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Abstract
A train of action potentials (a spike train) can carry information in both the average firing rate and
the pattern of spikes in the train. But can such a spike-pattern code be supported by cortical circuits?
Neurons in vitro produce a spike pattern in response to the injection of a fluctuating current. However,
cortical neurons in vivo are modulated by local oscillatory neuronal activity and by top-down inputs.
In a cortical circuit, precise spike patterns thus reflect the interaction between internally generated
activity and sensory information encoded by input spike trains. We review the evidence for precise
and reliable spike timing in the cortex and discuss its computational role.

Reliability and precision are two different quantities. When you make an appointment with
your friend, she can either keep the appointment or not show up at all. If she does show up,
she might or might not be on time. The former uncertainty is related to reliability, whereas the
latter is related to precision. When the same stimulus waveform is repeatedly injected at the
soma of a neuron in vitro (FIG. 1a), a similar spike train is obtained on each trial1,2 (FIG. 1b).
When approximately the same number of spikes occur on each trial the neuron is said to be
reliable, whereas when the spikes occur almost at the same time across trials it is said to be
precise (FIG. 1c). For a single neuron, the potential information content of precise and reliable
spike times is many times larger than that which is contained in the firing rate, which is averaged
across a typical interval of a hundred milliseconds3–6. The information contained in spike
timing is available immediately, rather than after an averaging period. Furthermore, the timing
of patterns of spikes can potentially transmit even more information than the timing of the
individual constituent spikes3,7. The potential relevance of spike patterns becomes apparent
when we consider neurons at the population level: when a group of similar neurons (a ‘pool’)
produces precise and reliable spike trains, the neurons they project to receive volleys of
synchronous spikes8,9. This opens up the possibility of communicating between different
cortical areas through synchronous spike volleys.

In contrast to the in vitro situation described above, in the intact cortex most excitatory synaptic
inputs arrive at the dendrites rather than at the soma (FIG. 1d), and synaptic transmission is
typically unreliable10–13. Furthermore, most of these dendritic inputs are not directly related
to ongoing sensory stimulation; rather, they reflect spatiotemporally structured internal
activity. Therefore, when the same stimulus is presented repeatedly, the resulting spike trains
are usually neither precise nor reliable when they are aligned to the stimulus onset6. Instead,
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neural activity in vivo might be dominated by internally generated complex reverberations or
rhythmic oscillations, and precise and reliable spike trains might only emerge after they have
been aligned according to the phase of the oscillation (FIG. 1e).

Current technologies are progressing to the point where it is possible to record the simultaneous
spiking activity of hundreds of neurons, as well as to manipulate their spike timing14,15.
However, without a theoretical framework for understanding cortical information processing,
such data might not be easily interpretable. A key to cortical computations is the integration
of feedforward and top-down information, which occurs at the level of the single cortical
neuron. In order to fully understand this process we need to determine the computational role
of precise and reliable spike times. This Review focuses on precisely emitted spike patterns
and their theoretical implications, and aims to set the stage for the large-scale study of cortical
information processing. We review the biophysical mechanisms that are responsible for
generating spike patterns and describe methods for uncovering spike patterns in the presence
of cortical background activity. Finally, we link the integration of temporally precise synaptic
inputs in active dendrites to communication, using spike volleys, within and between cortical
areas.

What can we learn from spike patterns in vitro?
Precision and reliability of in vitro spike trains

When a cortical neuron in a slice preparation is repeatedly injected with the same current
waveform it produces precise and reliable spike trains1. A spike-time histogram generated from
the results of multiple trials of either in vitro or model neurons shows transient peaks
corresponding to spike alignments, which are referred to as events (FIG. 2a–c). Quantitatively,
the reliability of an event is the fraction of trials on which a spike occurs at that time1,16. The
response is said to be precise when the standard deviation of the spike times (also referred to
as the ‘jitter’) in an event across trials is small. In principle precision and reliability are
independent quantities, but in practice they are often related17. For most experimental data sets
it is not straightforward to calculate the precision and reliability because of background noise.
There are several different ways to obtain these measurements (BOX 1).

Box 1

Methods for determining the precision and reliability of spike trains

The direct method

In the direct method for determining spike train precision and reliablity, a spike-time
histogram is constructed, as described in FIG. 2. Spike alignments are classified as events
when the histogram exceeds a threshold (FIG. 2c): all spikes are either assigned to an event
or classified as background. Event reliability is calculated directly and event precision is
the inverse of the standard deviation of all the spike times assigned to an event. Reliability
and precision are the average event reliability and event precision across all events,
respectively.

Indirect methods

In the indirect method, statistics related to the reliability of events are calculated based on
all spike times without detecting the events themselves. In one method, spike trains are
transformed into a continuous waveform for each trial; each spike is convolved with a
Gaussian distribution that has a standard deviation sigma135,136. The stronger the spike
alignment between two trials, the larger the overlap between the two waveforms will be
(calculated as the cosine of the angle between the two waveforms when the waveforms are
considered as vectors). This quantity is a number between 0 (entirely different spike trains)
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and 1 (identical spike trains) and is called the similarity (Sij). The reliability estimate, R, is
the mean of Sij across all distinct pairs. Intuitively, Sij measures the degree of overlap
between spike times on the two trials i and j. Sigma determines which spike times between
the pairs are considered overlapping and sets the timescale of the similarity measure.
Typically, sigma is taken to be a few milliseconds. In experimental data, the precision of
the firing often varies with time. This can be dealt with by segmenting the data into small
chunks and determining the R value for each. The precision can be estimated by calculating
the reliability as a function of sigma. The inverse of the sigma at which R is 0.5 provides
an estimate for the precision (FIG. 2d). Alternative measures to determine the difference
between spike trains, such as the Victor–Purpura metric137 or the van-Rossum metric138,
can be converted to a similarity measure that is suitable for a reliability analysis.

An alternative method

Indirect methods always require a choice of parameter, such as sigma. By contrast, the direct
method yields independent estimates for the reliability and precision. An even simpler
measure115 starts with the spike times merged across all trials and arranged with the earliest
spike first. The inter-spike intervals of this sequence are then calculated and the coefficient
of variation of the aggregate response (CVP) is calculated as the standard deviation of the
inter-spike intervals divided by their mean. A similarity measure normalized between 0
(unreliable) and 1 (perfectly reliable) is obtained by subtracting 1 from the CVP and dividing
by the square root of the number of trials.

