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Abstract
Chromatin immunoprecipitation experiments followed by sequencing (ChIP-seq) detect protein-
DNA binding events and chemical modifications of histone proteins. Challenges in the standard
ChIP-seq protocol have motivated recent enhancements in this approach, such as reducing the
number of cells required and increasing the resolution. Complementary experimental approaches –
for example DNaseI hypersensitive site mapping and analysis of chromatin interactions mediated
by particular proteins - provide additional information about DNA-binding proteins and their
function. These data are now being used to identify variability in the functions of DNA-binding
proteins across genomes and individuals. In this Review, I describe the latest advances in methods
to detect and functionally characterize DNA-bound proteins.

DNA-binding proteins play critical roles in many major cellular processes such as DNA
transcription, splicing, replication, and repair. These proteins include transcription factors
that bind preferentially to certain DNA sequences as well as histone proteins that form the
core of nucleosomes, the basic unit of chromatin. Neither genomic locations of bound
factors nor of modified histones can be accurately predicted in a particular cell type using
DNA sequence features alone, and functional assays are necessary to identify these cellular
characteristics. Chromatin immunoprecipitation coupled with microarrays (ChIP-chip) or
short-tag sequencing (ChIP-seq) has become the standard technique for identifying locations
and biochemical modifications of bound proteins genome-wide1-3. Recent advances in ChIP
methodology have overcome some of the limitations of the ‘standard’ ChIP experiment and
the development of complementary assays and analyses have expanded the number, types,
and resolution of protein-DNA interactions discovered.

In this review, I discuss the current state of ChIP-based experiments including modifications
of the standard ChIP protocol and review basic features of ChIP-seq analysis pipelines. I
then describe alternatives to ChIP such as open chromatin assays such as DNase-seq4-7,
FAIRE-seq8-10, and genome-wide DNaseI footprinting11-14. Finally I discuss approaches to
characterizing protein-DNA interactions that are improving understanding of function.
These include three-dimensional chromatin assays such as chromatin conformation
capture15-17 and ChIA-PET18, 19 that provide evidence for functional targets of DNA-bound

Correspondence to TSF. tsfurey@email.unc.edu.

Online links
UCSC Genome Browser: http://genome.ucsc.edu
Gene Expression Omnibus (GEO): http://www.ncbi.nlm.nih.gov/geo/
Picard Sequence Analysis Tools: http://picard.sourceforge.net/
Furey Lab at the University of North Carolina at Chapel Hill: http://fureylab.web.unc.edu/
Access to this interactive links box is free online.

NIH Public Access
Author Manuscript
Nat Rev Genet. Author manuscript; available in PMC 2013 June 01.

Published in final edited form as:
Nat Rev Genet. 2012 December ; 13(12): 840–852. doi:10.1038/nrg3306.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://genome.ucsc.edu
http://www.ncbi.nlm.nih.gov/geo/
http://picard.sourceforge.net/
http://fureylab.web.unc.edu/


proteins, and analyses of sequence-based data from ChIP20, 21 and other experiments22-24

that reveal ALLELE-specific effects on protein-DNA binding.

ChIP-seq experiments
Current ChIP-seq experiments

ChIP is the most direct way to identify binding sites of a single DNA-binding protein or
locations of modified histones. The basic steps of the ChIP-seq assay have been reviewed
elsewhere25-27 and are depicted in Figure 1A for transcription factors and 1B for histone
modifications. The ENCODE Consortium28 has performed hundreds of ChIP-seq
experiments and has used this experience to develop a set of working standards and
guidelines29 (Box 1). It must be noted that given the diversity of cell types, conditions,
factors, and modifications being assayed, it is near impossible to define common guidelines
that will be appropriate for all situations. From a technical perspective, the success of a ChIP
experiment depends on the development and validation of a highly specific antibody to the
bound protein or modification. Antibody quality varies, even between independently
prepared lots of the same antibody, as demonstrated in a recent assessment of over 200
human, fly, and worm antibodies within the ENCODE and modENCODE projects30. In this
study, 25% failed specificity tests and 20% failed immunoprecipitation experiments. In
addition, multiple histone modifications can alter the efficacy of certain antibodies31. Other
technical challenges include the requirement for large numbers of cells and prior knowledge
of the existence of a DNA-binding protein or histone modification. Possible solutions to
these issues are considered below and in later sections.

Limited cells
Typically, large numbers of cells (~10 million) are required for a ChIP experiment limiting
both the types of cells that can be assayed as well as the number of ChIP experiments that
can be performed on a valuable sample. It can be especially challenging in small model
organisms where multiple whole animals may be necessary to achieve these quantities. Two
protocols have been recently developed to address this problem through post-ChIP DNA
amplification (Figure 1A,B).

Nano-ChIP-seq32 has been successfully performed on as few as 10,000 cells for histone
modifications. It is recommended that variable sonication times and antibody concentrations
are used, scaled in proportion to the number of starting cells. The small amount of DNA
extracted after performing the ChIP experiment is PCR amplified using custom primers that
form a hairpin structure at the 5′ end to prevent self-annealing when being added. The
primers also contain a BciVI restriction site that allows the direct addition of Illumina
sequencing adapters to the resulting DNA, which makes DNA library preparation and
sequencing straightforward. The number of cells required is dependent on multiple factors
including antibody efficiency and abundance of the target protein. Therefore, while 10,000
cells were sufficient for assaying the H3K4me3 chromatin mark, ChIPs for less abundant
histone modifications or transcription factors will likely require more cells and may require
further optimization of certain steps such as sonication time.

