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Abstract

Pancreatic ductal adenocarcinoma (PDAC) remains a lethal disease with a 5-year survival of 4%. 

A key hallmark of PDAC is extensive stromal involvement, which makes capturing precise tumor-

specific molecular information difficult. Here, we have overcome this problem by applying blind 

source separation to a diverse collection of PDAC gene expression microarray data, which 

includes primary, metastatic, and normal samples. By digitally separating tumor, stroma, and 

normal gene expression, we have identified and validated two tumor-specific subtypes including a 
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“basal-like” subtype which has worse outcome, and is molecularly similar to basal tumors in 

bladder and breast cancer. Furthermore, we define “normal” and “activated” stromal subtypes 

which are independently prognostic. Our results provide new insight into the molecular 

composition of PDAC which may be used to tailor therapies or provide decision support in a 

clinical setting where the choice and timing of therapies is critical.

Rigorous sequencing studies have shown that few genetic alterations (KRAS, CDKN2A, 
SMAD4, and TP53) are prevalent in PDAC1-3, but these and other analyses of PDAC tumors 

are hampered by limited tumor cellularity and the presence of abundant stroma intermixed 

with normal endocrine and exocrine cells. Additionally, metastatic samples often include 

cell types from the host organ. Thus, PDAC tumors are complex mixtures in which the 

malignant epithelial cells often represent a minority of the tissue compartment (Fig. 1a). 

Illustrating this limitation, an important study of exome and copy number in pancreatic 

cancer removed 43 of 142 patients due to low tumor cellularity affecting the sensitivity of 

mutation detection1. While some studies use microdissection to improve tumor content4-7, 

microdissection for precision medicine approaches is not yet feasible. When considering 

gene expression of bulk tumors, normal pancreas and PDAC tissues often cluster together, 

separate from cell lines which are assumed to be purely neoplastic8.

Separating molecular signatures of tissue compartments from the measurements of bulk 

tumor belongs to the general class of problems called blind source separation. Previous 

studies have used samples of chronic pancreatitis, which is often fibrotic, to control for the 

presence of desmoplastic stroma in tumor samples9. In prostate cancer, Stuart et al. have 

used pathology assessments of cell types to train models of gene expression signatures of 

tumor, stroma, and normal tissue10. In a follow up study, they used their learned gene lists 

for in silico estimation of tissue components in a larger set of data11. A similar approach has 

also been used to quantify stromal content across multiple data sets from the cancer genome 

atlas (TCGA)12. Among source separation techniques, nonnegative matrix factorization 

(NMF) is especially well suited for biological data, because it constrains all sources to be 

positive in nature, reflecting the goal of identifying positive gene expression exemplars, 

rather than pairwise differences between tissue types. Briefly, we define NMF as modeling 

the matrix X of expression for g genes and s samples, as the product of a matrix G of g gene 

weights for k factors and a matrix S of s sample weights for k factors. Alexandrov et al. have 

recently demonstrated that NMF is useful for a similar problem of identifying mutational 

signatures from the aggregate list of somatic mutations in human cancer samples13,14. 

Similarly, Biton et al. have applied a related technique, Independent component analysis, to 

examine gene expression in bladder cancer15.

In this study, we have overcome the challenges of bulk tumor analysis where signal is 

averaged out between normal, tumor and stroma compartments, by using NMF to perform a 

virtual microdissection of primary and metastatic PDAC samples. This has allowed us to 

identify tumor-specific and stroma-specific subtypes with prognostic and biologic relevance. 

In addition, by focusing on tumor autonomous gene expression, we found that intra-patient 

tumor heterogeneity between primary and metastatic sites was unexpectedly low.
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Results

Virtual microdissection of PDAC

We used NMF to analyze gene expression in a cohort of microarray data from 145 primary 

and 61 metastatic PDAC tumors, 17 cell lines, 46 pancreas and 88 distant site adjacent 

normal samples using Agilent (Agilent Technologies) human whole genome 4x44K DNA 

microarrays (106 primary tumors were previously used in a separate bulk analysis of gene 

expression (GSE2150116). To validate our findings, RNA sequencing was performed on 15 

primary tumors, 37 pancreatic cancer patient-derived xenografts (PDX), 3 cell lines, and 6 

cancer associated fibroblast (CAF) lines derived from deidentified patients with pancreatic 

cancer. Histology of all available samples was reviewed by a single blinded pathologist 

(KEV). Table 1 summarizes the demographic and clinical characteristics of patients in our 

cohorts.