Detecting spike patterns in vitro
A single-neuron spike pattern is a sequence of spike times that either occur together in a trial
or do not occur at all. For example, a neuron can respond to a certain segment of a stimulus
with a pattern comprised of two spikes that are always separated by 18 ms. Analysis of data
recorded from a motion-sensitive neuron in the fly brain shows that such spike pairs provide
more than twice the information provided by single spikes7, suggesting that information is
coded in the pattern in addition to in the individual spike times. A first step in evaluating the
possible role of spike patterns in cortical slices in vitro is to detect them. For a series of trials,
the data can be arranged to form a similarity matrix, and a clustering algorithm can be used to
identify spike patterns. Spike patterns have been uncovered in experimental data using this
procedure18, which is illustrated in FIG. 3 for data taken from a model neuron.

Factors affecting reliability and precision
Simple models of an in vitro preparation in which synaptic transmission is blocked and the
same somatic current is injected repeatedly suggest that imprecision is mainly due to variability
in the membrane voltage just before the spike, and that this is inversely proportional to the rate
of change of the voltage19,20. Thus, a precisely timed spike follows a rapidly depolarizing
current. There are other sources of imprecision: the spike threshold can change with the rate
of voltage change21 or membrane currents can be activated by neuromodulators. As the rate
of change of the membrane voltage generally increases with the amplitude of the stimulus, the
precision should improve as the stimulus amplitude increases; this has indeed been observed
both in vitro22,23 and in vivo24,25.

In the situation described above, trial-to-trial unreliability results from a failure of spiking,
which occurs when the membrane voltage does not reach the spike threshold. In this
circumstance, the maximum voltage deflection caused by the stimulus is, on average, below
the threshold. The probability of spike failure then depends on how far the peak is below the
threshold and on how broad the peak is. The following argument shows that spike failure can
lead to distinct spike patterns. For the model neuron described above and in FIG. 3, spikes
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occur at or close to peaks in the stimulus waveform. When, on a given trial, a peak is missed,
the neuron might spike at the next available peak. On a trial in which the neuron does spike on
the first peak, it might not be able to spike on the next peak because of afterhyperpolarization
currents or other intracellular events. On these two trials the neuron’s spikes will correspond
to two distinct sequences of peaks (FIG. 3g). Across the two trials the neuron will thus produce
distinct spike patterns18,26, as observed in vitro19,23. When there is a prolonged period without
spiking on both trials, the voltage trajectories will converge back and the same spike pattern
will be obtained.

Stimulus locking and phase locking
Precision in spike timing depends on a neuron’s firing being locked to features of the stimulus,
meaning that whenever a feature appears in the stimulus a spike will be produced with a
constant delay27. For a constant-current pulse, the only feature that a neuron can lock on to is
the onset (illustrated for a model neuron in FIG. 4a). For an aperiodic or periodic drive, a spike
is more likely to occur during certain time intervals (those in which there is a brief
depolarization) than during others (those in which there are brief hyperpolarizations) (FIG.
4b,d). This phenomenon is referred to as stimulus locking (or phase locking when the drive is
periodic)1,2. An in vitro study demonstrated that the strength of stimulus locking could, in
principle, be increased in feedforward networks8. When a pool of similarly responding neurons
generates a moderately precise volley as input to the next pool, the volley produced by the
latter pool will be more precise. However, this study assumed that synaptic transmission from
one pool to the next was perfect, and probably overestimated the amount of reliability and
precision that would be present in feedforward networks in vivo.

Many neurons have a preferred frequency for stimulus waveforms, which affects the type of
oscillation to which they can phase-lock. For a subthreshold sinusoidal current, the amplitude
of the voltage deflection will be maximal when the stimulus frequency matches the preferred
frequency. This can be demonstrated in vitro by injecting a sinusoidal current with a frequency
that changes slowly across time. The neuron’s membrane-voltage oscillations will match the
instantaneous frequency of the drive, but the amplitude of the oscillations will vary, reaching
a maximum when the instantaneous frequency matches the preferred frequency23,28,29. When
the stimulus amplitude is increased above the spike threshold, the firing rate, reliability and
precision will be optimal for stimulus waveforms at the neuron’s preferred frequency.
Experiments show that preferred frequencies depend on neuron types23,30,31. Models predict
that the preferred frequency arises from the dynamics of voltage-gated channels32–34.

When a neuron is injected with a constant current, after a period of adaptation it will produce
an approximately periodic spike train. The frequency of the spike train will be equal to the
average firing rate of the neuron (the direct current (DC) firing rate), which depends on the
amplitude of the current, but this spike train will not be precise across trials1 (model results
are shown in FIG. 4a). When a small periodic drive is added (FIG. 4b), however, the precision
will improve significantly when the stimulus frequency matches the DC firing rate19,35,36. This
phenomenon occurs even when the neuron does not have a sub-threshold preferred frequency.
Neuromodulators generally have multiple effects in cortical circuits. For instance, they can
change the DC firing rate of the neuron37,38; this particular effect can be modelled as an
additional depolarizing or hyperpolarizing current. Hence, in the model described above,
neuromodulators can in principle alter the DC firing rate so that it approximately matches the
oscillation frequency of the network that the neuron is embedded in. This not only improves
the precision of the neuron by way of phase locking32 but also increases the postsynaptic impact
of a pool of such neurons26. For instance, in a model of odour recognition39, a group of neurons
driven at the same firing rate achieved spike synchronization by phase locking to a common
oscillation.
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What do we know about spike patterns in vivo?
Although spike patterns have been found in vitro in response to current injection at the soma,
they can only have a role in information processing if they are also present in vivo. Here we
review the evidence for spike patterns in vivo, using the visual system as our focus, and discuss
the influence of receiving temporally coherent synaptic inputs due to oscillations. Finally, we
discuss how the spike timing of a neuron is affected by dendritic synaptic inputs.

