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Abstract

Musculoskeletal pain conditions, such as fibromyalgia and low back pain, tend to coexist in

affected individuals and are characterized by a report of pain greater than expected based on the

results of a standard physical evaluation. The pathophysiology of these conditions is largely

unknown, we lack biological markers for accurate diagnosis, and conventional therapeutics have

limited effectiveness. Growing evidence suggests that chronic pain conditions are associated with

both physical and psychological triggers, which initiate pain amplification and psychological

distress; thus, susceptibility is dictated by complex interactions between genetic and

environmental factors. Herein, we review phenotypic and genetic markers of common

musculoskeletal pain conditions, selected based on their association with musculoskeletal pain in

previous research. The phenotypic markers of greatest interest include measures of pain

amplification and ‘psychological’ measures (such as emotional distress, somatic awareness,

psychosocial stress and catastrophizing). Genetic polymorphisms reproducibly linked with

musculoskeletal pain are found in genes contributing to serotonergic and adrenergic pathways.

Elucidation of the biological mechanisms by which these markers contribute to the perception of

pain in these patients will enable the development of novel effective drugs and methodologies that

permit better diagnoses and approaches to personalized medicine.
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Introduction

Chronic pain is a silent epidemic that affects hundreds of millions of individuals worldwide,

resulting in great personal suffering and social burden, in terms of lost productivity and

financial cost.1 Progression of acute to chronic pain is now known to adhere to the basic

principles of disease processes affecting both the central and peripheral nervous systems.

Among the most prevalent chronic or persistent pain conditions are those affecting the

musculoskeletal system. The term ‘musculoskeletal pain conditions’ encompasses a large

number of pain conditions; however, this Review will focus on the biopsychosocial and

genetic factors that contribute to chronic low back pain (LBP), painful temporomandibular

joint disorders (TMD), fibromyalgia and chronic widespread pain (CWP). CWP is a

defining feature of fibromyalgia that is commonly assessed in population-based studies

using surveys—rather than by physical exam—and, like fibromyalgia, is characterized by

pain in contralateral body quadrants and the axial skeleton lasting at least 3 months.

Collectively, these painful musculoskeletal conditions are poorly understood from a

mechanistic perspective, highly comorbid, and frequently observed in the general

population.

In this Review, we provide a brief overview of the epidemiology, phenotypic characteristics

and genetic factors that are associated with or descriptive of these conditions. We will also

address, from a conceptual perspective, how our emerging understanding of the

demographic, biopsychosocial, environmental and genetic factors can be integrated into a

heuristic model that seeks to explain the pathophysiological processes that underlie these

conditions. Using the knowledge gleaned, the model can be further tested and revised in a

manner that will improve our ability to diagnose and treat patients suffering from these

common musculoskeletal conditions. Although not specifically presented herein, our

impression is that the proposed heuristic model can be applied to other musculoskeletal pain

conditions such as osteoarthritis, which is a disease better understood from a

pathophysiological perspective than LBP, fibromyalgia, CWP and TMD, but is beyond the

scope of this Review.

Epidemiology

The epidemiology of LBP, CWP, fibromyalgia and TMD has been fairly well characterized

in the general population;2,3 the incidence of these conditions is high. For LBP, the point

prevalence estimates range from 8–44%, and at least 50% of the general population

experience LBP in their lifetime.2,3 In children and adolescents, new-onset LBP increases

with age, from 12.5% at age 12 to 24.1% at age 15.2,3 Prevalence estimates for CWP seem

to be consistent between US and Western European populations ranging from 11–13%.2,3

On the other hand, fibromyalgia shows a wider range of prevalence values, from 0.7% in

Danish women to 10.5% in Norwegian women.2,3 The frequency of TMD has been

estimated at 12%, with a female to male ratio of 2:1 in the general population and 8:1 in the

clinical setting, and the annual incidence of first-onset TMD has been estimate to be around

3%.2,3 In the ongoing Orofacial Pain Prospective Evaluation and Risk Assessment

(OPERRA) study,4 the prevalence of TMD was observed to increase with age, female
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gender (3:1), and was more frequent among non-Hispanic white individuals compared with

black, African American and Hispanic individuals.3 In contrast to other common

musculoskeletal pain conditions,2 the expected effect of a socioeconomic gradient on the

prevalence of TMD—that is, association between lower socioeconomic status and higher

prevalence of the condition—was not observed.3 The high prevalence of TMD and other

musculoskeletal conditions, including LBP, CWP and fibromyalgia, explains the high

personal and societal costs of treating such chronic pain conditions.1

Several risk factors have been associated with the development of these musculoskeletal

pain conditions. In addition to demographic factors, two intrinsic phenotypic domains are

associated with the risk of developing painful musculoskeletal, pain amplification (increased

pain sensitivity) and psychological distress.4,5 The outcomes of both case–control and

longitudinal studies have provided evidence that both the prevalence and onset of

musculoskeletal pain conditions are associated with augmentation of pain processing, which

might be attributable to impairments in inhibitory systems of the central nervous system (for

example, diffuse noxious inhibitory controls or conditioned pain modulation) and/or the

sensitization of peripheral or central nervous system processes that code pain information

(such as temporal summation of pain).6–9 Psychologically-assessed factors such as enhanced

somatic awareness (the perception and interpretation of information from the senses and

proprioception), anxiety, depression, perceived stress and catastrophizing have also been

associated with increased prevalence and risk of first onset of musculoskeletal pain

conditions.2,10 Among these psychologically-assessed factors, somatic awareness is

emerging as a potent predictor of the development of musculoskeletal pain conditions. These

associations might result from the fact that, as a phenotype, somatic awareness reflects both

pain or sensory amplification and psychological distress risk domains.