NMF distinguishes normal and tumor compartments

A key obstacle in the analysis of gene expression data, particularly in PDAC, is the removal 

of confounding normal or stroma gene expression from local and distant organ sites. 

Supplementary Figure 1 shows example histology of samples with both tumor, normal, and 

stromal tissue. We used NMF to identify gene expression which we attribute to normal 

pancreas, liver, lung, muscle, and immune tissues. Expression of exemplar genes from these 

factors, i.e. genes with distinctly large weights in a single column of G, as well as factor 

weights for the samples, i.e. rows of S, showed excellent agreement with known tissue labels 

(Fig. 1b, c, Supplementary Fig. 2). Investigation of the exemplar genes from these factors 

further confirmed their role as confounding normal tissue. For example, using the 

Kolmogorov–Smirnov test, the top-weighted genes from the liver factor show significant 

(p<10-10) enrichment in the MSigDB term SU_LIVER (Supplementary table 1), and the 

highest weighted gene, fibrinogen beta (FGB) (Supplementary table 2), is specifically 

expressed in normal human liver tissue.

In addition to normal tissue from distant organs, we found two factors which were exclusive 

to pancreas tissue, but were differentiated from each other by their respective gene lists. One 

factor described endocrine function including expression of glucagon and insulin (GCG and 

INS) (Supplementary table 2), while the other factor described exocrine function including 

expression of digestive enzyme genes such as pancreatic lipase, PNLIP (Supplementary 

table 2). This unsupervised discovery of two molecularly distinct yet highly co-localized 

factors related to normal pancreatic function represents an important proof of concept in the 

use of NMF to identify novel features without pre-defined expression knowledge.

To validate our normal expression signatures, all available samples were reviewed by a 

single pathologist (KEV) to independently assess the amount of tumor, normal, and stroma 

cellularity. We found that many factor weights were correlated or anti-correlated to tumor 

cellularity (Supplementary Fig. 3). Among normal and metastatic liver samples, for 

example, tumor-specific factor weights were correlated with cellularity whereas the normal-

specific liver factor weight was inversely related to the tumor content of a sample (Fig. 1d). 
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These findings support our hypothesis that factor weights obtained from NMF are 

quantitatively indicative of underlying sample composition.

Identification of stroma-specific subtypes

Stroma is particularly important in PDAC. According to pathology assessments, stroma 

varies (Supplementary Fig. 1 c-e), and comprises on average 48% of our primary tumor 

samples with a standard deviation of 30%. Our analysis identified two factors, which 

describe gene expression from the stroma, which were distinctly different from the normal 

factors shown in Figure 1. Consensus clustering on exemplar genes from these two stroma 

factors divided tumor samples into two stromal subtypes, which we classified as “normal”, 

and “activated” (Fig. 2a). Patients with samples with an activated stroma subtype had worse 

median survival of 15 months and 60% 1-year survival when compared to patients with a 

normal stroma subtype (median 24 months, 1-year 82%, Fig. 2b). Both were notably absent 

in PDAC cell lines (Fig. 2c), which exhibited a distinct mitotic expression signature 

associated with mitotic checkpoints and DNA replication (Supplementary table 1)17. The 

fact that cell lines do not express these stromal factors, and that many metastatic samples 

express them at low levels (Supplementary Fig. 4), suggest that these genes are not 

expressed by the tumor epithelium. To further validate the stromal origin of these gene 

expression signatures, we isolated 6 CAF lines from primary tumors (Supplementary Fig. 5), 

and found that they robustly overexpressed our hypothesized stromal signatures compared to 

PDAC tumor cell lines which had no expression of the stromal signatures (Fig. 2c).

The vast majority of collagen gene expression was attributable to stromal compartments, 

with the lone exception being COL17A1, which was high in tumors. “Normal” stroma was 

characterized by relatively high expression of known markers for pancreatic stellate cells, 

smooth muscle actin, vimentin, and desmin, (ACTA2, VIM, and DES). Stellate cells have 

been shown to promote cancer cell survival in vitro18, but at the same time may restrain 

PDAC in mouse models19,20. Targeting desmoplastic stroma by hedgehog pathway 

inhibition has been shown to both accelerate the development of disease21 and enhance 

delivery of chemotherapy22. In patients, the ratio of smooth muscle actin stained area to the 

collagen-stained area has been shown to be predictive of poor outcomes23. We found that 

“activated” stroma was characterized by a more diverse set of genes associated with 

macrophages, such as the integrin ITGAM, and the chemokine ligands CCL13 and CCL18. 