The second protocol uses single tube linear amplification (LinDA) and has been successfully
applied for transcription factor ERα using 5,000 cells and for the histone modification
H3K4me3 using 10,000 cells33. The key to this technique is an optimized T7 RNA
polymerase linear amplification protocol34. A major concern in any amplification protocol is
that technical biases would unevenly amplify the starting material. LinDA was shown to be
robust for even amplification of starting material; importantly, it seemed to avoid bias in
relation to GC content, which is generally problematic for PCR-based approaches.
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Increased precision
Standard ChIP-seq experiments that use sonication to fragment chromatin result in libraries
containing DNA molecules that are ~200 bases long, even though each protein typically
binds only 6-20 bases. In addition, resulting libraries are often contaminated with DNA not
bound by the target factor, which has necessitated the use of the input control experiments
and is responsible for some common systematic biases.

ChIP-exo35 uses lambda (λ) EXONUCLEASE to digest the 5′ end of protein-bound and
formaldehyde CROSS-LINKED DNA fragments to a fixed distance from the bound protein (Figure
1A); fixation is a barrier to 5′-3′ digestion. Since DNA fragments are produced from both
strands during ChIP, the 5′ ends of sequence-tags align primarily at two genomic locations
corresponding the barriers on each strand, the protein being bound to the region inbetween.
In addition, the exonuclease largely eliminates contaminating DNA. Experiments in yeast
for the Reb1 transcription factor35 showed ChIP-exo could identify binding sites with single
basepair precision, a 90-fold greater precision than when using the standard protocol, and
with a 40-fold increase in the signal-to-noise ratio indicating lower background
(contaminating) signal.

Multiple binding events
DNA bound proteins and histone modifications work together and with other genomic
modifications to perform cellular functions. When multiple experiments indicate different
proteins or modifications at the same genomic location, it is not clear whether these are
simultaneously present or present on different chromosomes in the same cell or in different
cells. Sequential ChIP, or re-ChIP or co-immunoprecipitation36, uses antibodies to different
proteins in successive experiments to determine genomic locations where both targets are
present, but experiments have only been performed at individual loci and not in conjunction
with high-throughput sequencing. Recently, assays that perform bisulfite sequencing to
identify methylated DNA within immunoprecipitated chromatin fragments have been
developed37, 38. These genome-wide experiments showed that DNA methylation and
H3K27me3 modified histones can occur simultaneously. More generally, new techniques
have been developed to reveal the identities of individual proteins interacting in larger
complexes in human and model organisms39-47 providing evidence for combinations of
factors that will bind together.

ChIP-seq analysis pipelines
There has also been a large effort to improve analytical tools necessary to interpret the
sequence data output from ChIP-seq experiments. Computational processing pipelines are
generally implemented to progress from raw sequence reads to usable annotations. Steps
common to many pipelines are depicted in Figure 2. Each step has led to the development of
specialized software tools, briefly discussed below.

Sequence aligners must be fast and accurate, and several strategies have been developed to
achieve these goals (Table 1; see 48 for a recent review). Given a final set of aligned
sequences, genomic regions are identified that contain enriched signals, or ‘peaks’, where
more sequences are aligned than would be expected by chance, indicating locations of
binding sites or histone modifications. Several software programs have been developed to
identify these peaks (Table 1; see49-52 for recent comparisons of methods). When available,
data from input control experiments are used by most peak callers to represent background
levels of signal. Many also control for differences in MAPPABILITY to regions of the genome. As
described in Box 1, peaks can be point source (highly localized signals, such as for
transcription factors), broad source (signal spans large domains, such as for some histone
modifications such as H3K36me3) or mixed source (has elements of both, such as RNA
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PolII). Each of these require different detection strategies with some software focused
primarily on one type of peak, and others offering different settings that tune the software
based on the peak shape.

It is often desirable to compare data from multiple experiments, for example assaying the
same transcription factor in two different cell types or conditions, to investigate common
and cell-type specific activity. Simply comparing peaks from each experiment is often used,
but this may not identify regions called as peaks in both but with very different strengths of
signal, or may incorrectly identify regions that were just above the peak threshold in one but
just below in the other. Several software packages, originally developed for RNA-seq data,
are now available that can be adapted to identify statistically significant differences based
directly on ChIP-seq read count data (Table 1; see 53, 54 for a comparison).

With experimental evidence of factor binding sites, there is an opportunity to improve the
characterization of preferred DNA BINDING MOTIFS for each factor. Several groups have developed
software that uses information from ChIP-seq experiments during motif discovery55-60. The
more accurate modeling of binding preferences allows for better prediction of significant
signals and the precise DNA contact site for factor binding events identified by ChIP-seq.

Sequencing considerations
We are still discovering biases in sequence data due to a combination of genomic
characteristics, experimental protocols, specific sequencing technologies, and analytical
methods. These have been studied in ChIP-seq data, generated using Illumina’s Genome
Analyzer IIx sequencer, to better understand how to uncover true signals61. Findings from
this study and others have indicated the need to normalize for chromatin structure and GC
content because regions that have open chromatin and higher GC content produced
proportionately more sequences. The authors also showed that sequencing paired-ends can
nearly double the effective genomic coverage in repeat regions, but with increased
sequencing costs. They also assessed the effect of sequencing depth on accuracy and
sensitivity and found that some binding sites are missed even at high depths (16.2 million
reads in Drosphila, equivalent to approximately 327 million reads in human).