A variety of personal behaviours, such as smoking,2,11 and uncontrollable events, such as

injuries,11–13 represent environmental exposures that can influence biological pathways that

lead to the manifestation and maintenance of musculoskeletal pain conditions.4,5 These

exposures are thought to have cumulative effects over time (that is, with age), are modified

by gender, and the intensity of exposure is probably influenced by socioeconomic status.

Body mass index is positively associated with many musculoskeletal pain conditions, which

might result from a mechanical stress on the musculoskeletal system and/or reflect an

abundance of adipose tissue that represents a source of proinflammatory and propain

cytokines.2,14 An understanding of the effects of smoking on painful musculoskeletal pain

conditions is also beginning to emerge. Smoking has been associated with an increased

prevalence of LBP and fibromyalgia,2 and a lifelong history of smoking has been reported to

be associated with an increased likelihood of TMD.11 The mechanisms by which smoking

influences musculoskeletal pain conditions are unknown, but smoking might prime of the

immune system producing a bias towards a proinflammatory state. Another environmental

exposure that is associated with increased risk of persistent musculoskeletal pain is physical

injury, including damage resulting from elective surgical procedures.15

The mechanisms by which these environmental exposures influence the prevalence and

likelihood of development of persistent musculoskeletal pain conditions are poorly

understood. However, evidence supports the view that the expression of an individual’s
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genetic background, which is temporally and dynamically influenced by environmental

exposures, produces intermediate phenotypes or endophenotypes that contribute to

conditions such as LBP, CWP, fibromyalgia and TMD.4,5,16,17 Endophenotypes, such as

pain amplification and psychological distress, represent measurable constructs that are

linked to the pathophysiological mechanisms that result in the perception and reporting of

clinical pain. Endophenotypes are situated between genotype and the syndrome, and thus are

more proximal to the biological pathway.18 Key intermediate phenotypes, genetic

polymorphisms and the effects of environmental exposures on genetically-mediated

phenotypes (that is, gene–environment interactions) are described in the following sections.

Assessment of musculoskeletal pain

In addition to quantifying clinically important endpoints, optimal characterization of

musculoskeletal pain conditions should identify potential pathophysiologic mechanisms,

which requires assessment of multiple phenotypic domains beyond simple determination of

clinical pain intensity. First, several dimensions of the individual’s clinical pain should be

assessed. Second, as recommended by the Initiative on Methods, Measurement, and Pain

Assessment in Clinical Trials (IMMPACT),19 important comorbid symptom domains need

to be evaluated, including physical and psychological functioning. Third, endophenotypes

should be examined, including quantitative sensory testing (QST), in which the intensity of

stimuli needed for sensory perception is measured to assess the functioning of the sensory

nervous system to identify alterations in pain perception and pain modulation, and

assessment of autonomic function to determine physiologic changes that could contribute to

symptomatology.

Assessing pain perception and interference

As alluded to previously, in addition to obtaining information regarding the clinical severity

of the patient’s symptoms, pain assessment should ideally provide clues regarding

underlying pathophysiologic mechanisms. Several aspects of pain should be quantified

(Table 1): pain severity, both the intensity and the unpleasantness of pain, can be

independently assessed with specific numerical rating or visual analog scales, or with verbal

descriptor measures;20,21 temporal qualities of the pain (episodic or continuous, daily

variability of pain) are best assessed using ecological momentary assessment via electronic

devices;22 perceptual qualities of the pain, assessed using verbal descriptor scales, such as

the McGill pain questionnaire,23 based on the notion that different sensory qualities of pain

reflects distinct underlying mechanisms.24,25

Assessment of other phenotypic domains is important, particularly physical and

psychological function, as previously recommended by IMMPACT.19 Physical function (or

disability), can be measured using patient-reported instruments or performance-based

methods, such as exercise tests and functional capacity evaluations. Using both types of

measure is preferably, because patient-reported and performance-based measures are weakly

correlated with each other in chronic pain populations.26 Functional capacity evaluations

have been widely implemented as performance-based indices of physical function in patients

with LBP.27 These functional measures have been associated with patient self-reported
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disability and psychological factors,26 and are sensitive to treatment effects.27,28 Exercise-

based functional assessments have revealed that patients with fibromyalgia have poorer

performance in aerobic and strength measures compared with healthy controls,29 and