Evidence for spike-time precision in the visual system
Precise spike firing has been found at almost all levels of the mammalian visual pathway. In
an eye-cup preparation, retinal ganglion cells produced precise and reliable spike trains in
response to a temporally fluctuating visual stimulus24,25,40–42. Precision increased as stimulus
contrast increased, because of an enlargement in the somatic amplitude of the inputs. Neurons
in the lateral geniculate nucleus, which are driven by retinal ganglion cells, have been shown
to respond precisely and reliably to a sequence of spatially uniform image frames with a
fluctuating luminance3,43. When recordings from cells of the same type in different animals
were compared, most of the events occurred at similar times during the stimulus
presentation43. It is likely, therefore, that in the same animal multiple neurons produce spikes
at similar times, resulting in synchronous volleys to the primary visual cortex44.

Neurons in layer 4 of the primary visual cortex can also fire with high precision in response to
visual inputs45,46. Neurons in the mediotemporal cortex in turn receive inputs from the primary
visual cortex and respond to motion. It has been shown that neurons in the mediotemporal
cortex respond precisely to rapid changes in the direction of motion47. The reliability of events
in these spike trains was initially found to be low; however, a re-analysis revealed multiple
reliable spike-time patterns18. Further evidence for precise spike timing at this level is found
in the barrel cortex48 and the auditory cortex49.

Overall, the degree of precision of spiking in response to repeated presentations of the same
stimulus appears to decrease along the visual pathway50, whereas spike-count variability
increases42,43,47,51–53. This could be due to the presence of background cortical activity, in
which case a method to uncover the stimulus-locked precision is needed (FIG. 1d).

The contribution of cortical oscillations to precision
In addition to stimulus-related feedforward inputs, neurons in vivo are driven by internally
generated network activity. Electroencephalograms (EEGs) recorded from the human scalp
exhibit superposed rhythms in various frequency ranges, including the delta (0.5–4 Hz), theta
(4–8 Hz), alpha (8–12 Hz), beta (12–30 Hz) and gamma (30–80 Hz) ranges54. The strength of
these rhythms changes over time and depends on behavioural states and cognitive
processes55–57. The rhythms arise from large-scale, coherent firing of neurons. Extracellular
recordings of local field potentials (LFPs) directly from the cortex reveal bursts of oscillatory
activity. These might modulate stimulus-related activity, either directly (by providing
additional synaptic inputs) or indirectly (by generating gradients in the extracellular
potential58), and thus might cause the apparent imprecision of cortical responses described
above.

The frequency, amplitude and phase of these cortical oscillations are modulated by cholinergic
and GABAergic subcortical projections from the basal forebrain and from other diffuse
neuromodulatory systems59,60. A visual stimulus can reset the phase of an ongoing alpha
rhythm61, and cortical connections can also modify the phase of ongoing oscillations62,63.
Thus, the phase and amplitude of cortical oscillations can be modulated to alter the precision
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and timing of spike volleys. Measurements in vivo could detect this as a modulation of both
the precision of the phase-locked responses and the spike phase relative to the oscillation.

Evidence for phase locking in vivo
A fundamental challenge in neuroscience is to characterize the relationship between the input
to a cortical area and the resulting output spike trains that are transmitted to other cortial areas.
The relationship between the LFP and the recorded spike trains is particularly important as the
LFP is dominated by subthreshold currents that represent inputs to nearby neurons and as the
spikes reflect the output of neurons that project more distantly. Because a periodic drive is
generated at the soma during network oscillations, phase-locked responses are expected in
vivo. In a landmark experiment, researchers recorded from different types of hippocampal
interneurons during theta LFP oscillations64–66 and sharp wave ripples (brief oscillations with
frequencies between 80 and 150 Hz)67. Different interneuron types locked at specific phases
with respect to the LFP, and the phases that they locked to also depended on the frequency of
the oscillation. In vivo studies have also revealed evidence for phase locking in the
neocortex57. In cortical area V4, the correlation in the gamma frequency range between spike
trains and the LFP near the recorded neuron increased during attention56,57. Similarly, in a
behavioural task in which a monkey had to hold a stimulus in working memory68, locking of
spikes to the theta oscillation was increased in response to a neuron’s preferred stimulus
compared with a non-preferred stimulus, independent of changes in the neuron’s firing rate.
In the human brain, spike trains are also locked to the LFP in specific frequency bands, which
depend on the area involved69. For example, locking to the gamma band was more prominent
in the frontal region of the brain than in the parietal and temporal cortices. Correlations also
occur between distant brain areas: the spike trains in rodent prefrontal cortices correlate with
the hippocampal LFP, with approximately a 50 ms delay70. A procedure to uncover this type
of phase-locking is illustrated in FIG. 5.

Phase locking and stimulus locking in the cortex
A cortical neuron receives on the order of 10,000 synaptic inputs71, most of which are from
other cortical neurons and only a small fraction of which are active at any one time. Although
a stimulus waveform is locked to the stimulus onset, the phase of oscillations is set internally
and is therefore typically not connected to the stimulus onset (however, in a recent in vivo
experiment, the phase of ongoing delta oscillations became locked to the onset of auditory
stimulation, which was presented with an inter-stimulus interval that was comparable to the
period of the delta oscillations63). The precision of firing therefore reflects a balance between
intrinsic reverberations (including oscillations) and stimulus properties72.

In a cortical model, when spikes are generated in response to stimulus-related inputs
independently of those that are generated in response to oscillatory inputs, stimulus-locked and
phase-locked responses can be obtained at the same time (FIG. 6a,b). However, in general there
will be interaction between these two types of input. Depending on the nature of the interaction,
stimulus locking can still be obtained. For instance, stimulus locking persists when the
oscillatory inputs change the number of spikes that a neuron produces in response to the
stimulus-related inputs, but not their timing (FIG. 6c), or when the shift in spike times caused
by the oscillation is small (FIG. 6d). Single-compartment models73 predict a strong interaction
that almost surely will destroy stimulus locking and phase locking, because the two types of
input arrive at the same compartment. However, in compartmental models the interaction is
weaker because the synaptic inputs are spatially segregated. Because in vivo neural responses
can alternate between stimulus-locked epochs and phase-locked epochs72, averaging to extract
either the stimulus-locked or the phase-locked response should be carried out with care.
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Propagation of spike patterns in cortical networks
The preceding sections have documented the presence of spike patterns and phase locking at
the level of individual cortical neurons. How can these patterns be retained or further processed
in cortical circuits?