Further analytical challenges
Despite this progress, several challenges remain. As read-length increases, the current short
read aligners will likely require further modification48 and alignments to repetitive
sequences will remain a challenge62-64. Continued effort is needed to develop or improve
methods to identify real events, and to enable a better interpretation. For example, although
we would like to think of the assayed binding or modification events as binary, i.e. a protein
is or is not bound to a given location, the data is more continuous in nature. Signal strength
at a particular location is influenced by the strength of the interaction, which can be
modulated by variations in genotype and by the percentage of the population of cells
assayed that have the binding or modification event. Signals may reflect not only direct
binding events, but also indirect binding where one factor is interacting with another factor
that is bound to DNA. Distinguishing between these two events is important but cannot be
directly done from ChIP data.

Open Chromatin
Most transcription factors cannot stably interact with their DNA targets if the DNA is
nucleosomal. For stable binding to occur, interfering nucleosomes must be displaced or
translocated to create a nucleosome-depleted, open chromatin region. Detecting open
chromatin complements ChIP-seq data, and can simultaneously identify binding sites for
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nearly all factors. Two distinct assays, DNase-seq and FAIRE-seq, have been developed to
directly detect open chromatin (see 65 for a review of genome accessibility experiments).

DNase-seq and FAIRE-seq
The DNaseI endonuclease non-specifically digests DNA, but in the normal context of
chromatin structure it will preferentially digest unbound open chromatin. Since most DNA is
wrapped in a nucleosome, DNaseI hypersensitive (DHS) sites largely correspond to
nucleosome depleted regions and these are primarily regions that have gene regulatory
functions, such as PROMOTERS, ENHANCERS, SILENCERS, INSULATORS, and LOCUS CONTROL REGIONS

66-68. DNase-seq
experiments (Figure 1C) combine traditional DHS assays with high-throughput sequencing
to simultaneously identify all types of regulatory regions genome-wide4, 7, 69. The 5′ end of
a sequence tag generated by DNase-seq indicates the site of a DNaseI digestion event, and
regions of enrichment in digestion events are identified as DHS sites, each of which can
contain binding sites of multiple factors. Comparisons with ChIP-seq data indicate DNase-
seq captures the vast majority of binding sites for most factors4, 6, 7.

The Formaldehyde-Assisted Identification of Regulatory Elements (FAIRE-seq) assay8, 9

starts with formaldehyde cross-linking, similar to ChIP, but then instead of using an
antibody to target specific factors, DNA is sonicated, and the extract is subjected to Phenol-
chloroform extraction. The nucleosome-depleted fraction of DNA is preferentially
segregated to the aqueous phase. FAIRE-enriched DNA has been shown to correspond to
regulatory regions8.

Enriched regions from these two assays are highly overlapping but are not identical6. Both
show good correspondence to ChIP-seq data for multiple factors with most factor sites found
by both methods. However, each method identified a subset of putative regulatory elements
not seen in the other. Binding sites of certain factors (FOXA1, FOXA3, GATA1) were
better identified by FAIRE-seq while others (ZNF263, CTCF) were more often seen in
DNase-seq data. Sites only found in DNase-seq assays were enriched at promoter regions
and with promoter-associated H3K4 tri-methylation and H3K9 acetylation histone
modifications, while sites specific to FAIRE-seq were more often in internal introns and
exons, intergenic, and H3K4 mono-methylated regions6.

The FAIRE-seq assay is fairly easy to perform, though some optimization of cross-linking
times may be needed for different cell types or tissues due to variation in fixation
efficiency10. DNase-seq can be more difficult at the bench with optimizations of cell lysis
procedures and DNaseI concentration required5. The signal-to-noise ratio, i.e. the fraction of
sequences in enriched regions vs. non-enriched regions, is higher for DNase-seq than for
FAIRE-seq, and these data can additionally be used to identify more precise DNA binding
sites, or DNaseI footprints, as described below. Advantages of DNase-seq and FAIRE-seq
are that they can identify genomic locations bound by proteins that are uncharacterized or
for which antibodies do not exist. However, standard open chromatin analysis does not
allow determination of which protein(s) are present in these regions.

Nucleosome positioning experiments such as MNase-seq70, 71 use micrococcal nuclease
digestion to determine where nucleosomes are present and, by extension, nucleosome free
regions. For large genomes, such as human, this may not be as economically practical since
>90% of the genome is nucleosomal. Significantly greater sequencing coverage is required
in this case to obtain the same level of resolution as open chromatin assays in these cases.

DNaseI Footprinting
Smaller, more focal areas of DNaseI protection within a larger DHS site, called DNaseI
footprints (Figure 3), result from the binding of individual proteins or complexes. Single-site

Furey Page 5

Nat Rev Genet. Author manuscript; available in PMC 2013 June 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



DNaseI footprinting has been used to identify binding sites at individual loci for over 30
years72 and DNase-seq now allows for the discovery of footprints genome-wide7, 11-13.

Two different basic strategies have been employed for predicting protein binding sites using
DNaseI footprints in DNase-seq data. The first tries initially to delineate individual
footprints solely based on the distribution of the sequence reads; you would expect a
depletion of 5′ends of reads within the footprint compared to the immediately adjacent, non-
footprint bases. This strategy has been employed in the yeast and human genomes to identify
8-30bp footprint regions of significantly reduced DNaseI digestion compared to a random
background distribution11, 14 and in the human genome using a HIDDEN-MARKOV MODEL (HMM) to
model the characteristic changes in sequence read density in footprints12. To predict what
factor may be bound in each identified footprint, transcription factor motif databases such as
TRANSFAC73, Jaspar74, and UniPROBE75 can be scanned using the sequence in the
footprint. Footprints can also be used to identify novel transcription factor DNA binding
motifs. A recent analysis of 41 diverse cell-types showed that approximately 90% of all
motifs in TRANSFAC, Jaspar, and UniPROBE could be identified using footprinted
sequences, while an additional 289 distinct motifs could be defined14. Comparing ChIP-seq
data with motifs in footprints also provides the ability to estimate what sites are being
directly vs. indirectly bound by a factor14. As these are predictions, it is recommended that
specific binding events are tested experimentally.