“Activated” stroma also expressed other genes which point to its role in tumor promotion, 

including the secreted protein SPARC, WNT family members WNT2, and WNT5A, 

gelatinase B (MMP9), and stromelysin 3 (MMP11). The presence of fibroblast activation 

protein (FAP), which has previously been related to worse prognosis, in the activated stroma 

suggests that an activated fibroblast state may be partially responsible for the poor outcomes 

for these patients24. This lead us to hypothesize that the “normal” stroma factor may 

describe a “good” version of stroma and that “activated” stroma factor may describe the 

activated inflammatory stromal response that has been seen in previous studies to be 

responsible for disease progression25-27. Our factor analysis supports a complex, multi-gene 

model of stroma in PDAC, which may explain why single gene analysis has yielded mixed 

results.
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Identification of tumor-specific subtypes

Independent of normal and stromal factors, we found that two tumor-specific factors define 

“classical” and “basal-like” subtypes of PDAC. When our samples were split into the two 

tumor subtypes (Fig. 3a), patients with basal-like subtype tumors had an overall worse 

median survival of 11 months and 44% 1-year survival compared to 19 months and 70% 1-

year survival for those with classical subtype tumors (p=0.007, Fig. 3b). All cell lines 

assayed in this study (p < 0.001), as well as a majority of metastatic samples (p = 0.002), 

were classified as “basal-like”, suggesting that cell line models represent only one subset of 

PDAC. These subtypes as well as their prognostic value were independently validated within 

the recently published International Cancer Genome Consortium (ICGC) PDAC microarray 

data set (Fig. 3c, d)28. Genes from the “basal-like” factor, including laminins and keratins, 

were also consistent with basal subtypes previously defined in bladder14,28,29 and breast30 

cancers (Fig. 3e-h). Interestingly, genes from our “basal-like” subtype reproduced subtype 

calls (p<0.001) in breast cancer, had prognostic value in breast cancer samples (p<0.001) 

and reproduced previous subtype calls in bladder cancer (p<0.001). Given these promising 

results, we developed a single-sample cross-platform classifier of basal-like subtype which 

was trained on our microarray, TCGA bladder, and Perou breast cancer data, with a 93% 

cross validation accuracy, and was able to classify TCGA breast cancer data with 92% 

accuracy during external validation (Supplementary Fig. 6)

Potential subtypes of PDAC have previously been described by Collisson et al.4. We used 

the published exemplar genes for “exocrine-like”, “classical”, and “quasimesenchymal” 

subtypes to cluster normal pancreas, cell lines, and primary PDAC tumors from our cohort 

(Supplementary Fig. 7a). The three previous classifications were also observed in our data, 

but did not hold prognostic power either by cluster label or by supervised classification with 

PAM31(Supplementary Fig. 7b). Furthermore, inclusion of the Collisson et al. subtypes into 

a multivariate Cox regression with our proposed tumor subtypes did not remove the 

predictive power of our subtyping (p = 0.014). By cross-referencing the genes from 

Collisson et al.'s model with our NMF model, we observed three key findings. First, 

“exocrine-like” genes overlapped with genes from our exocrine pancreas factor (17/17). 

Tumors in this cluster had expression indistinguishable from adjacent normal samples from 

our data set. Second, Collisson et al.'s “classical” genes overlapped with our “classical” 

subtype genes (20/22), for which we retain the naming convention “classical”. Third, the 

gene set associated with “quasimesenchymal” subtype appeared to be a mixed collection of 

genes from our “basal-like” tumor (6/20) and stromal subtypes (6/20). Thus, the appearance 

of stromal factors in the Collisson et al. list of “quasimesenchymal” class genes may explain 

the apparent mesenchymal-like gene expression that was observed.