Synfire chains in cortical networks
Precise spike times can lead to synchronous spike volleys in pools of neurons that can propagate
from pool to pool in model74 and in vitro8 feedforward networks with a precision that depends
on a number of physiological parameters. The sequential activation of multiple pools is referred
to as a synfire chain (or as ‘cortical songs’75). Synfire chains have been embedded in large-
scale model networks by increasing the number of synaptic connections between selected pools
of neurons. In those networks, the synfire mode of propagation was often associated with large-
scale wave-like activity propagating through the network, after which the network became
refractory76.

Another modelling study77 determined whether information could reliably propagate from one
pool of neurons to another in the presence of internally generated background activity in a
random network in which a synaptic connection was made between a small fraction of neuronal
pairs. On average, a neuron received synapses from no more than 2% of the neurons in the
network. Seven pools that were connected in a feedforward fashion were selected. The intrinsic
properties of the neurons were parametrically varied and the connections between neurons in
consecutive pools were strengthened (analogous to the effects of spike-timing-dependent
plasticity78). These studies showed that volleys either died out or propagated between pools,
recruiting more spikes at each stage. In the latter case the timing information was lost, because
it was not possible to determine when the response to one volley ended and the response to
another began. Firing-rate information was transmitted more easily when square pulses of
increased external activity were injected into the first pool. Firing rates modulated on a
timescale of a few tens of milliseconds could also be transmitted, but some distortions in the
shape of the transmitted waveform occurred. Based on a single-compartment model, which
assumed that the membrane potential of the entire neuron was uniform, the results suggested
that in a sparse randomly connected network it is difficult to obtain robust and reproducible
signal transmission along a synfire chain. However, real neurons are spatially extended, so the
efficacy of a given synapse might depend on its location and on the concurrent activity of other
synapses in a highly nonlinear way (see below). In addition, specific network architectures
(that is, ones that are not sparse or random) might facilitate the reproducible propagation of
volleys. These two possibilities are reviewed in the following subsections.

Results that are consistent with the existence of synfire chains have been reported in slice
experiments that measured calcium transients from many neurons, but direct evidence for
synfire chains is still absent. Recordings have revealed repeating patterns of activation arising
from a sequence of neurons that became active in the same order75. The patterns repeated more
often than would be expected from random activation75,79 (but see REF. 80 for an alternative
view). However, the spiking precision is difficult to determine because individual spikes cannot
always be resolved.

Decoding synchronous inputs in spatially extended neurons
Cortical pyramidal cells need to integrate information from many sources. For example, a layer
5 pyramidal cell81,82 has access to inputs from all cortical layers and must integrate these into
one single spike train. Historically, dendrites have been modelled as passive structures with a
specific resistance and a capacitance83. However, studies over the past two decades have
demonstrated the non-uniform distribution of many types of voltage-gated channel on

Tiesinga et al. Page 7

Nat Rev Neurosci. Author manuscript; available in PMC 2010 May 13.

H
H

M
I Author M

anuscript
H

H
M

I Author M
anuscript

H
H

M
I Author M

anuscript



dendrites84. The functional relevance of these channel distributions is only now starting to
emerge85–87.

For a passive dendrite, the voltage deflections that result from two excitatory inputs can be
estimated as the sum of the individual deflections. This is an overestimate, because the
depolarization caused by the first input reduces the driving force for the second input.
Therefore, when the response actually exceeds the sum of individual responses, additional
nonlinear mechanisms must be responsible. For instance, these can be based on the activity of
dendritic calcium channels and NMDA (N-methyl-D-aspartate) receptors85. To estimate the
nonlinearity, the voltage deflection at the soma that arises from multiple inputs on the same
dendritic branch of a layer 5 pyramidal cell was determined88. When the measured response
was plotted against the summed response a sigmoidal relationship was found. For weak inputs
the relationship was linear89, but for strong inputs the measured response increased rapidly
with input strength and then saturated. When the same experiment was repeated with synapses
on different branches, the sigmoidal behaviour was absent. Apparently, each dendritic branch
integrates its input independently through a local nonlinearity. This suggests a two step process:
first, synchrony decoding occurs in the dendritic branches, and then global integration with the
inputs from other dendritic branches at the soma follows90.

In CA1 pyramidal cells in the hippocampus, an additional faster nonlinearity is generated by
the activation of sodium channels91. In a landmark study, two-photon uncaging of caged
glutamate was used to apply a spatial pattern of synaptic activation in hippocampal slices.
When a dendritic action potential (dAP) was generated at the apical trunk it quickly propagated
to the soma and elicited a reliable and precise action potential91. When the dAP was initiated
in the oblique dendrites it propagated to the soma but did not lead to an action potential92.
Instead, a rapid voltage deflection was observed at the soma, followed by a slower (but still
nonlinear) deflection that was due to calcium entry. In order to generate a dAP, the synaptic
inputs to the cell needed to be both spatially clustered (within 20 μm) and temporally coherent,
occurring within a few milliseconds of each other (FIG. 7c,d). Spatiotemporally coherent input
at the apical trunk was also more efficient at eliciting somatic action potentials.

These studies show that there are multiple ways to generate action potentials. Some methods
lead to precise spikes that are conducive to generating synchronous volleys, whereas others
are more appropriate for the propagation of firing rate modulations.

Gated temporal information transfer between cortical layer 4 and layer 2/3
Even though coherent synaptic activation makes feedforward propagation of spike volleys
possible, inhibitory circuits and recurrent loops could gate the propagation of spike volleys and
influence their timing. Consider, for example, the feedforward pathway in the visual cortex
that originates from thalamocortical relay cells that project to layer 4 spiny stellate cells (SSCs),
which in turn project to layer 2/3 pyramidal cells93 (FIG. 7a). Thalamocortical synapses are
more effective than intracortical synapses94, but they form only a small fraction of the synapses
onto SSCs95,96. Nevertheless, collectively they seem to be efficient in driving the SSCs45,97.
The reason for this efficiency was elucidated in another cortical area, in neurons that project
from the ventroposteromedial thalamus (VPM) to the barrel cortex98 and that respond to
whisker movement. Membrane deflection in a SSC in response to a single spike in a presynaptic
thalamocortical neuron was small compared to the depolarization that was caused by sensory
events. Nevertheless, because rapid whisker deflections caused synchronous thalamocortical
spikes, the SSC spiked reliably (FIG. 7b). The authors estimated that approximately 30 of the
85 thalamocortical cells that projected to a given cell were simultaneously active98. Simulations
of the impact of synchronous thalamic inputs to a detailed compartmental model of a
reconstructed SSC confirmed the experimental findings and further revealed the importance
of having balanced background inputs from other cortical cells99. The experimentally observed
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spike patterns in the lateral geniculate nucleus correspond at the population level to
synchronous volleys. Taken together with experimental results from other sensory
modalities48,100, this suggests that the output of SSCs might also consist of spike volleys.