An alternative strategy implemented in the CENTIPEDE software tool13 essentially
performs the above steps in reverse order. First, the genome is scanned to identify all
potential binding sites for a given DNA binding protein based on its motif. CENTIPEDE
then employs an unsupervised BAYESIAN MIXTURE MODEL to predict which of these sites are bound by
protein and which are not bound in a particular cell type. This probabilistic model uses
evidence based primarily on DNaseI digestion, but can also incorporate evidence from the
evolutionary conservation of bases and the presence of histone modifications, if that data is
available. A second analysis in this study13 using all 10-mers enriched in DHS sites
predicted 49 novel motifs not found in existing motif databases, demonstrating that
CENTIPEDE can also find binding sites of undefined factors.

A comparison of the accuracies of the two methods has not been performed. The first
method may be more appropriate for a more global annotation of potential binding sites
regardless of the existence of a motif, whereas CENTIPEDE provides a more
straightforward method to identify footprints for particular factors with known binding site
preferences. Both methods are constrained by sequencing depth that can limit their ability to
identify footprints in DHS sites with reduced signals in DNase-seq data, and by the lack of
knowledge of binding site preferences for factors. Increased sequencing depths will allow
for further refinement of footprint models. As DNaseI footprint annotations are generated
for more cell types, motif finding algorithms may help predict new factor binding motifs that
in turn will help with the annotation of footprints.

Mapping Chromatin Interactions
Identifying protein-DNA binding sites is important, but that by itself does not lead to an
understanding of the regulatory programs and other biological processes in cells. ChIP-seq,
DNase-seq, and FAIRE-seq do not map each bound protein to the target gene(s) it is helping
regulate or to genomic region(s) with which it is interacting to form a higher order
chromatin structure. Towards this end, approaches have been developed based on the
chromatin conformation capture (3C) method15. This method has been extended to improve
scope and/or precision (5C16, Hi-C17), and adapted to identify interactions associated with
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specific proteins (Chromatin Interaction Analysis with Paired-End Tag (ChIA-PET)
sequencing18, 19).

The principle of chromatin conformation capture experiments (Figure 4A) is to cross-link
genomic regions that are in close proximity (similar to ChIP-seq), digest the DNA using
restriction enzymes to create pairs of DNA cross-linked fragments that originated and
identify these pairs of fragments (for example using paired-end sequencing after ligation and
amplification of the fragments).

3C experiments require PCR primers that are designed for regions of interest and thus are
low-throughput. However, designing primers for promoter regions of genes along with
regulatory regions identified through ChIP-seq or DNase-seq experiments can identify
potential interactions between specific bound proteins and their target genes. 5C
experiments simultaneously use thousands of primers in one experiment to detect millions of
interactions16. 5C is still limited in the size of the genomic region that can be assayed by the
number of primers that are incorporated and sequencing depth to confidently detect
interactions. This assay was used to analyze a 400Kb region that included the human β-
globin locus and was able to confirm known interactions between regulatory elements and
genes in the locus as well as identify new looping interactions. Hi-C does not depend on
primers but instead incorporates BIOTINYLATED residues after restriction enzyme digestion that
allow these fragments to be pulled down using streptavidin beads and the detection of
interactions genome-wide. Extremely deep sequencing is required to confidently identify all
interactions. While this represents a substantial increase in throughput, the resolution is
limited to a megabase scale due to the frequency of restriction sites in the genome76. This
limits the ability to confidently associate individual factor binding sites with target genes. A
recent study showed that Hi-C was able to correctly separate interaction domains in the
HoxA locus that is separated by a known CTCF insulator element76. This information does
provide boundaries for potential factor-gene interactions.

ChIA-PET (Figure 4A) also starts with formaldehyde-based cross-linking, but this is
followed by fragmentation via sonication and an immunoprecipitation step using a specific
antibody, as is done in a ChIP experiment. Ligase is added to create chimeric DNA
fragments followed by restriction enzyme digestion and paired-end tag sequencing. ChIP-
seq experiments for the factor of interest are also performed to support the interaction data
and annotate where the factor is bound.

ChIA-PET provides high-resolution interaction data genome-wide that involves a given
DNA-binding protein. An initial study of the estrogen receptor α (ERα) protein revealed
ERα binding sites are involved in long range looping interactions with gene promoters and
affect transcription rates77. siRNA knockdowns of ERα showed at least some of the
interactions disappeared and transcriptional regulation was affected. As with Hi-C, the
resolution of ChIA-PET is limited by the frequency and distribution of restriction enzyme
digestion sites. Because ChIA-PET relies on an antibody against the factor of interest, as
with ChIP an increase in available antibodies will increase the scope of interactions that can
be discovered by this method.

Data from both ChIA-PET and 5C experiments are available in the UCSC Genome Browser
(Figure 4B), which provides a visual representation of the sequenced paired end tags.
Together, the chromatin conformation capture and ChIA-PET technologies offer the ability
to generate evidence of what genes are being targeted by DNA bound proteins and regions
with specific histone modifications.
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Variation in Protein Binding
ChIP-seq, DNase-seq, and chromatin interaction experiments generate complex data sets
reflecting the dynamic nature of the biological processes being measured. The results of
these experiments provide a snapshot of varying chromatin states and protein binding events
across millions of cells that are subject to both genetic and environmental influences.
Signals from these data reveal a spectrum of intensities, but the molecular underpinnings of
this variation - among loci in the same genome and across multiple individuals – remains
unclear. Using data from these experiments, we can begin to understand better both types of
variation.