“Basal-like” and “classical” tumors were found within both “normal” and “activated” stroma 

subtypes (Fig. 4a). Differential prognosis among tumor and stroma subtypes was cumulative, 

as “classical” subtype tumors with “normal” stroma subtypes (n = 24) had the lowest hazard 

ratio of 0.39, with a 95% CI of [0.21, 0.73], while the “basal-like” subtype tumors with 

“activated” stroma subtypes (n = 26) had the highest hazard ratio of 2.28 with a 95% CI of 

[1.34, 3.87] (Fig. 4b). In a multivariate Cox regression model which included tumor 

subtypes, stromal subtypes, and clinical variables (gender, race, T stage, N stage, margin 
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status, adjuvant therapy, histological grade, and age), both classifications were 

independently associated with survival (stroma subtypes: p = 0.037, tumor subtypes: p = 

0.003).

Although basal-like subtype tumors have a worse prognosis, patients with basal-like subtype 

tumors showed a strong trend towards better response to adjuvant therapy (p=0.072, Fig. 

4c,d). Among basal-like subtype patients, adjuvant therapy provided a hazard ratio of 0.38, 

(95% CI of [0.14, 1.09]), while in patients with classical subtype tumors, adjuvant therapy is 

associated with a hazard ratio of only 0.76 (95% CI [0.40, 1.43]). In our cohort, there was no 

association of most clinical variables (race, gender, T stage, N stage, differentiation, tumor 

cellularity) with survival, although positive nodal status trended towards significance, and 

positive margin status was significantly associated with worse survival (Table 1). Table 2 

shows two-way associations of all subtype calls with clinical and pathological information 

from our cohort of PDAC patients. We found no association of tumor or stroma subtype with 

standard clinical or pathological variables, with the notable exception of mucinous features.

Tumor-specific subtypes in patient-derived xenografts

To assess the tumor or stromal specificity of our signatures, we performed RNAseq on a 

group of 37 PDX tumors. PDX tumors are composed of human tumor cells surrounded by 

mouse stroma (Supplementary Fig. 8)29. Genes from both of our tumor signatures were 

expressed as human transcripts, whereas genes from both of our stromal signatures were 

expressed as mouse transcripts (Fig. 2d, Supplementary Fig. 9a). Furthermore, we found that 

PDX RNAseq expression divided PDX into both classical and basal-like groupings 

(Supplementary Fig. 9b) while predominantly expressing an activated stromal signature 

(Fig. 2d). We found that while tumor-specific subtype was not predictive of graft success 

(Fig. 5a), patient tumors with an activated stroma subtype had significantly higher graft 

success rates than those with normal stroma subtype or low amounts of stroma (Fig. 5b) 

(p=0.019). Basal-like subtype tumors also exhibited faster growth rates than classical tumors 

(p=0.032) as measured by the length of time that tumors took to grow to 200 mm3 (TT200, 

Fig. 5c-d), a previously used metric for PDX growth30. Retrospective analysis of patients 

who had matched PDX tumors found that a shorter TT200 was associated with an 

unfavorable recurrence-free survival (p=0.035, Fig. 5e), suggesting that PDX tumor growth 

rate may reflect patient biology.

We also measured both mouse and human-specific expression of the Collisson et al. genes in 

our PDX models. We found that while genes from the “classical” subtype were expressed by 

human cells in PDX, “quasimesenchymal” transcripts were expressed by a mixture of 

human and mouse cells, and “exocrine-like” transcripts were infrequently expressed 

(Supplementary Fig. 7c). This supports our hypothesis that while the “classical” subtype is a 

bona fide group, the “quasimesenchymal” subtype is partially driven by non-tumor 

contributions of stroma and the “exocrine-like” subtype by normal pancreas.

KRAS codon mutations, tumor-specific subtypes, and race

Studies of KRAS codon mutations have demonstrated that different codon mutations may 

have differential functions31,32 and in some clinical studies, have been shown to be 
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associated with differential outcome. Because PDX tumors are enriched for human-specific 

tumor cells, we evaluated KRAS codon mutations in our PDX cohort using manually 

curated RNAseq data. While the overall frequency of KRAS codon mutations was similar to 

a recent study of PDAC7, we noted that the KRAS G12D mutation was significantly 

overrepresented in our basal-like subtype while G12V was isolated to the classical subtype 

(Figure 5f, p=0.030). Furthermore, we found an overrepresentation of KRAS G12V 

mutations in African Americans (Figure 5g, p<0.001). In contrast to basal-like breast 

cancers which occur most frequently in African American women and have a worse 

prognosis33, African American patients in our cohort tended to have mainly classical 

subtype tumors (13 vs 2). We found that similar to other cancers, African Americans had a 

worse prognosis after adjusting for tumor subtype (Figure 4e, p=0.017). African American 

patients with classical subtype tumors had a median survival of 13 months compared to 

Caucasian patients with classical subtype tumors who had a median survival of 19 months.