functional performance has been associated with clinical pain, pain sensitivity, brain

responses to pain, and cognitive performance in this condition.28,30,31 More ecologically

valid performance-based methods that objectively quantify physical activity in the patient’s

natural environment have become increasingly utilized, such as actigraphy, which uses an

accelerometer to assess real-time physical activity.32 Actigraphy has revealed reduced

physical activity in patients with fibromyalgia, which correlated with patient-reported

activity.31,33

Several types of self-report instruments can be used to assess function and disability in

musculoskeletal pain (Supplementary Table 1). These include instruments designed for

specific musculoskeletal pain conditions, such as the Roland Morris Disability

Questionnaire and the Oswestry Disability Index for LBP, the Fibromyalgia Impact

Questionnaire and it’s revised version, and the Jaw Function Limitation Scale, which

assesses the functional status of the masticatory system related to TMD. In addition, certain

patient-reported instruments provide a general measure of pain-related interference with life-

relevant activities, such as the Brief Pain Inventory, the Graded Chronic Pain Scale and the

Multidimensional Pain Inventory; others represent generic measures of functional status or

disability, including the Health Assessment Questionnaire, the Disability Rating Index, and

the physical functioning and role limitations scales from the Short-form Health Survey with

only 36 questions (SF-36®).

At present, the diagnosis of musculoskeletal pain conditions relies largely on signs and

symptoms, which convey limited information regarding pathophysiology, thereby providing

minimal information to facilitate identification of targets for novel treatments.

Endophenotypes are more proximal to the biological perturbation;18 therefore, both pain

amplification and psychological domains, which are more closely linked with

pathophysiological mechanisms than signs and symptoms of clinical pain, require careful

measurement and analysis.

Psychological domain assessment

Within the psychological domain, abundant evidence indicates altered psychological

function in in patients with musculoskeletal pain, including increased levels of emotional

distress, somatic awareness, psychosocial stress, and maladaptive coping.10,34,35 Important

to note is that characterizing factors as ‘psychological’ refers to the method of assessment

rather than to the underlying pathophysiologic mechanism. For example, somatic awareness

is typically assessed using ‘psychological questionnaires’; however, this construct actually

reflects altered peripheral and central nervous system processing of somatosensory stimuli

and overlaps considerably with sensory amplification as assessed using QST (described in

the following section). Thus, we refer to ‘psychological’ factors primarily based on their

level of assessment rather than on the mechanisms contributing to such domains.
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Although psychological symptomatology is often interpreted as a consequence of chronic

pain, prospective studies suggest that pre-morbid psychological dysfunction represents a risk

factor for future development of chronic pain.36,37 For example, higher levels of

psychological distress, somatic symptoms (that is, bodily sensations appraised as unpleasant,

abnormal or worrisome by the patient), illness behaviour, sleep disturbance and childhood

adversity predicted onset of CWP and LBP.37–40 Furthermore, pre-existing somatic

awareness, health anxiety, perceived stress, and negative mood predicted onset of TMD.41,42

Moreover, similar psychosocial factors predict transition from acute to chronic

musculoskeletal pain.37,43,44 Therefore, psychosocial functioning is a critical component of

phenotypic characterization of musculoskeletal pain conditions, and several psychosocial

domains should be incorporated into patient assessments: global psychological symptoms,

including negative affectivity and emotional distress; somatic awareness; life events and

perceived psychosocial stress; pain-related cognitions (for example, fear avoidance or

catastrophizing); and pain coping (see Table 1).

Pain sensitivity and amplification assessment

Like the psychological intermediate phenotypes, the endophenotypes associated with pain

amplification represent measurable constructs that are more closely related to the

pathophysiological mechanisms than pain intensity;18 therefore, these endophenotypes are

linked with pathophysiological mechanisms that produce the signs and symptoms associated

with LBP, fibromyalgia, CWP, and TMD. QST methods ascertain multiple endophenotypes

of potential relevance to musculoskeletal pain conditions by assessing the perceptual and/or

physiological responses to systematically applied and quantifiable sensory stimuli for the

purpose of characterizing somatosensory functioning. A systematic methodology for QST in

clinical studies has been described and validated,45 and investigators have used QST as a

method of subgrouping patients with neuropathic and musculoskeletal pain,46,47 including

fibromyalgia and TMD.48

As reviewed in 2010,8 considerable evidence indicates multiple phenotypic patterns of

altered somatosensory function among patients with musculoskeletal pain syndromes. Four

specific domains of sensory function should be targeted when performing QST in CWP

(Table 1). First, nonpain somatosensation, reduced sensitivity to nonpainful thermal and

mechanical stimuli, has been reported in several chronic pain conditions,49–51 implying that

the central nervous system might be imbalanced toward processing of painful stimuli.

