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Abstract

The fabrication of multifunctional materials with tunable structure and properties requires 

programmed binding of their building blocks1,2. For example, particles organized in long-ranged 

structures by external fields3,4 can be bound permanently into stiff chains through electrostatic or 

van der Waals attraction4,5, or into flexible chains through soft molecular linkers such as surface-

grafted DNA or polymers6–11. Here, we show that capillarity-mediated binding between magnetic 

nanoparticles coated with a liquid lipid shell can be used for the assembly of ultraflexible 

microfilaments and network structures. These filaments can be magnetically regenerated on 

mechanical damage, owing to the fluidity of the capillary bridges between nanoparticles and their 

reversible binding on contact. Nanocapillary forces offer opportunities for assembling dynamically 

reconfigurable multifunctional materials that could find applications as micromanipulators, 

microbots with ultrasoft joints, or magnetically self-repairing gels.

Mixtures of sand and water (as in sandcastles) are one of the best known examples of a 

reconfigurable material. The water wets the surface of the grains and forms capillary bridges 

between them, holding the sand particles together into a complex shape12. Similarly, 

capillary forces also offer unconventional ways to assemble particles on the microscale13. In 

many cases, attractive capillary forces can be stronger than conventional colloidal forces, 

such as van der Waals and repulsive electrostatic forces14. Even a small amount of liquid 

immiscible with the continuous phase and wetting the particles induces particle attraction 

via capillary bridges and completely changes the viscoelastic properties of the suspension15. 

Capillary forces provide strong reversible binding of the colloidal particles in liquid media at 
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the microscale and mesoscale16, and lead to complex surface architectures at the sub-

micrometre length scale17. However, to our knowledge, the presence of capillary bridging 

forces at the nanoscale has not been reported or used as a tool for nanoparticle binding in 

liquid media. We report here how capillary forces could be used to form magnetically 

directed assembly of nanoparticles surrounded by a surface-condensed liquid lipid layer. In 

the presence of a magnetic field these nanoparticles form filaments and two-dimensional 

(2D) gels. Similar structures are of specific interest in the field of biomedicine, electronics, 

soft robotics and sensors1,18. The nature of the binding potential between the particles 

determines the stiffness, tensile strength and other physical properties of the structure. 

Permanently bound chains have been assembled previously by aligning them in an external 

magnetic field of particles adsorbed on the walls of surfactant microtubules19 or colloidal 

particles with a thick grafted layer of a covalent linker19–21. These approaches require 

synthetic chemistry methods and lead to irreversible assembly.

The nanoscale units for our magnetic nanocapillary assembly experiments were obtained by 

dispersing spheroidal 20–30 nm γ-Fe2O3 maghemite nanoparticles into aqueous solutions of 

fatty acid salts. An external magnetic field was used to drive the particle assembly into 

chain-like filaments. The experimental set-up is schematically shown in Fig. 1a. The 

dynamics of the system was monitored by optical microscopy and was divided into two 

distinct steps, as illustrated in Fig. 1b. In the first step, the magnetic particles and their 

microaggregates were pulled together and organized in filament- and fibre-like assemblies 

along the direction of the applied field (Fig. 1c,d). In the subsequent step, switching off the 

magnetic field removes the field-induced attraction and relaxes the extended chains, but the 

filaments remained intact. The aligned fibre-like structures moved freely with the 

surrounding fluid flow and adapted highly undulating relaxed configurations (Fig. 1e and 

Supplementary Movie 1). The superconducting quantum interference device (SQUID) 

magnetization curves show some residual magnetic moment in the nanoparticles 

(Supplementary Fig. 2). This residual polarization can be attributed to the increase in size of 

the stable single-domain and to the presence of multidomains in the nanoparticles22. 

However, no fibrillar assembly of nanoparticles was observed in the absence of fatty acid 

salts (Supplementary Fig. 1). As explained below, we evaluate the capillary interaction 

energy between the nanoparticles to be at least an order of magnitude higher than the 

magnetic residual dipolar attraction energy (Supplementary Fig. 3).