In the cat primary visual cortex, the response of thalamocortical cells to a briefly flashed square
was compared to the response of layer 4 and layer 2/3 cortical cells101. The layer 4 response
was reliable, but the layer 2/3 response was less reliable. Evidence for the role of inhibition in
synaptic transmission from layer 4 to layer 2/3 is found in slice experiments in the rodent barrel
cortex102–105. Taken together, these experiments point to the presence of a gating mechanism
between layer 4 and layer 2/3, under the control of inhibition, that allows some signals but not
others to propagate. At present, only the excitatory pathway has been studied in biophysically
constrained models106. The laminar structure of the cortex93,107, in which various recurrent
loops are present, might have advantages for processing and transmitting sensory information
in the form of spike times — as suggested in a recent modelling study108.

Inhibition can modulate firing rate and influence spike times
Precise inhibition generated by fast cortical oscillations can gate and modulate the propagation
of spike volleys. Cortical basket cells make synapses close to or directly onto the soma of
pyramidal cells. In the hippocampus, the spike of one basket cell can synchronize the activity
of a large number of pyramidal cells109. Inhibitory cells are involved in the generation of fast
oscillations, especially those in the gamma frequency range110,111. Consistent with this role,
for in vivo recordings the power spectrum of currents generated by inhibitory synapses has
more power in the gamma frequency range than the power spectrum of currents generated by
excitatory synapses112. To test the impact of inhibitory currents on neural spiking, currents
representing inhibitory and excitatory inputs were injected at the soma using the dynamic clamp
technique112. The properties of the injected current were adjusted so that the overall response
properties of the neurons in vitro were the same as those of similar neurons in vivo. First the
same segment of the inhibitory conductance waveform was injected multiple times, each time
with a different segment of the excitatory conductance waveform. Then the reliability and
precision of the neuron’s spike train was determined. Next the excitatory conductance segment
was repeated and the inhibitory conductance was held constant. The repeated inhibitory
conductance led to a higher precision than the repeated excitatory conductance. To find out
what type of input most effectively drives the cell in vivo, a reverse correlation analysis113 was
performed on the inhibitory and excitatory conductance waveforms separately114. This showed
that spikes of neurons in the association cortex of the cat were on average preceded by a
reduction in inhibition. Neurons are, so to speak, driven by disinhibition.

In network models115, interneurons can be transiently synchronized through ‘synchrony by
competition’ (FIG. 8a–c), in which a top-down projection depolarizes a subset of interneurons,
increasing their firing rate and synchrony. This reduces the firing rate of the remaining
interneurons and synchronizes the ‘winners’. Recent modelling work advanced the hypothesis
that the effects of selective attention are mediated by the top-down activation of
interneurons116–121. Taken together, the different aspects of this model115 predict that selective
attention strongly increases the firing rate of a subset of inhibitory neurons; this was recently
confirmed experimentally122.

When an interneuron network is in a synchronized oscillation, a postsynaptic neuron will
receive volleys of synchronized inhibitory inputs from the network. In the model, a change in
interneuron synchrony could affect the postsynaptic neuron in two ways116. The first is by a
process called multiplicative gain (FIG. 8d), which could mediate the changes in firing rate
that are seen in conjunction with selective attention123. Multiplicative-gain modulation is
important because it increases or decreases the overall strength of the neuron’s response while
preserving the stimulus preference of the neuron124. The timescale of the inhibitory
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conductance is such that this modulation is better achieved for oscillations in the gamma
frequency range116. Second, changes in interneuron synchrony could act as a gate, preventing
spiking when the network is asynchronous and allowing spiking when the network is
synchronous. In either case, the neuron produces spikes that are precisely timed with respect
to the inhibitory rhythm. In principle, information could be coded in the fraction of cycles in
which a spike is produced — the firing rate — or in the relative phase at which a spike is
produced125,126. If the phase of each spike advances with each cycle, as it does in the
hippocampus127, early spikes could evade feedforward inhibition and have a competitive
advantage. In general, the timing of synaptic inputs relative to the postsynaptic spike in an
oscillatory cell could increase or decrease its strengths by spike-time dependent synaptic
plasticity.

Only excitatory inputs that arrive during the period when the inhibitory conductance is low
can be transmitted into an output spike, which is locked to the local inhibitory rhythm. This
allows for a form of selective communication128,129 (FIG. 8e). Using this mechanism, the
specific path that feedforward information follows along multiple groups could be rapidly
altered to achieve behavioural goals. A re-analysis of in vivo data showed that transient
correlations between spike trains in different cortical areas in the cat and in the macaque
occurred predominantly during ‘good’ phase relationships between the respective LFPs in the
gamma frequency range130. Slower rhythms have an important role in this process not only
because they set the excitability of the neurons involved, but also because they set the amplitude
of the fast rhythms63,131, which determines how strong the gating is.

According to the traditional view, cortical interneurons, through tonic inhibition, control the
firing rates of pyramidal neurons — a type of static control. The experiments and models that
we have summarized here indicate that inhibitory interneurons have a more dynamic role, one
that might be of critical importance for regulating the flow of information in the cortex by
controlling spike timing and synchrony in cortical circuits132.

Conclusion
Overall, the spike trains that are produced by a cortical pyramidal cell depend on the coherent
states that are generated by recurrent columnar connectivity, the activation of top-down
projections, and the current sensory stimulation through the feedforward pathway. Each of
these three types of input by itself can only modulate the pyramidal cell’s output, which raises
the question of the nature of the relationship between the temporal dynamics of the stimulus
and the spike patterns that are generated by the pyramidal cell. In particular, what is the nature
of the competition between stimulus locking and phase locking to internal rhythms? The
research that we have reviewed here suggests that ensembles of neurons produce slowly
modulated activity that is accompanied by coherent volleys, with fast rhythms (beta and gamma
rhythms) perturbing the timing or even gating the transmission of volleys, and slower rhythms
(alpha, theta and delta rhythms) controlling the amplitude of fast rhythms. Subcortical and top-
down intercortical projections can influence information processing by modulating the phase
of these rhythms. Data analysis methods can disentangle stimulus locking from phase locking
and thus provide a means to investigate the role of spike timing.