Variation across loci
DNA-binding proteins can generally interact with a range of DNA sequences giving rise to a
sequence “motif” to describe their binding preferences. A motif, often more specifically
defined as a position weight matrix, describes the nucleotide preferences, most often defined
as probabilities, at each position in a binding site. These probabilities are usually based on
the frequency at which each nucleotide is present in known binding sites identified across
the genome. It is generally thought that the presence of the higher probability nucleotides at
a locus indicates an increase in binding affinity and/or specificity. Binding affinity refers to
the strength of an interaction and is generally specified in terms of a DISASSOCIATION CONSTANT,
whereas binding specificity refers to the preference for binding to specific sequences. Higher
affinity or specificity sites may be expected to generate higher signals in protein-binding
assays due to increased occupancy and/or stability of the interaction.

Several high-throughput methods are now available to determine binding specificities of
proteins in an unbiased manner (see Stormo and Zhao78 for a more detailed review). Protein
binding microarrays have been developed that contain all possible 10 base pair sequences79

and have been used, for example, to determine the binding specificities for 104 diverse
factors in mouse80. The binding preferences of factors are largely unique and approximately
half of the factors show preferences for two motifs. More recently, a similar study was
performed in Drosophila using the novel PB-seq method (protein/DNA binding followed by
sequencing). In this approach, the protein of interest – in this case, heat shock factor (HSF) -
was fused to the 3×FLAG epitope and allowed to bind to fragmented DNA. The HSF-bound
DNA was recovered and sequenced81. This study compared the binding preferences of HSF
defined by PB-seq in vitro to binding sites defined by ChIP-seq in vivo. Interestingly, in
vitro and in vivo binding intensities were not highly correlated when considering all possible
binding sites in the genome. A chromatin environment data model was then generated using
available DNaseI hypersensitivity data, MNase data, and ChIP-chip data for 21 histone
modifications, and was used with the in vitro results to predict binding intensities. This
resulted in a high correlation with in vivo data, underscoring the influence of chromatin on
protein-DNA binding. In fact, a prior model based solely on DNaseI data produced the
highest correlation suggesting that DNA accessibility factors largely into the actual binding
of factors in vivo.

Chromatin is dynamic and has substantial, stable differences between phenotypically
different cell types and also smaller, more variable differences across a population of similar
cells. ChIP-seq and other protein binding experiments provide a snapshot of the occupancy
of binding sites, but do not describe the dynamics or function of factor binding. Competition
ChIP assays82, 83 have enabled the investigation of binding site turnover in yeast. These
studies integrated into a single strain two copies of a factor-encoding gene, each with a
different epitope tag with one gene being constitutively expressed and the other inducible.
ChIP for each epitope was performed on samples collected at multiple time points after
induction of the inducible gene to show the dynamics of factor binding; specifically to show
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which at sites there is stable binding and at which there is turnover. A study84 of the Rap1
transcription factor showed that sites stably bound by the same factor (resident sites) were
associated with efficient transcriptional activation while high-turnover sites (treadmilling
sites) were associated lower transcriptional output, even under similar rates of occupancy.

These studies demonstrate that binding sites across a genome are not functionally equivalent
and indicate influences on this variation. Complementary information about factor binding,
chromatin state, and binding dynamics provide a more complete picture of how protein-
DNA interactions at particular loci contribute to cellular processes.

Variation across individuals
The adaptation of ChIP and other experiments to sequencing technologies also provides the
opportunity to investigate potential functional effects of the underlying DNA sequence on
the presence or absence of a particular event, such as the binding of a protein. Polymorphic
bases within regulatory regions can affect the stability of a bound protein or the ability of a
region to acquire or propagate chromatin marks. These, in turn, can affect the ability of that
locus to regulate the transcription of its target gene.

To identify polymorphic sites associated with functional variation, we can investigate
sequences in individual ChIP-seq peaks that align across a heterozygous base in a particular
sample; a significant difference in the distribution of sequences containing one allele versus
the other indicates a potential allelic effect on protein binding (Figure 5). For example, given
ChIP-seq data for transcription factor F, we can investigate each heterozygous site that falls
within a called peak (binding site) in that data. For a site with alleles A and B, if the
presence of A or B has no effect, we would expect an even distribution of sequences
containing A and B at that binding site. If sequences at that site predominantly contain allele
A, we could hypothesize that A provides a more favorable binding sequence for that protein,
or conversely that B interferes with binding.

Allelic analysis of sequence data requires modifications to the standard analysis pipelines
described above (Figure 2). Aligning short read sequences to a single reference sequence
creates a bias at heterozygous loci where reads containing the allele present in the reference
genome are aligned at a higher rate due to the inherent “mismatch” penalty incurred by the
non-reference allele sequences. Ideally, sequences would be aligned to fully defined HAPLOTYPE

genomes, as described in the AlleleSeq computation pipeline21. These are rarely available,
but more often the genotype of each individual has been obtained. This can be used to create
two reference genomes, each one containing one allele for each heterozygous location, and
enable merging of separate alignments of sequences to each of these genome sequences.
Alternatively, allele-aware aligners such as GSNAP85 can be used that dynamically consider
multiple alleles during alignments. In addition, the alignability of a sequence containing
each variant must be considered. The presence of allele A may make a particular sequence
unique with respect to the rest of the genome, while the same sequence with allele B is
found one or more times elsewhere in the genome. This can be determined by aligning all
possible sequences overlapping the site of interest back to the genome and analyzing the
uniqueness of these alignments. Overall, a much more careful consideration of non-
reference sequence bases is necessary to accurately detect signals at these locations.