Multi scale characterization of the structure of the dried magnetic chain-like assemblies was 

performed using scanning electron microscopy (SEM), transmission electron microscopy 

(TEM; see Supplementary Fig. 5) and atomic force microscopy (AFM, Fig. 2a). The 

filamentous assembly is 50–100 times thicker than a single chain of particles and probably 

results from magnetophoretic attraction of the nanoparticles to the high-intensity field region 

at the ends of the filaments, similar to the dielectrophoretic assembly of gold-nanoparticle 

microwires reported earlier4. AFM shows a thick fibre-like body of homogeneously 

distributed aggregated magnetic nanoparticles. The composition of the self-assembled 

fibrous structures was determined by thermogravimetric analysis (TGA). The weight loss 

curves for lauric acid with magnetic nanoparticles, plotted in Fig. 2b, show similar 

decomposition profiles for nanoparticle–fatty acid complexes in both the dispersed and field-

aggregated state. The volume fraction of fatty acid in the filament assemblies is 0.4–0.5, 
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indicating that the constituent particles are embedded in a relatively thick shell of lipid. The 

first molecular layer of fatty acids is probably anchored on the iron oxide surfaces, as the 

terminal –COOH groups of lipids are known to have coordinating and chelating affinity to 

iron oxide23. This molecular layer completely wets the nanoparticle surfaces and modifies 

their physiochemical properties. The wetted surface further promotes condensation of lipid 

from its bulk dispersed forms, as visualized by cryo-TEM (Fig. 2c). The nanoparticles act as 

nuclei for the condensation of the lipid, resulting in the formation of thick shells around the 

particles. When the magnetic field pulls the nanoparticles and their clusters covered with 

lipid shells into contact, the capillary adhesion between these fluid shells binds the 

assembled nanoparticle fibre together.

The results indicate that the binding and formation of permanently assembled structures by 

nanocapillary forces depend critically on the presence of lipid shells in the fluid state around 

the particles. We proved this by a few complementary experimental studies. We 

characterized the state of C10–C20 saturated fatty acid salts in the presence of Fe2O3 

nanoparticles and correlated it to capillary binding. All fatty acid salts with the choline 

hydroxide counterion had a phase transition below 10 °C (Supplementary Fig. 7) and 

filament assembly was observed for all tested homologous lipids. For fatty acid 

ethanolamine salts, the phase-transition temperature as determined by differential scanning 

calorimetry (DSC), increases with the number of carbon atoms of the acid. At 25 °C, for 

fatty acids above 14 carbon atoms, the shell was in a solidified (liquid crystalline or glassy) 

state (Fig. 2d). In excellent correspondence, the formation of permanent filaments with 

ethanolamine salts at 25 °C was observed only for fatty acids up to 14 C-atoms (open 

circles, Fig. 2d and Supplementary Table 1). Longer backbone fatty acids (>14 carbon 

atoms) with shells in the solidified phase did not show permanent assembly at 25 °C; 

however, when the temperature was increased above their corresponding phase transition—

that is, when the lipid shell was melted to the sticky fluid state—permanently assembled 

fibres were obtained for all systems (open circles, Fig. 2d). Similarly, permanent filaments at 

25 °C were assembled with the 18-carbon backbone oleic acid (monounsaturated) acid and 

12-hydroxystearic acid, where the molecule kink produced by a double bond or side 

hydroxyl group leads to a decrease of the phase-transition temperature24. No assembly was 

observed for corresponding 18-carbon saturated stearic acid, which is in a solidified state 

(Supplementary Fig. 7).