To further explore and validate these suggestions one needs to be able to record simultaneously
from ensembles in different cortical areas, identify the neuron type and be able to perturb spike
times of individual neurons in order to probe the network dynamics. A particularly promising
technology makes use of light- activated excitatory channels and inhibitory (Cl–) pumps,
obtained from archaebacteria, which have recently been sequenced and incorporated in
neurons14,15,133. Inhibitory pumps expressed in motor neurons of Caenorhabditis elegans have
been successfully activated in vivo by light pulses, resulting in a change in the animal’s
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movement15. In vitro, a sequence of light pulses applied to a hippocampal pyramidal cell was
used to shift the spike times produced by injection of a fluctuating current at the soma14. When
performed in vivo, on multiple neurons simultaneously, this method can be used to synchronize
the spike times of an ensemble of neurons at one location and determine the effect on other
cortical areas or even perception.

Taken together, techniques to probe single-neuron dynamics91, to determine anatomical
connections134 and to record and perturb ensemble dynamics14,15, as well as new methods to
analyse spike trains, are contributing to a better understanding of the dynamic nature of brain
function. In the next decade, models and experiments will merge in a way that will allow rapid
progress towards understanding the principles of neural computation.
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Glossary

Spike time The time of occurrence of an action potential, relative to
stimulus onset or another event

Spike volleys A set of spikes emitted at approximately the same time (typically
with a temporal spread of between 1 and 10 ms) by a pool of
neurons

Feedforward information In the context of stimulus–response circuitry, feedforward
information is information that is processed in a single direction
— from sensory input through perceptual analysis to motor
output — without involving feedback information flowing
backwards from ‘higher’ centres to ‘lower’ centres

Top-down information The flow of information from ‘higher’ to ‘lower’ centres,
conveying knowledge derived from previous experience rather
than from sensory stimulation

Spike-time histogram A tool for resolving the behaviour of the firing rate as a function
of time, by averaging across multiple trials or multiple neurons.
Mathematically, it is obtained by counting the number of spikes
in each time bin and normalizing the count by the bin width, the
number of trials and/or the number of neurons

Event A time-point relative to the stimulus onset during which a spike
is found on a significant fraction of the trials

Neuromodulator An endogenous chemical substance that changes the intrinsic
properties of a neuron and the dynamics and strength of
neurotransmission. Neuromodulators can modify neuronal
responses to synaptic inputs on potentially long timescales

Afterhyperpolarization The membrane hyperpolarization that follows the occurrence of
one or several action potentials

Eye-cup preparation A preparation in which the retina is extracted intact so that the
neural responses to activation of the photoreceptors by a visual
stimulus can be recorded
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Local field potential (LFP). The total electrical current in the vicinity of the recording
electrode, reflecting the sum of events in the dendrites of a local
neuronal population. It is often obtained by low-pass filtering
(that is, removal of signals lower than 600 Hz) of the recorded
electrical signal

Compartmental model A computer model that breaks a neuron down into small
electrical compartments and can simulate the propagation of
electrical signals inside the neuron and across its membrane
surface

Cortical pyramidal cell A class of neuron in the cerebral cortex with a pyramid-shaped
cell body. These neurons have dendrites that extend locally and
can project their axonal processes both locally and distally
across many layers and brain areas

Caged glutamate An inactive derivative of glutamate that can be transformed into
the active transmitter, usually by photolysis. This technique
provides an efficient means for achieving a spatially restricted
application of glutamate

Dendritic action potential (dAP). An action potential that is first generated in the dendrites
and which then propagates towards the soma, often but not
always eliciting a somatic action potential after a brief delay

Relay cell A type of cell in the thalamus that sends its axon to the cortex.
Relay cells in the lateral geniculate nucleus receive inputs from
the retina and project to spiny stellate cells in layer 4 of the
primary visual cortex

Spiny stellate cells (SSCs). An excitatory cell type that is common in layer 4 of the
sensory cortex. SSCs have axons that have a local arborization
pattern and have dendrites that are covered by spines

Basket cell A type of interneuron that sends its axon to the cell body of the
postsynaptic cell and surrounds it with a structure akin to a
basket

Dynamic clamp A technique by which the effect of opening ionic channels (a
conductance change) is simulated by injecting into a real neuron
a current that is proportional to the neuron’s membrane potential

Network model A model comprised of neurons connected by synapses that is
used to study the effects of synaptic coupling on the dynamics
of neural activity

Selective attention A cognitive process that is involved in selecting stimuli based
on their behavioural relevance
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Figure 1. Stimulus locking in vitro and in vivo
a| An in vitro reliability paradigm. A current consisting of many repeats of a short stimulus
waveform followed by a period of zero current is injected using an electrode at the soma. The
start of the stimulus is indicated by a red dash. The corresponding output spike train is shown
at the bottom. b| Trials are aligned with the red dashes (the stimulus waveform is shown at the
bottom). When the neuron is stimulus-locked, the spike trains are similar across trials. c| When
spikes are missing in some trials but not in others, the neuron is considered unreliable. When
the spike occurs but the spike time is variable, the neuron is considered imprecise (BOX 1).
d| In vivo, the neuron receives feedforward inputs and recurrent inputs. When the same stimulus
is presented repeatedly (represented by the red dashes), presynaptic neurons produce spike
trains with repeatable motifs — spike patterns — that are similar in each neuron. Across a
population, this input consists of a sequence of synchronized spike volleys. Recurrent inputs
are periodic when the neuron is embedded in an oscillatory network. The beginning of each
oscillation cycle is indicated by the green dashes. Two types of output spike train are shown:
a stimulus-locked train and a phase-locked train. e| When the neuron is stimulus-locked, precise
and reliable spike trains are obtained only when the trials are aligned with stimulus onset. When
the neuron is phase-locked, precise and reliable spike trains emerge only when the spike trains
are aligned with the start of the oscillation cycle.
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Figure 2. Calculating the reliability and precision of neural spike trains
a| The spike trains shown were obtained from simulations of a model neuron with Hodgkin–
Huxley-type voltage-gated channels driven by a fluctuating current26. Similar trains could be
obtained experimentally from neurons in vitro. The rastergram shown was constructed by
plotting the spike train for each trial on a separate row, aligned with stimulus onset. The y
ordinate of each tick is the trial number and the x ordinate is the spike time relative to the
stimulus onset. For further analysis the data were divided into segments (shown in different
colours). b| Twenty trials from part a from the time interval between 100 and 350 ms relative
to the stimulus onset, showing that precision and reliability are distinct quantities. Event 1 is
reliable — that is, a spike occurs on each trial — but it is not precise (there is a large jitter).
Event 2 is precise but not reliable. Event 3 is both precise and reliable. c| Spike-time histogram,
showing how the average firing rate (the number of spikes per second) across a series of trials