Second, generalized hyperalgesia, increased pain in response to previously painful stimuli,

has also been reported in musculoskeletal pain. Numerous studies, using multiple stimulus

modalities, including muscle-pain assessment using pressure devices (such as algometers) or

methods that evoke transient muscle ischaemia, report reduced pain thresholds and increased

pain ratings in response to suprathreshold stimuli in musculoskeletal pain conditions,

indicating generalized hyperalgesia;6,52,53 Third, pain facilitatory function, most commonly

assessed by quantifying temporal summation of pain, is an increased perception of pain that

accompanies repetitive or sustained painful stimulation at a constant stimulus intensity.

Temporal summation is thought to result from increased excitability of dorsal horn

transmission neurons mediated by the N-Methyl-d-aspartate (NMDA)-receptor, a transient

form of central sensitization also known as windup.54,55 Enhanced temporal summation of
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thermal and mechanical pain has been reported in fibromyalgia, LBP and TMD.7,56 Finally,

pain inhibitory function should also be assessed. The method most frequently used to

measure pain inhibitory function is conditioned pain modulation (CPM), also known as

diffuse noxious inhibitory controls (DNIC),57 which determines the extent to which the

perceptual intensity of one painful stimulus is reduced by the application of a second painful

stimulus at a remote body site. Using CPM, reduced pain inhibitory function has been

reported in musculoskeletal pain conditions, including fibromyalgia and TMD.58,59

Assessment of autonomic function

Dysregulation of the autonomic nervous system represents another endophenotype of

relevance to musculoskeletal pain conditions.60,61 Increased resting sympathetic nervous

system tone coupled with deficient responses to postural or exercise challenges mediated by

the sympathetic nervous system have been reported in fibromyalgia.62,63 Furthermore,

decreased heart rate variability has been observed in fibromyalgia, potentially signalling

reduced parasympathetic and greater β-adrenergic tone,63,64 and these patients also show

blunted sensitivity to the baroreceptor reflex (or baroreflex), the negative feedback reflex by

which elevated blood pressure reduces heart rate.65,66 In addition, reduced high-frequency

heart rate variability, suggesting sympathetic dominance, was observed in patients with

chronic LBP with at least moderate patient-perceived disability, but not among those

reporting a low degree of disability.67 Heart rate and blood pressure responses during

orthostatic challenges are also reduced in fibromyalgia.68 Differences in autonomic function

owing to central nervous system dysregulation in patients with fibromyalgia is further

indicated by reduced plasma and cerebrospinal fluid catecholamine responses to stressors

such as exercise or hypoglycemia;62,69–71 a similar pattern of autonomic dysfunction in

patients with TMD has been reported.72 An extensive protocol for autonomic testing was

described in 2011,72 which included cardiovascular measures (blood pressure, heart rate,

and heart rate variability) at rest, as well as in response to orthostatic challenge and

psychological stress.

Identifying homogeneous patient subgroups

Because musculoskeletal pain reflects a heterogeneous group of conditions, advanced

methods of data analysis need to be applied to the multiple phenotypic domains to reveal

more homogeneous subgroups within the musculoskeletal pain population. The discussion in

the previous sections outlines the multiple phenotypic domains that represent important

targets for assessment in patients with CWP. Each domain can be interpreted independently;

however, the findings can be examined across domains in order to identify patient profiles

that might reflect differing pathophysiologic mechanisms and distinct underlying genetic

architectures. Statistical approaches can be applied to identify profiles across phenotypic

domains. For example, cluster analysis, a set of statistical classification methods that

identifies groups of people that show similar characteristics across one or more phenotypic

measure, has previously been applied to QST responses in healthy individuals,73

demonstrating that people can be stratified based on responses to multiple stimulus

modalities. Several studies have reported such analyses in fibromyalgia, LBP and TMD,

including clustering of patients according to physical and psychosocial symptoms,74–77 QST
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responses and comorbid symptoms,47,78 and biological markers and psychologically-

assessed factors.79 Although the nature of the subgroups identified varies across studies

owing to differences in the phenotypes used to generate the clusters, these studies

demonstrate the feasibility of deconstructing the heterogeneous musculoskeletal pain

population into more homogeneous subgroups. Other methods of classification are available,

including latent class analysis and machine learning approaches.80,81

The genetic and associated molecular pathways that underlie the identified disease

subgroups have not yet been adequately assessed. Nevertheless, the identification of

subgroups using quantitative measures of endophenotypes, such as QST, coupled with the

identification of the molecular profiles that underlie specific subgroups holds great promise

in developing mechanistic diagnostic protocol and identifying novel biological targets and

pathways for both pharmacological and nonpharmacological therapeutic interventions.

Genetic markers of chronic pain

The relative importance of genetic factors in human musculoskeletal pain conditions is

becoming clearer. Heritability of these conditions seems to be comparable to other common

disorders. For example, the heritability for neck pain, pain reported at any site, and

clustering of symptoms associated with fibromyalgia is estimated to be 44%,82 46%,83 and

51%,84 respectively. Thus, around 50% of the risk of developing chronic pain conditions is

driven by genetic background.