The critical role of the lipid fluidity was further proved by two other means. First, we 

showed that the liquid bridges break on cooling through the phase transition. Indeed, the 

filaments assembled while the lipid was in the fluid state (for C-16 >40 °C) disintegrated 

when the system was cooled to temperatures below the lipid phase-transition point (Fig. 3a–

c and Supplementary Movie 2). Second, the role of fluidity of the lipid shell on interparticle 

interaction was investigated by dynamic light scattering (DLS). The diffusion rate for 

particles with a solidified lipid shell state was constant, suggesting the absence of 

aggregation (Supplementary Fig. 8). In contrast, for nanoparticles with a lipid shell in the 

fluid state the autocorrelation function shifted to lower diffusion rates (that is, longer lag 

times), indicating self-aggregation on contact, as Brownian collisions between nanoparticles 

trigger the formation of fluid lipid capillary bridges. Overall, the DLS data confirm by 

another means that aggregation occurs only when the lipid shells surrounding the 
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nanoparticles are in the fluid state. Such particles remain into the micro-aggregated state 

even before applying the external magnetic field (Fig. 1c).

The nanoparticles are trapped in a short-range attractive potential well resulting from the 

capillary bridge formation. On the basis of the cryo-TEM images we estimated the typical 

nanocapillary force acting between the nanoparticles to be ∼0.5 nN (see Supplementary 

Information). These nanocapillary forces are comparable in magnitude to the forces 

responsible for the formation of clusters in freely falling granular matter25. Our calculations 

show that the capillary interactions would dominate the magnetic attraction at interparticle 

distances >1.2 nm (Supplementary Fig. 3). However, the osmotic pressure developed by the 

first molecularly anchored lipid layer restricts the interparticle separation to >2 nm, which 

prevents the irreversible magnetic binding and/or coagulation of nanoparticles into van der 

Waals attractive global minima. This steric repulsion is a prerequisite for maintaining the 

flexibility of the interparticle junctions. We predict that the particle-to-particle rollover 

torque in the nanocapillary bridges is nearly absent because of the low hysteresis of the 

receding and advancing contact angles over the particles completely wetted by condensed 

lipid26. This leads to the remarkably high flexibility of the nanoparticle filaments, which was 

evaluated as explained below.

The flexibility of chain-like and fibrillar objects after prolonged thermal equilibration can be 

correlated to the persistence length, which is the distance along the contour at which the 

filament ‘forgets’ its original orientation. It was determined by the decay in the tangent 

vector correlation function (〈cos(θ)〉) along the filament contour (Fig. 3d inset) and is given 

by 〈cosθ(x)〉 = exp(−x/lp), where lp is the persistence length and θ is the angle between 

tangents at any two points on the filament contour with distance x apart (for details see 

Supplementary Information). In the presence of an external magnetic field, the persistence 

length of the filaments exceeds their contour length, which further increases on increasing 

the applied magnetic field (data not shown). However, in the absence of the field, the 

persistence length for our filaments was estimated to be 26 μm (±10 μm), which corresponds 

to a flexural rigidity of ≃1 × 10−25 Nm2. A size-independent unified representation of the 

flexibility of the chain-like structure on any length scale can be achieved by plotting the 

persistence length against the linear density (mass per unit length, λp). This universal 

dependence27,28 of lp on λp for a few synthetic and biological polymers, as well as various 

chain-like objects, is plotted in Fig. 3d. The persistence length is a quadratic function of 

linear mass density (  where K is a constant, Fig. 3d, solid line)27,28, and materials 

deviating from this quadratic dependence are considered as either ultra-rigid  or 

ultrasoft . One type of flexible chain reported earlier, also plotted in Fig. 3d, is 

DNA-linked magnetic beads8. Strikingly, the present nanoparticle filaments linked via 

capillary bridges are orders of magnitude more flexible than other known molecular and 

supramolecular linear structures (Fig. 3d). It should be emphasized that this apparent high 

flexibility is not a typical result of low mechanical tension, rather than emerging from fluid-

mediated particle re-adjustment; thus, it presents an interesting topic for future theoretical 

interpretation.
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The high flexibility of the filaments facilitated their unusual dynamics, leading to bending 

and self-closing in alternating magnetic field. The two most common closed structures 

resulting from timed switching of field direction were rings and infinity-shaped loops. The 

mechanistic pathways for the formation of these self-closed structures in a 2D plane are 

illustrated in Fig. 4a–e. The fibres in constant field were in a fully stretched linear 

configuration (Fig. 4a and Supplementary Movie 3). On reversing the direction of the 

applied field, they could follow the change in field polarization29 by two intermediate 

curling pathways: cis-curling (Fig. 4b) and trans-curling (Fig. 4c). When the free ends of a 

filament in the dynamically morphing intermediates meet each other or the centre on the 

filament, they snap, forming a self-closed structure. These closed loop configurations are 

retained after switching off the external field.