Allelic biases have been detected in data from several sequencing based experiments
including ChIP-seq20, 86-89 and DNase-seq22, 24. In one study, analysis of ChIP-seq data
from 10 human lymphoblastoid cell lines showed that 7.5% of NFkB binding sites and 25%
of PolII binding sites differed significantly between individuals, and that 35% and 26% of
these corresponded with genetic variations, respectively20. Another study, also using human
lymphoblastoid cells, found that 7% of DNaseI HS sites and 11% of CTCF binding sites
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showed allele specific effects22. Both studies were performed in the context of family trios
that showed evidence of the heritability of these allelic functional traits. A more recent study
of DNase-seq and expression data from lymphoblastoid cell lines from 70 individuals
uncovered just under 9,000 DNASEI SENSITIVITY QUANTITATIVE TRAIT LOCI (dsQTLs) that associated
genetic variants with allelic biases in DHS sites with changes in expression of nearby
genes24. Many dsQTLs could also be mapped to previously identified DNaseI
footprints12, 13 suggesting that the binding of specific factors is altered. Analysis of
footprints with predicted binding factors showed enrichment for allelic biases in CTCF,
camp-response-element (CRE) and interferon-stimulated response element (ISRE) sites, and
depletion in MADS box transcription factor 2 (MEF2) sites.

Perspective
The importance of DNA-binding proteins has motivated the continued development of
experimental and analytical methods to better identify and characterize these interactions.
While ChIP-seq remains the standard for identifying binding site locations for individual
proteins and histone modifications, practical limitations of antibody development, a single
factor/modification limit per experiment, the lack of functional annotation, and a static
snapshot of a dynamic cell necessitates the use of complementary methods or extensions of
ChIP-seq to provide a more complete picture biological processes in the cell, especially
transcriptional regulation.

Open chromatin assays like DNase-seq and FAIRE-seq provide a more comprehensive
status of all active regulatory elements in a single experiment. Comparing changes in open
chromatin profiles across cell-types6, 7, 90, 91, differentiation states92, 93, disease states94-97

and species98 are revealing key changes in factor binding that underlie functional differences
across cells. Reduced sequencing costs are enabling deeper coverage of these experiments
uncovering more precise positioning of bound proteins in the form of footprints.

Identifying genomic locations of protein-DNA interactions is just the start. Bound proteins
interact with other proteins in complexes, create higher order chromatin structures, are
involved in specific cellular processes such a the regulation of a particular gene, and vary
across time, cell types, and genetic background. Answering these questions requires
complementary assays, many of which are presented here. As data from complementary
assays accumulate, the challenge will be to integrate these to provide a more complete
understanding of transcriptional networks and cellular processes99, 100. Comparisons across
cell types will provide new insights into properties of individual and combinations of factors
that drive cell-type specific functions. These will require the further development of new
analytical and computational modeling techniques as well as focused validation experiments
to support model hypotheses.

Results from these studies continue to further our understanding of normal cell biology, but
also provide critical information that will benefit efforts to determine the causes and
consequences of abnormal cellular states associated with disease. Genome-wide association
studies in humans have identified thousands of loci strongly associated with a complex
disease or a related trait101, most of which are located in non-coding genomic regions and
lack functional annotation. Characterizing the effects of different alleles at single nucleotide
polymorphisms (SNPs) on DNA-protein interactions provide potential functional
consequences of alleles. These can then be used to suggest testable hypotheses for observed
associations of individual SNPs with complex diseases, potentially leading to the
development of better diagnoses and treatment options.
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Glossary Terms

PROMOTERS DNA sequence immediately upstream of transcription start sites at
which RNA polymerases and transcription factors bind to initiate gene
transcription

ENHANCERS DNA sequence at which transcription factors bind that increase the
transcription rate of one or more target genes that can be at varying
distances to the enhancer

SILENCERS DNA sequence at which transcription factors bind that decrease the
transcription rate of one or more target genes that can be at varying
distances to the silencer

INSULATORS DNA sequence that intereferes with enhancer and/or silencer activity

LOCUS CONTROL REGIONS Regulatory elements that generally control transcription of multiple
genes in a single locus

DNA BINDING MOTIFS DEGENERATE pattern of DNA sequences to which transcription factors
prefer to bind, often represented as a probabilistic matrix

DEGENERATE In transcription factor binding motifs, most positions in the motif can
be more than one base, sometimes with little preference between
bases, causing the motif sequence to be degenerate

ALLELE Each genomic locus consisting of one or more bases is present in two
copies in cells that may not exatly match due to genetic variation. An
allele refers to one particular copy

EXONUCLEASE An enzyme that cleaves a single nucleotide from the end of a DNA
molecule

CROSS-LINKED The strong binding of DNA to interacting proteins via covalent bonds

SONICATION The fragmenting of DNA sequence by exposing it to high frequency
sound waves

MAPPABILITY The uniqueness of a stretch of DNA sequence compared to a whole
genome sequence. Short sequence reads can be confidently mapped to
unique sequence, but less confidently mapped to sequence that occurs
multiple times in a genome

HIDDEN-MARKOV

MODEL (HMM)
A statistical model consisting of states that represent an aspect of a
sequence, such as in a footprint, and transitions between states, and
are used to label bases in a sequence with the modelled property.
HMMs are also used in many gene prediction programs