Tiesinga et al. Page 20

Nat Rev Neurosci. Author manuscript; available in PMC 2010 May 13.

H
H

M
I Author M

anuscript
H

H
M

I Author M
anuscript

H
H

M
I Author M

anuscript



changes with time. Events (blue stars) are peaks in the histogram and event reliability is the
area under the peak. A threshold (the green line) is set, to define the events. When the threshold
is set too high, unreliable events (such as event 2) are missed; when it is set too low, noise
spikes could be interpreted as events. For the purpose of the reliability calculation (described
in a previous publication; see REF. 135), each spike is replaced by a waveform of width sigma.
The parameter sigma represents the temporal resolution of the spike times. d| Reliability as a
function of sigma. Each curve is colour-coded to match the colour of the time segment in the
rastergram (a) that was used in the calculation. The jitter (the standard deviation of the spike
times in an event) corresponds approximately to the value of sigma for which the reliability
becomes more than 0.5. The precision is equal to 1 divided by the jitter. e| The jitter for each
segment. The third segment (shown in red) never intersects 0.5 and the jitter is not defined.
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Figure 3. Uncovering spike patterns
a,b| Having identified precise and reliable spike trains (see FIG. 2), spike patterns can be
revealed. The value of the similarity (Sij) between the spike train on trial i and the spike train
on trial j is represented as colour of the pixel on row i and column j. On the colour scale, blue
indicates low similarity and red indicates high similarity. c,d| The rastergrams from which the
similarity matrices in a and b, respectively, were calculated (the data were taken from the fourth
segment (shown in cyan) of FIG. 2a). In a and c the trials are ordered as they are recorded,
whereas in b and d they are reordered using fuzzy K-means clustering139 to bring similar trials
close to each other18. Spike patterns are operationally defined as groups of trials that are more
similar to each other than to the other trials. In a no obvious structure is visible, but in b spike
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patterns have been uncovered. These patterns correspond to square blocks, with high similarity
values on the diagonal. In d each spike pattern is shown in a different colour. The spike patterns
had different spike times and, in some cases, a different number of spikes. e| Reliability is the
average degree of similarity between pairs of spike trains at the temporal resolution given by
the parameter sigma (BOX 1). Reliability is plotted against sigma for each spike pattern. f| The
jitter (the standard deviation of the spike times in an event) for each spike pattern and across
all trials. The precision (the inverse of the jitter) that is evaluated for each pattern separately
is much higher than that which is calculated with all trials combined. g| Voltage traces
corresponding to clusters 1 and 4. Cluster 4 spikes at 405 ms whereas cluster 1 does not; at
460 ms the situation is reversed. After a transient hyperpolarization that prevents spiking, the
two voltage traces are close to convergence at 540 ms. This graph shows that spike patterns
correspond to distinct voltage trajectories26.
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Figure 4. The effect of a periodic or an aperiodic drive on reliability in a model neuron
Each part shows, from top to bottom, a graph with two voltage traces (the red and black lines)
and the stimulus waveform (the blue line), a rastergram and a histogram. The model neuron
used in FIG. 2 provided the data. a| In response to a current step, precision decreases over time.
b| When a periodic current is superimposed, the precision is maintained because of a resonance
effect. The firing rate is approximately the same in a and b. c| When the phase of the periodic
drive is varied from trial to trial the precision is reduced (the stimulus waveform is only shown
for one phase). d| In response to an aperiodic current, well-defined events with a range of
precisions are obtained.
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Figure 5. Uncovering phase locking to internal activity
Phase locking to internal activity is uncovered by analysing simultaneously recorded spike
trains and the local field potential (LFP) generated by a simple model. a| A short segment of
an example LFP trace that was constructed by adding three noisy sinusoidal waveforms with
frequencies in the gamma, theta and delta frequency ranges. b| Sample spike trains were
constructed to be weakly phase-locked, in the gamma frequency range and at a delay of 50 ms,
to the example LFP. c| The three peaks in the power spectrum of the example LFP reveal the
presence of the frequency content in gamma, theta and delta. d| A histogram of the phase of
the gamma oscillation at the spike times shown in part c. The peak (indicated by the arrow)
shows that the spikes have a weak preference for a phase of 270 degrees, which means that
they are weakly phase-locked. The histogram looks smooth because it is averaged across 200
neurons firing at 10 Hz during a 40-second segment. This raises the issue of how to find groups
of similarly responding neurons in multielectrode recordings without knowing their behaviour.
The clustering procedure introduced in FIG. 3 is useful in this regard. e| The spike-triggered
average (STA) of the LFP is obtained by collecting, for each spike, the LFP waveform in the
interval from 12.5 ms before to 12.5 ms after the spike. The STA is the average across all
collected waveforms. The peak (indicated by the arrow) shows that spikes are most correlated
with the LFP 50 ms in the past. f| A histogram of the phase of the gamma oscillation 50 ms
before the spike times in part c. The neuron spikes preferentially at a phase of 180 degrees.
The peak is sharper than in part d, which means that the true precision of phase locking was
uncovered.
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Figure 6. Response of a model cortical cell to stimulus-related and oscillatory background synaptic
inputs
A model cell was embedded in a network producing a delta oscillation. A stimulus lasting 0.7
seconds was presented 1,000 times, with a random interval between presentations. As a first
approximation it was assumed that the stimulus and the oscillation elicited independent precise
spike patterns. a| The response of the neuron aligned with the stimulus onset. b| The response
aligned with the oscillation cycle, where the x ordinate for each spike is its phase with respect
to the oscillation. The top panel contains a rastergram across the first 50 stimulus presentations
(the data in blue) and a rastergram across the first 50 oscillation cycles (the data in red). The
bottom panel shows the corresponding spike-time histograms across all data, with the stimulus-
related spikes in red and the oscillation-related spikes in blue. When they are aligned with the