The capillary interaction also leads to nanoparticle stickiness and a re-configurability that 

can be used to assemble more complex hierarchical structures by field-guided dynamics 

(Supplementary Movie 4). An unusual feature of the magnetically responsive filaments 

results from the fluidity of the capillary bridges, which can be broken and re-formed on 

demand. The reversibility of the capillary snapping suggests that severed filaments can 

reconnect and self-repair with application of the field. We demonstrate in Fig. 4f–h 

rudimentary examples of repairing a broken 2D percolated filament network by application 

of a magnetic field. First, the percolated network of filaments was locally damaged 

mechanically by a sharp stylus. The disconnected ends of the cut filaments were then readily 

repaired using an external magnetic field, as the ends attract each other in the field and 

readily snap back into contact, recovering the network (Fig. 4f–h and Supplementary Movie 

5). As expected, the rate of filament reconnection is dependent on the regenerating magnetic 

field strength (not shown). The regenerative ability of this nanoparticle network is broadly 

analogous to molecularly self-repairing polymer materials30.

In summary, we have demonstrated that attractive capillary bridging forces could be 

operational at the nanoscale and, in conjunction with an external magnetic field, provide a 

facile tool for assembling extremely flexible nanoparticle filaments and networks. The 

binding by soft-sticky capillary bridges has a number of unique features—reversible 

snapping on contact, easy rollover, and high sensitivity to temperature near the liquid–solid 

phase transition of the bridges. This multiphase liquid-mediated assembly of particles offers 

a tool for developing active and smart materials, such as hierarchical structures that can be 

dynamically reconfigured and actuated, thermo-responsive self-healing colloidal gels with 

potentially unusual magnetic and rheological responses, ultraflexible magneto-actuators for 

soft robotics, and artificial flagella for microrobotics.

Methods

Sample preparation

The nanocapillary binding of maghemite particles was accomplished with numerous fatty 

acids obtained from Sigma-Aldrich (purity > 90%). Fatty acid soaps were prepared by 

adding either ethanolamine (Sigma-Aldrich, 99% purity) or choline hydroxide (Sigma-

Aldrich, 46 wt.% in H2O) as counterion. The γ-Fe2O3 nanoparticle powder (mkNANO, 
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purity > 99%) was added to the fatty acid soap solution. The mixture was equilibrated at 

80 °C and sonicated for 20 min before experiments.

DSC, TGA and DLS measurements

The lipid–nanoparticle dispersion was allowed to stand for 24 h before the supernatant with 

excess lipid was decanted. The lipid–nanoparticle slurry was dried at 40 °C for two days and 

further used for DSC and TGA experiments. DSC was performed using a TA Instruments 

DSC Q100 device with a dry nitrogen gas flow of 50 ml min−1. Heating and cooling ramps 

were repeated twice from 10 to 80 °C at a ramping rate of 1 °C min−1. TGA measurements 

were performed using a TA Instruments SDT Q600 thermal analysis system under an inert 

nitrogen atmosphere from 30 to 700 °C at a ramping rate of 5 °C min−1. DLS measurements 

were performed on filtered aqueous lipid–nanoparticle dispersions using a Zetasizer Nano 

ZS (backscattering 173°, Malvern Instruments).

Microscopy

Optical—The microfilaments and their assemblies were monitored with an Olympus 

BX-61 microscope in bright-field mode. The temperature of the dispersion was precisely 

controlled by using a temperature controller microscope stage (PE 94 (Linkam Scientific 

Instruments)).