Genetic association studies in humans

We performed a formal review of all genetic associated studies in TMD, fibromyalgia, LBP

and CWP reported up to August 2012. 20 loci have been associated with at least one of the

conditions (Supplementary Table 2). Of these 20 loci, six genes or gene clusters have been

repeatedly associated with at least one of these chronic pain disorders (Table 2); the other 14

genes have been associated in a single study and should be considered preliminary findings

until they have been independently replicated. These associations have implicated two major

neurotransmitter pathways in musculoskeletal pain. The first is the adrenergic pathway, in

which COMT, the gene encoding the enzyme catechol O-methyltransferase that is

responsible for the catabolism of catechol neurotransmitters such as epinephrine,

norepinephrine, and dopamine, is the most frequently associated with chronic

musculoskeletal pain conditions. Most studies of COMT report that an increased risk of

chronic pain is associated with a nonsynonymous Val158Met (rs4680) polymorphism,

which encodes a protein with lower enzymatic activity.85–89 Other groups have expanded

the functional locus to three major haplotypes encompassing the gene, which modify

expression and activity of catechol O-methyltransferase; the low pain sensitivity haplotype

is associated with the highest enzymatic activity and confers protection against chronic

pain.16,90,91

Two nonsynonymous SNPs in the β2-adrenergic receptor gene (ADRB2), Arg16Gly

(rs1042713) and Gln27Glu (rs1042714), are associated with an increased risk of

fibromyalgia and CWP.85,92,93 As with COMT, haplotype variants, which regulate β2-
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adrenergic receptor expression and internalization, are associated with differences in

susceptibility to chronic pain.92,94

The second neurotransmitter pathway that has been associated with chronic functional pain

syndromes is the serotonin pathway, including the 5-hydroxytryptamine receptor 2A

(5HT-2A, encoded by HTR2A) and 5HT transporter (5HTT, also known as sodium-

dependent serotonin transporter, encoded by SLC6A4). A 44bp insertion/deletion

polymorphism in the promoter region of SLC6A4 is most frequently associated with both

risk of chronic pain conditions and related endophenotypes. The ‘short’ (deletion) allele has

been found to increase risk of fibromyalgia,95–97 although the ‘long’ (insertion) variant has

been associated with a higher risk of TMD in a Japanese cohort.98 In another study in TMD,

a link between the promoter region polymorphism and this condition was observed as well

as an association with a variable nucleotide tandem repeat polymorphism in intron 2 of

SLC6A4.99 Studies of HTR2A are more consistent, as the silent 102T>C polymorphism has

been repeatedly shown to increase risk of both fibromyalgia,100,101 and TMD.102

A possible immunological component in a subset of patients with fibromyalgia prompted the

investigation of the involvement of HLA antigens in this condition. Several MHC class I and

II antigens, including HLA-B58, HLA-DR4, HLA-DR5 and HLA-DR8, have been associated

with chronic pain,103,104 although these findings have not been consistently replicated.105

Inflammatory mechanisms have also been investigated, with notable findings for the α1-

antitrypsin gene, SERPINA1; in Spanish106 and US107 cohorts, the Z allele of SERPINA1,

which enables production of only limited amounts of α1-antitrypsin, was more frequent in

patients with fibromyalgia than in the general population.

Candidate genes have also been tested for association with traits and outcome measures

studied in conjunction with chronic pain disorders. Several genes have shown association

with such phenotypes (Supplementary Table 2), some repeatedly (Table 1), including the

four previously described neurotransmitter pathway genes associated with disease status.

The adrenergic pathways genes ADRB2 and COMT have been associated with numerous

endophenotypes believed to underlie chronic pain disorders, including autonomic

dysregulation,94 alterations in pain processing and modulation,16,108 sleep dysfunction,85,93

and anxiety.94,109 The serotonergic pathway genes SLC6A4 and HTR2A have been

associated with personality and affective traits such as somatic awareness,99,110 depression95

and anxiety,110 which contribute to risk of chronic pain.

Evidence from gene sequencing

Complex pain conditions are by definition attributable to multiple genetic and environmental

influences. Genetic association studies have proven successful in exploring the relationship

between common genetic polymorphisms and common traits and diseases, but they have not

yet accounted for the genetic component of variance caused by rare genetic variants, with

minor allele frequencies of 5% or less. Deep sequencing is already proving successful in

identifying rare variants associated with fibromyalgia.111 Family trios (affected probands

and their parents) were re-sequenced at the MEFV gene locus, where known mutations result

in familial Mediterranean fever, an autosomal recessive disorder that shares symptoms such
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as widespread body pain and tenderness with fibromyalgia.111 A total of 10 rare alleles with

missense polymorphisms, one of which was present in 15% of the probands, occurred across

the gene locus, and preferential transmission of these rare alleles from heterozygous parents

to affected offspring indicated these alleles are all associated with risk of fibromyalgia.111

These results indicate that rare variants are strong risk factors for complex disease traits and

might underlie disease in a subset of patients with a common pain condition like

fibromyalgia.

