnh201Δ) strain encoding wild type replicases. In this strain, the strand-

specific heat map (Fig. 4a) and the transition from one strand to the other as analyzed by 

meta-analysis (Fig. 4b) match those of the pol2-M644G rnh201Δ strain, and are opposite to 

those in the pol3-L612G 201Δ or pol1-Y869A rnh201Δ strains.

The observation that ribonucleotides are preferentially incorporated into the nascent leading 

strand in the strain encoding wild type replicases is relevant to the genome instability 

reported in the wild type replicase background when RER is defective. In this strain 30, the 

specificity of 2 to 5 base pair deletion mutations resulting from topoisomerase1 (Top1) 

cleavage at unrepaired ribonucleotides is indistinguishable from the 2 to 5 base pair deletion 

specificity in the pol2-M644G rnh201Δ strain 18 that primarily contains ribonucleotides in 

the nascent leading strand 5,21,22. The fact that ribonucleotides preferentially map to the 

nascent leading strand is also relevant to recent studies 22,31 suggesting that nicks generated 

by RNase H2 at ribonucleotides in the continuously replicated nascent leading strand may 

direct mismatch repair (MMR) to correct replication errors in that strand. This idea, when 

combined with the non-uniform distribution of ribonucleotides in the genome discussed 

below, implies that the potential contribution of this MMR signaling mechanism may vary 

across the genome. The preferential presence of ribonucleotides in the nascent leading strand 

may also be relevant to other suggested signaling functions for ribonucleotides in 

DNA 20,24.

Variations in ribonucleotide incorporation by base identity

Wild type Pols α, δ and ε have different preferences for incorporating each of the four 

different ribonucleotides in vitro 24. To determine if this is also true during replication in 

vivo, we analyzed fragments close to replication origins where (as explained previously 6) 

leading and lagging strand assignments can be made with the greatest confidence. Despite 

the fact that the 12 million base pair budding yeast genome is 62% A+T, the most abundant 

ribonucleotide present in the genome of the pol2-M644G rnh201Δ strain is rC, followed by 
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rG, then rA and then rU (Fig. 5). These preferences re-capitulate the rank order for 

ribonucleotide incorporation by M644G Pol ε in vitro 24. The same rank order for 

ribonucleotide incorporation (rC > rG > rA > rU) is observed in the pol3-L612G rnh201Δ 

strain, but the proportions of the four rNTPs incorporated are different. For example, more 

rC and less rU are present in the pol3-L612G rnh201Δ genome as compared to the pol2-

M644G rnh201Δ genome (Fig. 5). A different rank order is seen in the pol1-Y869A rnh201Δ 

strain, where after correcting for genome composition, the preference in the pol1-Y869A 

strains is rA ≈ rC ≈ rG > rU. In this strain, the non-rU rankings changed slightly among the 

three replicates examined.

The low abundance of rU seen in all three genomes is consistent with the fact that, among 

the four dNTPs, dTTP is present at the highest concentration in strains encoding either wild 

type replicases 24 or the pol2-M644G variant 18, thereby reducing the probability of 

incorporating rU more than the other ribonucleotides. However, the dATP:rATP ratio is the 

lowest among the four ratios 24, yet rATP is only the most frequent ribonucleotide in one of 

the three strains. Thus, in addition to competition for incorporation within the polymerase 

active site based on mass action, other parameters may modulate ribonucleotide 

incorporation probability during replication in vivo. This includes the effect of DNA 

sequence context, as predicted by sequence context effects of ribonucleotide incorporation 

probability during DNA synthesis in vitro 24,32,33.

Non-uniform distribution of ribonucleotide in the genome

Several HydEn-Seq libraries contain an average of less than one 5′-DNA end read per base 

pair in the nuclear genome (Supplementary Table 3). It is therefore striking that end read 

counts vary from zero at many base pairs to more than 1,000 at others. This non-uniform 

distribution of ribonucleotides in the genome has implications for MMR signaling 

mentioned above, and for a second mechanism of genome instability wherein Top1 incises 

ribonucleotides in DNA to initiate the deletion of 2 to 5 base pairs within repetitive 

sequences 18,34. This instability is highly dependent on the DNA strand and sequence 

context in which the ribonucleotide resides 18. Variations in the location and density of 

ribonucleotides in DNA may also be relevant to recombination 35 and gross chromosomal 

rearrangements in yeast 36 and to chromosomal abnormalities in RNase H2-defective mouse 

cells 37,38.