TEM—A drop of the sample was placed on a carbon-coated copper grid (Quantifoil) and 

air-dried. The sample was negatively stained with uranyl acetate (2% w/w) and observed 

using a JEOL JEM-1230 TEM operating at 80 kV.Cryo-TEM measurements were performed 

on the same instrument. Samples were prepared by common flash-freezing procedures and 

images were recorded under low-dose conditions.

AFM—The nanoparticle filaments were air-dried on a silicon substrate and the scanning was 

performed with pyramidal silicon nitride cantilevers (Micro Cantilever) in tapping mode. 

The images were recorded using a 5500 AFM (Agilent Technologies) at the lowest possible 

stable scanning force (15 nN).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Magnetic assembly of permanent flexible nanoparticle filaments by nanocapillarity
a, Schematic of the experimental set-up. The sample chamber is surrounded by four 

electromagnets, producing uniform magnetic fields (H) of up to 15,000 Am−1. b, Scheme of 

the filament-formation process (see also Supplementary Movie 1). Step 1: External 

magnetic-field-directed nanoparticle attraction and collection. Step 2: Permanent filaments 

persist after the field is switched off. c, Microscope image of magnetic particles and lipid 

dispersion before applying the field. d, Linear filaments formed by the particles in the 

direction of an applied field of 1,200 Am−1 after 1 min. e, Flexible filamentous structures 

undulating freely in the absence of an applied magnetic field.
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Figure 2. The composition of the filaments reveals the role of the lipid in nanoparticle assembly
a, AFM image of a lipid-Fe2O3 filamentous structure in the dried state. b, 

Thermogravimetric weight loss and corresponding differential weight loss (inset) profiles for 

Fe2O3 nanoparticles with lauric acid in the dispersed (open circles) and the assembled state 

(open squares). c, Cryo-TEM micrograph showing the presence of a thick lipid shell on the 

nanoparticle surface and the formation of a bridge between two nanoparticles. d, Phase-

transition temperatures of the shell between the gel and fluid phase for different number of C 

atoms in the lipids compared to filament formation. Filaments are observed only when the 

lipid is in the fluid state (open circles) and never when it is in a solid-like phase (open 

squares). The error bars in b correspond to the maximal possible error in the weight 

measurement during TGA experiments.
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Figure 3. Experimental examples of phase-transition disintegration and characterization of the 
ultrahigh flexibility of the nanocapillary-bound filaments
a, Micrograph of the filaments assembled from a liquid C16-fatty acid salt at 45 °C 

(Supplementary Movie 2). b, These filaments break up on freezing the nanocapillary bridges 

between the particles. The fluid-to-gel-like transition in the present case is at 40 °C (Fig. 

2d). c, The disintegrated filaments can be re-formed on increasing the temperature beyond 

the phase-transition temperature and applying an external magnetic field. d, Comparison of 

the intrinsic filament flexibility with that of macromolecules and linear biological 

assemblies. The persistence length of polymers and various linear objects is plotted as a 

function of their linear mass density. The persistence length of the filaments was determined 

by the decay of the tangent vector correlation function (〈cos(θ)〉) along a filament contour 

(inset). The discrete points represent the experimental values and the line is the 

corresponding fit (for details see text). The error bars correspond to the standard deviation of 

the mean values of the tangential angle and mass per unit length. The standard deviation of 

the persistence length is less than the symbol size.
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Figure 4. Examples of self-closing and magnetic repair of sticky filaments
a–e, Formation of self-closing structures in time-switched magnetic fields. a, A linear 

magnetic filament is aligned in the direction of the magnetic field. b,d, Cis- and trans-

curling pathways followed by the filament on field reversal. c,e, Self-closed equilibrium ring 

and infinity-shaped structures attained by the flexible assemblies (see Supplementary Movie 

3). f, Magneto-responsive 2D gel-like percolated network formed by the sticky filaments 

following an initial burst of magnetic field. g, Mechanically fractured network cut with a 

sharp stylus. h, After applying a magnetic field of intensity 1,200 Am−1, the filaments are 

reconnected again owing to the stickiness, highlighting the self-repairing properties of this 

network (see also Supplementary Movie 5).
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