Although the application of deep sequencing to the study of common pain conditions

remains largely on the horizon, studies are in progress that are designed with this emerging

technology in mind.4,91,112 Prioritizing candidate genes with roles in pain for re-sequencing

will be important given the current costs associated with the technique, and such efforts will

continue to be informed by linkage, candidate gene association studies, and genome-wide

association studies.113 Because rare variants are likely to have substantially greater effects

on a pain phenotype than common polymorphisms, they could be responsible for more

severe manifestations of the pain condition and thus might be more readily identified in

extreme cases derived from existing population-based studies.17

Translational value of genotypic markers

Identification of genotypic markers of chronic pain has substantial value in translational

medicine. Findings from research into complex cardiovascular disorders show that the

genetic loci at which rare mutations cause monogenic familial cardiovascular disorders

overlap considerably with common genetic variants identified in association studies from

related common, complex cardiovascular disorders;114 thus genetic variants in these

pathways are targets for pharmacotherapy for these disorders. An illustration of how the

results from human genetic associations can contribute to the process of understanding and

development of treatments for a common pain condition is presented in Figure 1. Catechol

O-methyltransferase represents an essential component of the nervous system that regulates

catechol neurotransmitters levels and thus homeostasis in response to physical and

psychological stressors. A series of studies in humans and animal models have linked

catechol O-methyltransferase to pain perception. A genetic variation in the COMT gene

correlates with the sensitivity to noxious stimuli in both humans,16,90,115 and in mice,116 as

well as the risk and severity of chronic pain conditions, as we have discussed (Table 2).

These findings led to the identification of new drug targets in animal models,117 which have

been translated into a novel pharmacological treatment for TMD.118

Three major haplotypes of COMT, designated as low, average or high pain sensitive, have

been identified based on a carrier’s response to experimental pain stimuli.16 These three

haplotypes account for 11% of the variability to experimental pain sensitivity in young

women and are predictive of the risk of onset of a common musculoskeletal pain disorder

(that is, TMD). The low pain sensitive haplotype corresponds with higher levels of catechol

O-methyltransferase enzymatic activity than the average or high pain sensitive

haplotypes,119 suggesting that greater turnover of catechol neurotransmitters in individuals

with the low pain sensitive haplotype increases their resistance to pain. Indeed, a 2010
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literature review revealed that COMT haplotypes were consistently associated with pain

sensitivity in multiple studies.120

The pharmacological inhibition of catechol O-methyltransferase in rats results in mechanical

and thermal hypersensitivity, which is reversed by the non-selective β-adrenergic antagonist

propranolol or by the combined administration of selective β2-adrenergic and β3-adrenergic

antagonists.117 By contrast, the administration of β1-adrenergic, α-adrenergic, or

dopaminergic receptor antagonists failed to alter catechol-O-methyltransferase-dependent

pain sensitivity.117 These data provide the first direct evidence that low catechol O-

methyltransferase activity leads to increased pain sensitivity via a β2/β3-adrenergic-

dependent mechanism, and suggest that pain conditions associated with low catechol O-

methyltransferase activity and/or elevated catecholamine levels can be treated with

pharmacological agents that block both β2-adrenergic and β3-adrenergic receptors. This

finding led to the hypothesis that propranolol, a nonselective β-adrenergic antagonist that is

widely used clinically for treatment of hypertension, could be an effective treatment for

chronic pain conditions in a manner that is dependent on the patient’s COMT haplotypes.

To test this hypothesis, a double-blind, placebo-controlled, two-period crossover pilot study

of efficacy of propranolol was conducted in 40 female patients with TMD.118 The outcomes

of this study demonstrated that propranolol, independent of COMT genotype, markedly

reduced a composite measure of clinical pain.118 A trend towards decreasing experimental

pressure and heat pain ratings compared with placebo, which became statistically significant

when the sample was stratified according to the COMT high activity, low pain sensitive

haplotype:118 a considerable beneficial effect of propranolol on pain perception was noted in

subjects not carrying this haplotype, a diminished benefit was observed in the heterozygotes,

and no benefit was noted in the homozygotes. These findings corroborate that COMT gene

polymorphisms contributes to the variable pharmacodynamic responses to propranolol in

patients with chronic musculoskeletal pain, probably as a result of variation in baseline

levels of β2/β3-adrenergic signalling.

This sequence of discoveries provides an excellent illustration of how a genetic marker

identified in human association studies can be investigated in cellular molecular studies, and

confirmed in animal models to identify a putative drug that can be tested in a human clinical

trial for safety and efficacy (Figure 1). This process not only identified selective β2/β3-

adrenergic receptor antagonists as novel candidates for treatment of chronic pain conditions,

but also provided evidence that COMT haplotypes can serve as genetic predictors of

treatment outcomes, thus enabling the identification of subgroups of patients who are likely

to benefit from propranolol therapy. Although the initial clinical pharmacogenomic studies

have been conducted on a TMD population, β2/β3-adrenergic receptor antagonists will

probably be effective in treating other musculoskeletal pain conditions, and therefore this

approach could represent a general example of how to identify genetic markers and new

therapeutic targets for human musculoskeletal pain in future studies.
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Heuristic model of pain conditions

Given the complexity of the human pain phenotypes, greater emphasis is needed in

accounting for the contribution of gene, environment and demographic interactions to

disease models and drug responses. Manifestation of a pain state at a certain time is

triggered by the combination of endogenous and exogenous signals, such as the expression

of enzymes that control catecholamine levels and perceived psychological distress.