BAYESIAN MIXTURE

MODEL

A probabilistic model used to represent the presence of multiple sub-
populations, such as a DNaseI footprint, within the whole population,
such as the whole DNA sequence. Bayesian mixture models allow for
the incorporation of prior knowledge about sub-population
frequencies
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BIOTINYLATED A protein or nucleic acid in which a small biotin molecule has been
attached. Biotin binds to streptavidin allowing for the isolation of
biotinylated molecules

DISASSOCIATION

CONSTANT

Reflects the amount of energy required to separate two interacting
molecules, often referred to as Kd

RULE ENSEMBLES A classification model that consists of a linear combination of simple
models, or rules, derived from the data

HAPLOTYPE The combintion of alleles on a single chromosome. A genotype then
refers to the combination of the two haplotypes in a normal genome

DNASEI SENSITIVITY

QUANTITATIVE TRAIT LOCI

(DSQTL)

A locus whose sensitivity to DNaseI digestion varies based on the
presence of different alleles in that locus. An allelic difference may
influence the binding of proteins at this locus causing the variation in
digestion
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Box 1

Recommended ChIP-seq Standards

Based on the collective experience of ENCODE and modENCODE labs having
performed hundreds of ChIP-seq experiments, a set of standards and guidelines for
performing ChIP-seq has been written29. Experiments are classified as point source
(highly localized signals, such as for transcription factors), broad source (signal spans
large domains, such as for some histone modifications such as H3K36me3) or mixed
source (has elements of both, such as RNA PolII). If the type of signal is unknown,
multiple peak callers focusing on point source or broad peaks may be applied to
determine the best fit to the data. These standards are summarized below.

Antibody validation. Primary characterization of transcription factor antibody using
immunoblot or immunofluoresence analysis. Secondary characterization using one of i)
factor knockdown by mutation or RNAi; ii) independent ChIP experiments using
alternative epitopes or protein members of a complex; iii) immunoprecipitation using
epitope-tagged constructs; iv) mass spectrometry; or v) binding site motif analyses.
Primary characterization of histone modification antibody using immunoblot analysis.
Secondary characterization using one of i) peptide binding tests; ii) mass spectrometry;
iii) immunoreactivity analysis in cell lines containing knockdowns of relevant histone
modification enzyme or mutants histones; or iv) genome annotation enrichment.

Sequencing depth. 20 million (human) or 8 million (fly/worm) uniquely mapped read
sequences for point source, 40 million/10 million for broad source. Increased sequencing
depth allows detection of more sites with reduced enrichment. It is noted that setting a
minimal signal strength threshold, usually based on a p-value or false discovery rate
calculation, to identify peaks does not guarantee discovery of all functional sites. It is
also noted that DNA sequencing library complexity, that is the amount of unique DNA
molecules, must be sufficient meaning sequencing depths do not exceed complexity. It is
suggested that at least 80% of 10 million or more reads be mapped to distinct genomic
locations. Low complexity libraries generally indicate a failed experiment where not
enough DNA was recovered causing the same PCR amplified products to be sequenced
repeatedly and many small peaks to be detected with a high false positive rate.

Experimental replication. Minimum two replicates per experiment, 10 million (human) or
4 million (fly/worm) uniquely mapped reads per replicate for point source, 20 million/5
million for broad source. Each replicate represents an independent cell culture, embryo
pool, or tissue sample. For two replicates, either 80% of top 40% of identified targets in
one replicate must be among targets in second replicate, or 75% of target lists must be in
common between both replicates.

Data quality assessment. No one test is always suitable for all experiments or forms a
necessary requirement. Recommended assessments include i) investigating signals at
known sites using a genome browser; ii) calculating the fraction of reads in peaks (FRiP),
recommended to be greater than 1%; iii) calculating cross correlations, defined as the
correlation of the density of sequences aligned to the Watson strand with the density of
sequences aligned to the Crick strand after shifting the Watson strand alignments by the
average distance between opposite strands reads.