In certain regions of the genome, strand-specific ribonucleotide density also deviates from 

the expectations of a simple division of labor among the three replicases. Initial analyses 

indicate that these “excursions” fall into at least two classes, those that show unexpected Pol 

α, δ or ε correspondence (e.g., purple bar designated III in Fig. 2a, middle) and those that 

show unexpected Pol α or δ divergence (designated IV). These excursions may result from 

ribonucleotides remaining in the genomes of these RER-deficient cells, which can lead to 

replicase pausing during DNA synthesis 18,39,40. Such pausing may elicit template switching 

or bypass synthesis (e.g., Pol ζ or Pol η) in a subsequent round of replication 41 or DNA 

synthesis associated with DNA repair or recombination after Top1 incision at 

ribonucleotides 21,34,35. An example is in Schizosaccharomyces pombe, where mating type 

switching occurs by recombination posited to be initiated by pausing of leading strand 
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replication upon encountering a di-ribonucleotide imprint 42. Additional possibilities for 

some “excursions” detected by HydEn-Seq include events unrelated to ribonucleotides, such 

encounters of replication forks with transcription complexes, a bulky lesion, repetitive DNA 

or non-B form DNA or tightly bound proteins. There is no obvious limitation to monitoring 

the distance over which a newly recruited DNA polymerase may operate, e.g., within a short 

repair or lesion bypass patch or to the end of a chromosome during break-induced 

recombination 43.

Ribonucleotide distribution relative to nucleosome dyads

Meta-analysis using nucleosome positioning data 6 reveals that ribonucleotide densities are 

elevated at positions corresponding to the nucleosome dyad (Fig. 6a–d). The elevations are 

subtle (note the scale on the Y axis). They may partly reflect a bias in sequence composition 

because nucleosome dyads are slightly enriched for G and C content (Fig. 6e), the preferred 

ribonucleotides incorporated during replication in the pol2-M644G rnh201Δ and pol3-

L612G rnh201Δ strains. However, this may not be the sole explanation because (1) the 

peaks at the dyad are more prominent in the pol3-L612G rnh201Δ strain (Fig. 6d) as 

compared to the pol2-M644G rnh201Δ strain (Fig. 6b), yet these two strains have similar G

+C versus A+T ribonucleotide incorporation preferences (Fig. 5), (2) the peaks are more 

prominent in the pol3-L612G rnh201Δ and pol1-Y869A rnh201Δ strains as compared to the 

pol2-M644G rnh201Δ strain, and (3) the peak in both strands in the pol3-L612G rnh201Δ 

strain are symmetrical around the dyad, whereas the peaks in the two strands in the pol1-

Y869A rnh201Δ strain are offset and on opposite sides of the dyad. In the latter cases, 

lagging strand replicase features could be signatures of polymerization by Pol α and Pol δ 

during Okazaki fragment maturation, a process that is proposed to preferentially occur at the 

nucleosome dyad and to be phased according to the nucleosome repeat 10.

Ribonucleotides at mitochondrial DNA replication origins

HydEn-Seq also reveals that the yeast mitochondrial genome contains large numbers of 5′-

DNA ends generated by alkaline hydrolysis (Fig. 7). Most of these ends are in discrete, 

strand-specific (red and blue) peaks that span multiple base pairs. Eight of these peaks 

correspond to previously identified 44 mitochondrial replication origins (shaded green). 

Interestingly, the relative proportions of 5′-DNA ends in the major peaks are similar in all 

yeast strains examined. Thus the peaks are independent of the status of the nuclear 

replicases, which have no known role in mitochondrial replication, and they are also 

independent of the status of RNase H2, which has not been found in mitochondria 45.

These observations are consistent with at least three hypotheses. The peaks may represent 

the ends of linear chromosomes, similar to the high density of 5′-ends observed at the ends 

of linear nuclear chromosomes. This possibility cannot yet be eliminated, but it seems 

unlikely because the most prominent peaks largely map to either the plus or minus strand, 

but not to both. Also, when the mitochondrial genome is rearranged in silico (Methods) to 

join the chromosome “ends” that were arbitrarily assigned and numbered when the genome 

was sequenced 44, no drop in the depth of coverage of fragments is observed at the junction 

relative to immediately adjacent regions. Thus, like mammalian mitochondrial genomes, the 
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S. cerevisiae mitochondrial genome may largely, albeit not necessarily exclusively, be 

circular.