Other commonly mutated genes and altered pathways in PDAC

Previously, loss of SMAD4 has been shown to promote tumor growth34,35. We found that, 

similar to previous PDX studies of PDAC, loss of SMAD4 was associated with graft success 

in PDX models36 (Fig. 5h, Supplementary Fig. 10, p=0.044). Furthermore, in our PDX 

cohort, we found that SMAD4 expression was significantly higher in classical compared to 

basal-like subtype PDX tumors (Fig. 5i, p=0.015), consistent with the observation that 

SMAD4 loss confers a more aggressive phenotype.

Using mutation, genomic subtype3, and gene expression28 data from publically available 

ICGC data in which we show recapitulation of our subtypes and prognosis, we evaluated 

significantly mutated genes and pathways in PDAC, including ones recently identified 

through whole-exome sequencing of microdissected primary PDAC tumors1-3,7. We found 

no significant associations between our expression subtypes and these mutationally altered 

pathways, i.e. TGFβ, RB, NOTCH, CTNNB1, SWI/SNF, and DNA repair (Supplementary 

Fig. 11). Furthermore, we found no overlap between our subtypes and recently identified 

genomic subtypes, or response to platinum therapy3. Consistent with this, a recent 

comprehensive study of somatic mutations in PDAC long-term survivors suggested that 

somatic mutations alone will not be sufficient to explain clinical outcome37.

Given the overlap of our classical subtype with that of Collisson et al.5, it was not surprising 

to find that our classical subtype was also enriched for genes associated with GATA6 

overexpression38 (Supplementary Fig. 12a, Fig 4a). GATA6 has been found to promote 

epithelial cell differentiation38,39. This prompted us to perform a more detailed histological 

markers of differentiation in our samples and found that samples with greater than 10% 

extracellular mucin, a marker of differentiation, comprised mostly of classical subtype 

tumors (88.5%, n=23) compared to only 11.5% (n=3) of basal-like subtype tumors 

(Supplementary Fig. 13, p=0.042, Table 2). Consistent with the increased presence of 

extracellular mucin, our classical subtype was enriched for genes upregulated in mucinous 

ovarian cancer (Supplementary Fig. 12b, WAMAUNYOKOLI_OVARIAN 

CANCER_GRADES_1_2_UP40). Interestingly, our basal-like subtype was enriched for 

genes related to KRAS activation and STK11 loss in a lung cancer mouse model where 
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STK11-deficient tumors demonstrated shorter latency and more frequent metastasis41 

(Supplementary Fig. 12c). We found one sample with STK11 inactivation in the ICGC data; 

this sample was a basal-like subtype (Supplementary Fig. 11). Notably, our subtypes were 

not associated with other known signaling pathways in PDAC, including Fanconi anemia, 

DNA repair, chromatin remodeling, beta-catenin, RB, ARF, G1 (Fig. 4a). However, all of 

these pathways except for beta-catenin were considerably differentially expressed in cell 

lines compared to patient tumors, suggesting that gene expression in cell lines may be a 

deceptive representation of most tumors.

Low intra-patient heterogeneity in tumor-specific genes

We expect that only a subset of genes are relevant to the question of intra- and inter-patient 

heterogeneity in PDAC. Many methods exist to pre-select genes for supervised analysis32, 

but selection of the most differentially expressed genes is a common preprocessing step 

during unsupervised analysis33. When clustering matched samples of metastatic and primary 

lesions using the 50 most differentially expressed genes among all matched samples, 

samples separated primarily by organ site instead of by patient (Fig. 6a, c). In contrast, when 

considering 25 top ranked exemplar genes each from the “basal-like” and “classical” factors, 

samples from the same patient clustered closer together, and were less dependent of organ 

site (Fig. 6b, d). This is further illustrated in a focused analysis of two patients (Fig. 6), 

whose tumor samples appear patient-specific when considering our tumor subtype gene list, 

but cluster by site when considering differentially expressed genes. Overall, we found that 

our tumor subtype gene list showed higher similarity (mean Pearson's ρ=0.53) between all 