stimulus onset, the stimulus-induced spikes are precise and the oscillation-related spikes form
a random background. When the data are aligned on the oscillation cycle the situation is
reversed, with the stimulus-related spikes forming a random background. c,d. Under realistic
circumstances, there will be interaction between the stimulus-related and the oscillation-related
synaptic inputs. Two simple cases are illustrated using the stimulus-aligned spike-time
histograms. c| The delta oscillation modulated the number of spikes that were elicited by the
stimulus presentation, with the higher rates occurring at the beginning of the oscillation cycle.
The precision (the width of the peaks) was not affected but the spike count across trials was
much more variable. d| The delta oscillation shifted the times of the stimulus-elicited spikes
depending on when they occurred in the oscillation cycle. This reduced the precision: the first
two peaks seem to have merged. If stimulus-related information is to be coded in the precise
spike times, the interaction illustrated in part c is innocuous but the one in part d is harmful.
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Figure 7. Experimental observations suggest that volleys that are generated by spike patterns are
preferentially processed in the early sensory cortex
a| A simplified representation of the laminar structure of the feedforward pathway in cortical
area V1. Thalamocortical (TC) cells project to spiny stellate cells (SSCs) in layer 4, which in
turn project to layer 2/3 pyramidal cells. The layer 2/3 pyramidal cells receive feedforward
input from layer 4, recurrent inputs from other pyramidal cells and top-down inputs from other
cortical areas (such as V2). In both layer 4 and layer 2/3 there is feedforward inhibitory input.
The inhibitory cells and their projections are shown in blue, whereas the excitatory cells and
their projections are shown in red. b| TC cells project to SCCs in layer 4 of the sensory cortex.
Experimental recordings of TC neurons indicate the presence of spike patterns18,43, which
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suggests that there are synchronous spike volleys at the population level. The spike volleys
could be synchronous to a few SSCs (yellow highlight) or they could be synchronous across
inputs to a large group of SSCs (red highlight). Synapses made by TC cells are more effective
than intracortical synapses, but there are fewer of them. Nevertheless, because of synchronous
spikes the TC cells as a group are effective98. At the cortical level, this leads to synchronous
output spikes across the SSC population when the synchrony extends across many TC cells
(red highlight), but not when it is limited to only a few TC cells (yellow highlight). c,d.
Pyramidal cells in layer 2/3 (REF. 140) and layer 5 (REF. 141) of the cortex, and those in
hippocampus91,92, display dendritic action potentials (dAPs) that move towards the soma
where, in many cases, they lead to a precise and reliable output spike. Experiments in the
hippocampus that used caged glutamate established the conditions under which dAP are
generated91. c| dAP were not obtained when a pyramidal cell was stimulated by asynchronous
spike trains. Target synapses are depicted as red circles. d| dAP were obtained when the input
spike trains were synchronous and the synapses they activated were close together (clustered)
on the dendrite (arrow 1; synaptic distance less than 20 μm); they were not obtained when the
synapses were further apart (arrow 2; synaptic distance more than 20 μm). LGN, lateral
geniculate nucleus.
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Figure 8. Attentional modulation of synchrony and phase in a model network
a –c. Synchrony by competition. A network model with Hodgkin–Huxley-type neurons was
used for the simulations115. a| In an inhibitory network of 1,000 neurons, 250 neurons
(represented by the green dots) are transiently activated by a 500-ms depolarizing current pulse
(represented by the yellow bar). The remaining 750 neurons (represented by the red dots) are
not stimulated. The current pulse represents the effect of a top-down excitatory projection that
has been hypothesized to mediate the effects of selective attention. b| The firing rate of the
activated neurons increases (green line) but the mean stays approximately constant (blue line)
because the non-activated neurons are suppressed (red line). c| The network as a whole
synchronizes, as indicated by the sharper and higher peaks in the graph. d| The transformation
of synaptic inputs into an output spike train is often characterized quantitatively as the firing
rate (f) that is obtained in response to the injection of a current step as a function of the amplitude
(I) of the step (the f–I characteristic). A gain change of the f–I means that, for the same value
of I, a different firing rate is obtained (expressed as a gain factor (g) times the old firing rate
(f)). The gain change is multiplicative when g is independent of the value of I. Changes in the
synchrony (precision) of inhibitory inputs, such as those that are generated in the interneuron
network in a, change the gain of postsynaptic neurons in an approximately multiplicative way.
Decreasing jitter increases the firing rate. The value of the jitter for each curve, expressed in
milliseconds, is shown in the key. The data were obtained from simulations of a single-
compartment model116. e| An example of selective communication using phase relationships.
There were 3 pools of neurons, each comprising 200 pyramidal cells (represented by the black
triangles) and 50 interneurons (represented by the blue and red circles). The group 1 neurons
projected to the group 2 and 3 neurons. The rastergrams are colour-coded according to the
colour of the symbol for each cell group. The interneurons in each group were synchronized
but had different phases. Group 1 interneurons (represented by the red dots) lagged behind
those in group 2 (represented by the blue dots in the right-hand upper panel) but led those in
group 3 (represented by the blue dots in the right-hand lower panel). As a result, when an
excitatory volley from group 1 (represented by the black dots in the left-hand panel) arrived
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in group 2, the inhibition had already partially decayed and the neurons responded (represented
by the black dots in the right-hand upper panel). Conversely, for group 3 the excitatory volley
arrived at the time with the highest inhibition, and no spikes were produced. The spikes of the
interneuron network in group 1 (red dots) are repeated in the rastergrams for groups 2 and 3
to provide a reference time. Simulation data were obtained from a network model similar to
one used previously to study attentional modulation in cortical area V4118. Parts a and c
reproduced, with permission, from REF. 115 © (2004) MIT Press. Part d reproduced, with
permission, from REF. 116 © (2004) Elsevier Science.
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