The second hypothesis is that some mtDNA fragments generated may be due to lesions 

other than ribonucleotides, such as strand-specific nicks or alkali-sensitive abasic sites 

resulting from oxidative stress. We cannot exclude this possibility, but it is currently 

disfavored by the fact that the 5′-DNA ends are distributed in a highly non-uniform and 

largely strand-specific manner.

The third hypothesis stems from previous studies showing that mammalian mtDNA contains 

ribonucleotides 46,47, and that human mitochondrial replicase (Pol γ) incorporates 

ribonucleotides during DNA synthesis in vitro 48. Moreover, eight of the most prominent, 

strand-biased 5′-DNA end peaks in the yeast mitochondrial genome correspond to 

previously identified 44 mitochondrial replication origins. These peaks, and perhaps similar 

strand-specific peaks detected within open reading frames and in sequences encoding RNAs, 

could reflect the presence of unrepaired residues of RNA primers made by mtRNA 

polymerase and used to initiate mtDNA replication, as has been reported in mammalian 

cells 16,49–52. The results suggest that the terminal ribonucleotides of RNA primers for 

mtDNA replication may not always be removed, either by mitochondrial RNase H1 53, 

which cannot incise at an RNA-DNA junction 45, or by strand displacement and flap 

cleavage, as for Okazaki fragment maturation during nuclear DNA replication 9. If this 

explanation holds, then the fact that 5′-DNA ends at the origins of mtDNA replication 

preferentially map to one strand or the other favors a unidirectional replication model for 

mtDNA in budding yeast.

DISCUSSION

This study demonstrates that ribonucleotides can be used to track replication enzymology at 

high resolution using a simple, 5-step library preparation procedure involving minimal use 

of enzymes and requiring less than two days to execute. While HydEn-seq is used here to 

map 5′-DNA ends primarily generated by alkaline hydrolysis at ribonucleotides, it can also 

be used to study other lesions in DNA, and it is not limited to spontaneous chemical 

hydrolysis but can be adapted to map 5′- and 3′-DNA ends generated by enzymatic 

hydrolysis. In addition to normal replication enzymology, HydEn-Seq should be useful to 

study polymerization changes in response to endogenous and exogenous environmental 

stress. The ability of HydEn-Seq to identify replication origins, termination zones and 

polymerase usage during replication should be applicable to other organisms in which 

replicases can be engineered to enhance ribonucleotide incorporation and RER can be 

inactivated. Polymerase structure-function studies have advanced to the point where it is 

now feasible to engineer replicases (e.g., see Supplementary Figure 3a), and more 

specialized polymerases in most polymerase families, to retain catalytic efficiency yet 

render them promiscuous for ribonucleotide incorporation. Theoretically, this may permit a 

variety of DNA synthesis reactions in cells to be studied by HydEn-Seq.

Following the idea that the high-density peaks in the mitochondrial genome may be due to 

unrepaired residues of RNA primers made by mtRNA polymerase, HydEn-Seq may also be 
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useful to study RNA primers synthesized by RNA polymerases, RNA primases or Prim-

Pols. The ability to map genomic locations that contain a high density of ribonucleotides can 

be used to explore the idea that ribonucleotides in DNA provide selective advantages to 

cells 24. Relevant here are ribonucleotides that may persist in certain locations even in RER-

proficient cells, as exemplified by the di-ribonucleotide imprint used for mating type 

switching in Schizosaccharomyces pombe 54.

ONLINE METHODS

Materials

Oligonucleotides and yeast strains used in this study are listed in Supplementary Tables 1 

and 2, respectively. The pol1-Y869A and pol3-L612G strains and their rnh201Δ derivatives 

were constructed as described earlier for pol1-L868M and pol3-L612M strains 7.

HydEn-Seq protocol

Yeast strains were grown to mid log phase (OD600=0.6) at 30°C in YPDA medium 

supplemented with 0.25 mg/ml adenine. DNA was isolated using the MasterPure™ Yeast 

DNA Purification Kit (Epicentre) without RNase A treatment. HydEn-Seq (Fig. 1) was 

performed by hydrolyzing one μg of genomic DNA with 0.3 M KOH for 2 hours at 55°C 24. 