Historically, the relative contribution of ‘nature versus nurture’ to common clinical

conditions has been debated, but that both genetic and environmental factors contribute

substantially and interactively to complex traits like pain is now commonly accepted. A

heuristic model that illustrates these relationships is presented in Figure 2.

Multiple genetic risk factors contribute to individual variations in psychological distress and

sensitivity to pain. These functional allelic variations, common and rare, mediate differential

gene expression and activate associated biological pathways that lead to the manifestation of

related endophenotypes. On the other hand, pain endophenotypes are also shaped by

environmental risk factors like injury, and exposure to physical and psychological stressors.

These environmental factors promote changes in DNA methylation patterns, which in turn

change the expression of pain related genes and biological pathways in a temporally-

dependent manner. Thus, together, both environmental risk factors and genetic variants

affect the expression of biological pathways and interact to produce pain states. Further

accumulation of environmental exposures results in the induction of long-lasting epigenetic

changes based on altered methylation patterns. On a vulnerable genetic background, genetic

and environmental factors interact to evoke gene expression patterns that enable the

transition from an acute pain state to a chronic pain state, which can manifest as pain

conditions such as LBP, TMD, CWP and fibromyalgia. The biological processes that lead to

a chronic pain state can further increase sensitivity to painful stimuli and stress levels,4

modifying expression of pain-related genes and creating a pathological pain cycle.

Importantly, demographic factors, including age and sex, also have a great influence on gene

expression and thus interact with genetic and environmental risk factors to determine

susceptibility to various pain states.

Our heuristic model suggests that multivariable interactions are expected between genetic,

environmental, and demographic factors contributing to both acute and chronic pain states.

Recording and measuring these variables in a careful way can be a challenge,3 and assessing

their interaction poses an even greater challenge. Both assessment methods and statistical

methodologies are under development that will permit the integration of intermediate

phenotypes, genetic factors, and exposure to environmental risk factors into predictive

models. Such models will enable the identification of novel subpopulations of patients with

musculoskeletal pain and novel subgroup specific therapeutic targets, and inform treatment

decisions, thus moving the pain management field towards tailored personalized medicine.

Conclusions

Common musculoskeletal pain conditions such as LBP, TMD, CWP, and fibromyalgia are

complex conditions that are heterogeneous in clinical manifestation. These disorders result
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from an interaction between quantifiable phenotypic domains and genetic variables that are

expressed in response to a variety of physical and psychological environment exposures.

Studies have begun to unravel the genetic architecture and associated biological pathways

that contribute to the clinical manifestations of these conditions. The identification of causal

genetic variants based on genetic association studies in humans is proving effective in

identifying biological pathways of vulnerability and new therapeutic targets for specific

subpopulations of patients, moving us one step closer to operationalizing the concept of

personalized medicine.
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Key points

• Musculoskeletal pain conditions such as low back pain, chronic widespread

pain, fibromyalgia and temporomandibular joint disorders are highly prevalent

• These conditions have measurable phenotypic signatures, which are

heterogeneous in nature

• Musculoskeletal pain conditions have a genetic basis, with both common and

rare genetic variants contributing to the conditions and associated

endophenotypes

• Physical and psychological environmental exposures can produce epigenetic

effects that alter gene expression, biological pathway activity, and thus the

manifestation of clinical phenotypes of musculoskeletal pain conditions

• Genetic association studies combined with in vitro and in vivo follow-up studies

can identify effective therapeutic agents for the treatment of large

subpopulations of patients with musculoskeletal pain conditions
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Review criteria

A search for original articles published between 1990 and 2012 and focusing on

musculoskeletal pain was performed in MEDLINE and PubMed. The search terms used

were “psychological factors”, “psychological distress”, “temporomandibular disorders”,

“chronic widespread pain”, “low back pain”, “fibromyalgia”, “musculoskeletal pain”,

“pain sensitivity”, “quantitative sensory testing”, “polymorphism” and “association

studies” alone and in various combinations. All articles identified were English-language,

full-text papers and abstracts. We also searched the reference lists of identified articles

for further relevant papers. The reference list was last updated October 2012.
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Figure 1.
The translational clock—a schematic representation of a novel and rapid approach to

identification of new therapeutic targets in commonly observed persistent pain conditions.