Data and metadata reporting. ChIP results should be submitted to GEO102. Experimental
and analyses information provided should include ChIP procedures, antibody validation,
DNA sequencing information, identified regions of enrichment and method of
identification, and any other analysis.
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Figure 1. Comparison of experimental protocols
Experiments to detect different aspects of DNA binding proteins and chromatin
conformation share many of the same steps. a | ChIP-seq for DNA binding proteins such as
transcription factors. Recent variations on the standard protocol include using endonuclease
digestion instead of sonication (ChIP-exo) to increase the resolution of binding site detection
and eliminate contaminating DNA, and amplification after ChIP for samples with limited
cells. b | ChIP-seq for histone modifications use MNase digestion to fragment DNA and can
also now be run on small samples with the additional post-ChIP amplification. c | DNase-seq
relies on digestion by the DNaseI nuclease to identify regions of nucleosome-depleted open
chromatin where there are binding sites for all types of factors, but it cannot identify what
specific factors are bound.
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Figure 2. General analysis pipeline for sequence tag experiments
Experiments using short sequence reads that identify regions with a particular molecular
characteristic share many of the same analysis steps. Poor quality reads can be filtered
initially, but often the inability to align these reads to the genome sufficiently removes bad
sequences. Alignment using one of many possible software programs (Table 1) is followed
by filtering artifacts that arose during the PCR amplification step when sequencing, or that
appear due to the underrepresentation of certain sequences in the reference genome, such as
pericentromeric satellite sequences. Often, reads aligning to more than some number of
genomic locations are removed. For experiments identifying independent locations, ‘peak’
calling tools (Table 1) identify genomic regions of signal enrichment indicating a bound
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protein, histone modification, or open chromatin. In contrast, chromatin interaction
experiments use aligned paire-end reads to find evidence of interacting distal genomic
regions. DNaseI footprints indicate local protection from DNaseI digestion within a larger
DHS region due to a bound protein. The distribution of alleles in sequences spanning
heterozygous variants can be analyzed to determine if a bias towards sequences with one of
the two alleles exists. This may reflect a functional difference caused by the underlying
genotype.
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Figure 3. DNaseI footprints correspond to bound proteins
The distribution of DNaseI digestion sites with DNaseI hypersensitive regions is not
uniform with peaks and troughs in the signal, where troughs are due to protection by bound
proteins. Transcription factor binding motif databases such as JASPAR74 can be searched
using the sequence from each footprint to predict what factor is bound. Shown here is data
from the proximal promoter region of the FMR1 gene. DNaseI footprints had been identified
previously at this locus103 in lymphoblastoid cells. More recent data from DNase-seq was
used to recapitulate these results in a single experiment12.
Note: This figure is taken from 12. It is figure 1C in that manuscript.
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Figure 4. Detecting chromatin interactions
In three-dimensional space, distal genomic regions on the same or different chromosomes
interact mediated by one or more DNA binding proteins. a | Chromatin conformation
capture experiments use a ligation step to join distant fragments that are interacting in three-
dimensional chromatin space providing information on possible targets for DNA-bound
proteins. b | ChIA-PET similarly detects chromatin interactions using a ligation step to pair
non-adjacent interaction regions, but using a ChIP step to more specifically identify
interactions with a particular bound protein, such as RNA PolII. It should be noted that the
DNA that is actually sequenced as part of the paired-end sequencing do not necessarily
correspond to the precise region of interaction but are dictated by the presence of restriction
enzyme targets. c | The UCSC Genome Browser contains data from both ChIA-PET and 5C
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experiments. Shown here is a 275Kb region showing interactions near the transcription start
site of the ST7 gene. For both experiments, solid blocks represent the sequenced paired ends
with lines connecting them when they appear on the same chromosome. Darker shading
indicates more confidence in this mapping based on multiple instances of complementary
paired end sequences. The ChIA-PET experiment was performed using a RNA PolII
antibody, and the corresponding signal from RNA PolII binding is displayed immediately
below. Also included beneath these chromatin interaction annotations are signals from
DNase-seq experiments in the same cell type. Regions of enriched DNase-seq signal
indicate nucleosome-depleted DNA that represents putative regulatory elements. Together,
chromatin interaction data provide clues as to the gene targets for these regulatory regions.
Note: CTCF weblogo from104, figure 2.
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Figure 5. Allele-specific bias in a CTCF ChIP-seq experiment
Sequence-based experiments allow for the investigation of functional differences across
individuals due to their underlying genotype. This schematic depicts a region with an
enriched number of sequence reads from a ChIP-seq experiment, where each red and blue
box indicates an aligned read with blue reads aligned to the forward strand, and red reads to
the reverse strand. As is typical of a factor ChIP-seq experiment, forward strand reads
accumulate 5′ of the site while reverse strand reads accumulate 3′ of the site. Contained
within this locus is a heterozygous polymorphism, denoted by A and T bases. Only one-third
of the spanning reads contain the T allele while two-thirds contain the A allele indicating an
allelic-imbalance.
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Table 1
Subset of software tools available for three key steps in the analysis of sequence data

Software Tool Web Address Notes

Short Read Aligners

BWA http://bio-bwa.sourceforge.net/ Fast, efficient,
based on
Burrows-
Wheeler
transform

Bowtie http://bowtie-bio.sourceforge.net/ Similar to
BWA, part of
suite of tools
that includes
TopHat and
CuffLinks for
RNA-seq
processing

GSNAP http://research-pub.gene.com/gmap/ Considers set
of input variant
alleles to
better align to
heterozygous
sites

Wikipedia List -
Aligners

en.wikipedia.org/wiki/List_of_sequence_alignment_software#Short-Read_Sequence_Alignment Comprehensive
list of available
short
read aligners
with
descriptions
and links
to download
software

Peak Callers

MACS http://liulab.dfci.harvard.edu/MACS/ Fits data to
dynamic
Poisson
distribution,
works with and
without
control data

PeakSeq http://info.gersteinlab.org/PeakSeq Takes into
account
differences in
mappability of
genomic
regions,
enrichment
based on FDR
calculation.

ZINBA http://code.google.com/p/zinba/ Zero Inflation
Negative
Binomial
Algorithm, can
incorporate
multiple
genomic
factors such as
mappability,
GC
content, work
with point and
broad
source peak
data
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Software Tool Web Address Notes

Differential Peak Calling

edgeR http://www.bioconductor.org/packages/2.9/bioc/html/edgeR.html Uses negative
binomial
distribution to
model
differences in
tag counts.
Uses
replicates to
better estimate
significant
differences.

DESeq http://wwwhuber.embl.de/users/anders/DESeq/ Also uses
negative
binomial
distribution
modelling, but
differs in
calculation of
mean and
variance of
distribution.

baySeq http://www.bioconductor.org/packages/release/bioc/html/baySeq.html Uses empirical
Bayes
approach to
identify
significant
differences.
Assumes
negative
binomial
distribution of
data.

SAMSeq http://www.stanford.edu/~junli07/research.html#SAM Based on
popular
Significance
Analysis
of Microarrays
(SAM)
software.
Nonparametric
method that
uses
resampling
to normalize
for differences
in
sequencing
depth.
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