Following ethanol-precipitation, the DNA fragments were treated for three minutes at 85°C, 

phosphorylated with 10 units of 3′-phosphatase-minus T4 polynucleotide kinase (New 

England Biolabs) for 30 minutes at 37°C, heat inactivated for 20 minutes at 65°C and 

purified using HighPrep™ PCR beads (MagBio). Phosphorylated products were treated for 

three minutes at 85°C, ligated to oligo ARC140 (Supplementary Table 1) overnight at room 

temperature using 10 units of T4 RNA ligase, 25% PEG8000 and 1 mM CoCl3(NH3)6, and 

purified using HighPrep™ PCR beads (MagBio). Ligated products were treated for 3 

minutes at 85°C. The ARC76–ARC77 adapter was annealed to the second strand for five 

minutes at room temperature. The second strand was synthesized using four units of T7 

DNA polymerase (New England Biolabs) and purified using HighPrep™ PCR beads 

(MagBio). Libraries were PCR amplified using primer ARC49 and primer ARC79 or 

ARC84 to ARC107, using KAPA HiFi Hotstart ReadyMix (KAPA Biosystems). Libraries 

were then purified using HighPrep™ PCR beads (MagBio) and pooled for sequence analysis. 

Paired-end sequencing was performed on a HiSeq2500 sequencer (Illumina) to identify the 

location of the 5′-DNA ends generated by alkaline hydrolysis.

HydEn-Seq trimming, filtering and alignment

All reads were trimmed for quality and adapter sequence using cutadapt 1.2.1 (-m 15 -q 10 

-- match-read-wildcards)55. Pairs with one or both reads shorter than 15 nucleotides were 

discarded. Mate 1 of the remaining pairs was aligned to an index containing the sequence of 

all oligos utilized in the preparation of these libraries using bowtie 0.12.8 (-m1 -v2), and all 

pairs with successful alignments were discarded. Pairs passing this filter were subsequently 

aligned to the L03 S. cerevisiae reference genome 6 (-m1 -v2 -X10000 --best). Single-end 

alignments were then performed using mate 1 of all unaligned pairs (-m1 -v2). The count of 

5′ ends of all unique paired-end and single-end alignments were determined for all samples, 

per-strand, across all chromosomes, combining all technical replicates, and shifted one base 
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upstream to the location of the hydrolyzed ribonucleotide as summarized (Supplementary 

Table 2). These counts were converted to bigWig format for visualization on the UCSC 

browser. The distributions of counts per-nucleotide were determined using these values.

End count scaling and background subtraction

Two modes of end count scaling were used, depending on several factors. For analyses 

resulting in visual comparisons of individual libraries (i.e. heat maps and meta-analyses), 

end counts were normalized to counts per million uniquely mapped reads (divided by the 

values listed in Supplementary Table 2 under “Uniquely mapped ends” and then multiplied 

by 1,000,000). For analyses that required weighted averaging of multiple libraries and 

background subtraction (i.e. strand bias maps, origin predictions, and genomic 

ribonucleotide density estimates), end counts were scaled using n chromosomal 5′-end 

counts as internal standards (counts were divided by the values listed in Supplementary 

Table 2 under “Telomere End-Derived Scale Factor”; see below). To ensure that ends in 

these latter analyses originated only from replicase-inserted genomic ribonucleotides, scaled 

end counts from polymerase “L” variant strains (rnh201Δ, rnh201Δ, and pol2-M644L 

rnh201Δ) were subtracted from the scaled end counts of corresponding promiscuous-

replicase strains (pol1-Y869A rnh201Δ, pol3-L612G rnh201Δ, and pol2-M644G rnh201Δ, 

respectively).

Calculating telomere end-derived scale factors and genomic ribonucleotide densities

The genomic ribonucleotide density (Rbulk) is

where Nbulk is the bulk end count, Lgenome is the length of the genome, and Ltelomere is the 

total length of all telomeric repeats in the reference genome:

where NC is the chromosome count (16 in S. cerevisiae). The mean number of 5′ 

chromosome ends per telomere ( ) is similar, but should be corrected for Rbulk in 

order to account for ribonucleotides found in telomeric repeats but not at chromosome ends 

(this correction never amounted to more than 2% of the final value):

where Ntelomere is the unadjusted total telomeric end count.  serves as a scaling 

factor, allowing conversion of end counts in any bin into counts per position per genome 

(Supplementary Table 2). Where the bin is the whole genome, this results in an estimate of 
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the mean fragment size ( ; always larger than the median fragment size as reported 

in 21,22:

and thence the mean number of ends per genome (Nends; always smaller than the median 

count per genome as reported in 21,22:

Predicting replication origins from HydEn-Seq maps

Replication origins were predicted from the weighted average fraction of scaled and 

background-subtracted ends (see above) mapping to the top strand in the Pol α, δ or ε 

variant strains. In each bin, the weighted average top-strand-fraction (f) was

where α, δ, and ε are the background-subtracted end counts from pol1-Y869A rnh201Δ, 

pol3-L612G rnh201Δ, and pol2-M644G rnh201Δ strains, respectively (each of which is 

itself the average of scaled counts from all replicate libraries). Parameters for origin calling 

were set based on results from a training set of OriDB confirmed replication origins on 

chromosome 11. Predicted origins were defined as regions where the bias changed abruptly 

over a defined distance in the weighted average curve in Fig. 4 (black; 200 bp bins; 

smoothed over 9 bins). In order for a position to be called an origin, either the average slope 

(the derivative) of the black curve had to exceed 0.00011 fractional units per bp in an 11-bin 

window (2.2 kbp) or 0.00016 fractional units per base pair in at least 3 of five surrounding 

bins (≥600 bp out of 1 kbp). These parameters attempt to define a sufficiently abrupt bias 

change over a region wide enough to exclude random noise.

Meta-analyses and preparation of heatmaps

Total counts of the per-strain 5′ ends intersecting same- and opposite-strand bins centered on 

genomic features of interest were determined using custom tools, excluding all 

mitochondrial annotations. Heatmaps, generated using the Partek Genomics Suite depict 

counts in all bins (normalized to ends per 1,000,000 uniquely mapped reads; see 

Supplementary Table 2), while meta-analyses depict the sum across all features.
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Ribonucleotide frequencies

The composition of uniquely mapped ends was tallied in defined windows on each genomic 

strand. Windows were set in regions of high strand bias (≥99%) to ensure that nearly all 

ends represented ribonucleotides inserted by a particular replicase, depending on strand 

(leading versus lagging; e.g., grey or black bars, respectively in Fig. 3). The frequency of 

nucleotides occurring at 5′ ends intersecting these windows was determined using custom 

tools.

In silico mapping of the mitochondrial genome

The mitochondrial genome sequence was rearranged, such that the first 42,888 base pairs 

were removed from the start, and appended to the end. Read pairs from sample WT.1 

(Supplementary Table 2) were aligned to this reordered mitochondrial genome, using bowtie 

0.12.8 (-m1 -v2 -X10000). Based on start and end coordinates of the paired-end alignments, 

per-nucleotide coverage of HydEn-Seq fragments was determined using 

genomeCoverageBed (-d).

Analysis of polymerase and RNase H2 conservation

PSI-BLAST searches 56 (parameters in Supplementary Table 6) were conducted to find 

sequences homologous to S. cerevisiae replicases (catalytic subunit sequences from the 

Saccharomyces Genome Database) and the predicted RNH201 of Schizosaccharomyces 

pombe 972h- (gi accession number 19114596). Environmental sequences were excluded. 

For the replicases, PSI-BLAST was iterated until no new eukaryotic sequences were found. 

For RNH201, PSI-BLAST was iterates until >5,000 hits were acquired. The top hits were 

selected until the cumulative e-value exceeded 1.47. In all cases, partial sequences were 

culled and the remainder were aligned with CLUSTAL X (2.0) default parameters 57. 

Sequences with obvious deletions spanning active sites were culled, the remainder re-

aligned, and trees built from the results (neighbor-joining, default parameters). The tree in 

Supplementary Figure 3 was constructed, in part, with the Interactive Tree of Life version 

2.2.2 (http://itol.embl.de) 58.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Mapping ribonucleotides by HydEn-Seq
(a) HydEn-Seq protocol. The procedure was performed as described in Methods, using the 

oligonucleotides listed in Supplementary Table 1. (b) Alkaline agarose gel electrophoresis. 

The analysis was performed as previously described 18. Genomic DNA samples from the 

indicated yeast strains (lanes 1–10) were treated with alkali, separated by 1% alkaline 

agarose gel electrophoresis, and imaged after staining with SYBR Gold. Migration positions 

of two DNA size standards are indicated. (c) Densitometry scans of the gel image in (b). The 