The identification of COMT as a therapeutic target in TMD is used as an example, to

provide an idea of the timescales involved. Identification of common genetic variants

associated with risk of developing a chronic pain condition can reveal putative causal

biological pathways. In our example, in 2005, COMT haplotypes were associated with

experimental pain and myogenous TMD.16 Subsequent in vitro and in vivo proof-of-

principle studies should demonstrate that the pharmacological or genetic modification of the

identified pathways can produce cellular phenotypes and animal behaviours consistent with

the human pain condition. For example, in 2006, a cellular molecular study demonstrated

that COMT levels and activity were associated with COMT haplotypes.119 In 2007,

pharmacological inhibition of COMT in rats was shown to increase sensitivity to pain, a

response abrogated by β2/β3-adrenergic antagonists,117 thus, identifying β-adrenergic

receptors as therapeutic targets. Following positive proof-of-principle studies, a clinical

proof-of-concept trial can be initiated using either existing or novel pharmacological agents.

In our example, the nonselective β-adrenergic antagonist propranolol was the subject of a

2010 clinical trial in patients with TMD.118 This reverse translational process results in the

rapid discovery and testing of interventions that modify the identified biological pathways

that determine susceptibility. Abbreviations: COMT, catechol O-methyltransferase, TMD,

temporomandibular joint disorder.
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Figure 2.
The pathological chronic pain circle. Genetic and environment interactions contribute to the

development of pain conditions. Allelic variation underlies functional differences in

expression or activity of pain-related gene products and activation of associated biological

pathways, leading to manifestation of related pain endophenotypes. In addition, pain

endophenotypes are shaped by exposure to environmental factors, which result in alteration

of DNA methylation patterns that, in turn, change the expression of pain-related genes and

the activity of associated biological pathways. With prolonged exposure to environmental

stimuli that induce long-term methylation patterns—that is, long-lasting changes in DNA

methylation—on a background of genetic susceptibility, altered gene expression profiles

enable the transition of an acute pain state to a chronic pain state. The biological processes

that lead to the chronic pain state further increase sensitivity to painful stimuli and perceived

levels of stress, which further modifies pain-related gene expression, creating a pathological

pain cycle.
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Table 1

Elements of clinical phenotyping and QST endophenotyping in pain conditions*

Clinical pain Physical function/disability Psychosocial functioning QST

Global pain severity Condition-specific functional limitations Global psychological symptoms Nonpain somatosensation

Pain intensity and
unpleasantness

General pain-related disability Somatic awareness Generalized hyperalgesia

Temporal characteristics Generic measures of function/disability Stress and life events Pain facilitatory function

Perceptual characteristics Performance-based measures Pain-related cognitions and pain
coping

Pain inhibitory function

*
Supplementary Table 1 provides an expanded version of Table 1, detailing the different methods that are available for assessment of each of these

elements of musculoskeletal pain conditions. Abbreviation: QST, quantitative sensory testing.
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Table 2

Genes implicated in human musculoskeletal pain conditions

Gene or genetic region Disease Associated intermediate phenotype

ADRB2 (β2 adrenergic receptor) Fibromyalgia93,121

CWP92

TMD122

Psychological distress;122 blood pressure;122 sleep dysfunction in
fibromyalgia;93 low PBMC basal and isoproterenol-stimulated cAMP
levels93

COMT (Catechol O-methyltransferase) Fibromyalgia85–90

TMD16
In fibromyalgia: pain catastrophizing;123 increased pain level during
elevated pain attention;123 thermal and pressure pain sensitivity;90

psychological distress;109 increase number of tender points in TPC;89

pain and positive affect interaction;124 and FIQ-defined pain, fatigue,
sleep disturbance, morning stiffness and disability85,88

In LBP: altered cortical pain processing,108 increased pain intensity,125

less favourable treatment outcome125–127

In TMD: interaction with orthodontic treatment128 and reduced
efficacy of propranolol treatment of TMD;118 experimental pain
sensitivity16

HLA/MHC region Fibromyalgia103,104,129 NA

HTR2A (5-hydroxytryptamine receptor 2A,
also known as serotonin receptor 2A)

Fibromyalgia100,101

TMD102
Tender point count100 and pain intensity in fibromyalgia;110 increased
somatic symptom counts;130 reduced perception of environmental
quality;101 increased in SCL-90-R total score and subscales scores for
somatic awareness, anxiety, psychosis, obsessive–compulsive
behaviour, hostility, global severity index, interpersonal sensitivity,
phobic anxiety, depression110

SERPINA1 (α1-antitrypsin) Fibromyalgia106,107

CWP130
‘Intense creative energy’ risk phenotype;107 increased number of
painful body sites130

SLC6A4 (sodium-dependent serotonin
transporter)

Fibromyalgia95–97

TMD98,99
Higher BDI and SCL-90-R scores;95 SCL-90 scores for somatic
awareness and anger;99 TPQ harm avoidance trait;96 increased
salivary cortisol level;97 increased leukocyte count97

Abbreviations: BDI, Beck Depression Inventory; CWP, chronic widespread pain; FIQ, Fibromyalgia Impact Questionnaire; LBP, low back pain;
NA, not assessed; PBMC, peripheral blood mononuclear cell; SCL-90, Symptom Checklist-90; SCL-90-R, SCL-90-Revised; TMD,
temporomandibular joint disorders; TPC, tender point count; TPQ, Tridimensional Personality Questionnaire.
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