Y-axis is scaled to maximum intensity for each pair of lanes. (d) Mean HydEn-seq end 

counts per haploid genome (see Nends calculation in Methods; error bars represent ranges of 

two to four independent measurements).
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Figure 2. Strand-specific ribonucleotide mapping of chromosome 10
(a) Top, map of chromosome 10 showing the fraction of end reads mapped to the top strand 

in bins of 200 base pairs, after background subtraction (see Methods). Origin prediction was 

complicated at chromosome ends (I) and in other highly repetitive regions (II). Middle, an 

expanded 200 kbp region of chromosome 10. Excursions (in purple) from the simplest 

polymerase division of labor (Pol α or δ lagging, Pol ε leading) fall into two classes: 

unexpected Pol α, δ or ε correspondence (III) and Pol α or δ divergence (IV). Bottom, 100 

kbp region of chromosome 10. Inter-origin regions are more (e.g. ARS1012-ARS1014) or 

less (e.g. ARS1011-ARS1012) symmetrical, depending on fork progression rates and origins 

firing times. Some origins in the origin database have little effect on ribonucleotide strand 

bias (e.g. ARS1013), indicating either an incorrect call, minority participation in normally 

growing cells, unidirectional origin firing, or simply later firing, such that forks proceeding 

from adjacent origins approach to within current detection thresholds. (b) A stylized 

chromosome with two replication origins, showing the division of polymerase labor, as 

predicted from the direction of strand bias transitions at origins (compare with the ARS1012-

ARS1014 region above). Roughly three quarters of previously confirmed replication origins 

(orange diamonds in panel (a); S. cerevisiae OriDB) align with abrupt transitions in strand 

preference (see Methods for quantitation). This allows algorithmic prediction of origins 

Clausen et al. Page 17

Nat Struct Mol Biol. Author manuscript; available in PMC 2015 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(black diamonds). ARS1013 was not detected via HydEn-seq. It is indicated (orange 

diamond) but not labeled.
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Figure 3. Genome-wide replication origins located by HydEn-Seq
(a) A 60 kbp segment of chromosome 1 showing the fraction of ends, after background 

subtraction, that mapped to the top strand from Pol ε data (pol2-M644G rnh201Δ; blue) and 

the fraction mapped to the bottom strand for Pol α and δ data (pol1-Y869A and pol3-L612G, 

in red and green, respectively). Grey points are the weighted average of the other three data 

sets in each bin (see Methods). All curves are trend lines smoothed over 10 bins. (b) As per 

(a), but for all 16 S. cerevisiae chromosomes. Shown for reference are the locations of the 

URA3 mutational reporter gene (near ARS306; used in our previous studies of leading and 

lagging strand replication fidelity 5, and the rDNA locus in chromosome 12 (not drawn to 

scale; the highly repetitive sequence precludes read mapping).
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Figure 4. Distribution of ribonucleotides near origins in RER-deficient strains
(a) Heat maps for the top and bottom strands of the nuclear genome in five different 

rnh201Δ strains, scaled per million reads and centered across a 4 kbp window of the 394 

replication origins reported in the yeast origin database 25. (b) Meta-analysis of strand-

specific ribonucleotides at 214 replication origins analyzed in a previous study 10, again 

scaled per million reads, in bins of 50 bp.
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Figure 5. Ribonucleotide base identity
The proportion of each ribonucleotide base present in the nuclear genome of the three 

rnh201Δ strains encoding the indicated variant replicases. The base composition of the 

genome is shown on the left. Ribonucleotide proportions were calculated from the most 

highly strand-biased 10% of the genome (i.e. windows near replication origins; examples in 

Fig. 2a).
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Figure 6. Meta-analysis of ribonucleotides at the nucleosome dyad
(a) Meta-analysis of strand-specific ribonucleotide mapping at 37,888 nucleosome dyads 6 

for the rnh201Δ strain, scaled per million reads and centered within a 400 bp window. Each 

dot indicates the number of 5′-DNA ends reads at one base pair. The vertical dotted line 

indicates the dyad. (b) As in (a) but for the pol2-M644G rnh201Δ strain. (c) As in (a) but for 

the pol1-Y869A rnh201Δ strain. (d) As in (a) but for the pol3-L612G rnh201Δ strain. The 

solid lines are the smoothed averages for a sliding window. (e) The base composition 

surrounding the nucleosome dyad.
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Figure 7. HydEn-Seq maps of mitochondrial DNA
Mitochondrial genomes for six strains are shown to indicate the base pair (bp) locations and 

proportions of strand-specific 5′-DNA ends detected by HydEn-Seq (blue for plus strand, 

red for minus). Previously assigned replication origins 44 are shaded in green, coding 

sequences in grey, tRNA genes in orange and genes for other non-coding RNAs in pink. 

Total mitochondrial end counts are shown for each strain with the number of replicate 

HydEn-Seq libraries for each in parentheses.
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