other samples from the same patient than did the differentially expressed gene list (ρ=0.32, t-

test p<0.001). Furthermore, our tumor subtype gene list produced much lower similarity 

among all other samples from the same organ site across different patients (ρ = 0.04) than 

the differentially expressed gene list (ρ=0.34, p<0.001). This observed similarity of tumor 

gene expression among tumors within the same patient suggests overall high inter-patient 

tumor heterogeneity and low heterogeneity between primary and metastatic sites. However, 

we did observe examples of intra-patient heterogeneity between metastatic sites. For 

example, lung metastases, even those from patients with “basal-like” tumors in other 

locations, clustered exclusively with the “classical” tumors, suggesting that some intra-

patient heterogeneity may exist among metastatic sites, and supporting the previously 

reported divergent patterns of failure in PDAC34.

Discussion

Our study represents the largest investigation of primary and metastatic PDAC gene 

expression to date. We have used NMF to identify novel prognostic subtypes of PDAC 

which may have been previously obscured by confounding normal and stromal tissue. Our 

identification of normal-, tumor-, and stroma-specific gene expression signatures is 

supported by both their overlap with previously identified gene lists and their expression in 

appropriate tissue types. Our tumor subtypes are further supported by their relationship to 

previously identified basal tumor subtypes in breast and bladder cancers and their prognostic 

relevance in external cohorts. Our findings of two different stroma subtypes may help 

explain the differential effects of stroma previously seen in preclinical models.
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Tumor and stroma specific gene expression classified PDAC into four distinct subtypes with 

prognostic relevance. The orthogonal nature of tumor- and stroma-specific subtypes suggest 

an important interplay in patient tumors that will need to be taken into account as stroma and 

immune modulating therapies are studied. In our cohort, patients with basal-like tumors 

appeared to derive more benefit from adjuvant therapy. Whether basal-like and classical 

subtypes may be associated with response to specific therapies will need to be studied 

further as more effective therapies become available. One challenge will be defining 

preclinical model systems that recapitulate these subtypes as our results suggest that 

traditional cell lines are lacking in the classical subtype. Although we demonstrate that PDX 

models recapitulate tumor-specific subtypes, these models alone may not be sufficient due to 

either the lack of human stroma or overrepresentation of the activated stroma subtype in the 

tumors that are successfully grafted. Thus more detailed characterization of genetically 

engineered mouse models of PDAC models will be needed to determine which models best 

reflect both our tumor- and stroma-specific subtypes.

Recent exome sequencing studies have confirmed commonly mutated genes in PDAC but 

have not uncovered mutations that clearly confer survival differences2,3,7. In fact, exome 

sequencing of a cohort of very long-term survivors of PDAC37 found no differences in 

somatic mutations to explain the improved biology of tumors from these rare patients 

compared to the majority of patients with PDAC, suggesting that examining somatic 

mutations alone may not be sufficient to understand the biological and clinical differences in 

PDAC tumors. Furthermore exome sequencing studies and studies of microdissected 

samples are limited to the tumor compartment and overlook the stroma compartment which 

has been shown to be biologically critical in PDAC, with both tumor-promoting and tumor-

inhibiting effects. Our results suggest that RNA subtypes may better capture the molecular 

landscape of PDAC and its reflection on patient outcome. We hypothesize that our RNA 

subtypes may reflect the broad effect of somatic mutations while also capturing the 

importance of the neoplastic stroma.

These results provide new insight into the molecular composition of PDAC which may be 

used for precision medicine. Furthermore, knowledge of these subtypes and their prognostic 

value may provide decision support in a clinical setting where the choice and timing of 

therapies is critical.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Successful Deconvolution of Normal Tissue with NMF. (a) Cartoon depicting the major cell 

types in primary tumor and liver metastasis samples. (b) (above) Overlap of sample types 

(solid colors) with factor weights (grayscale heat maps), and (below) heat maps of five 

exemplar genes for all tumors and adjacent normal tissues. Gene expression shown in the 

heat map has been Z-normalized. (c) Box and whiskers plots showing median, quartiles, and 

range comparing NMF factor weights across tissue types and corresponding t-test result. (d) 

Percent tumor cellularity versus NMF liver factor weight, and NMF basal tumor factor 

weight for metastases to the liver and adjacent liver samples. Linear regression lines are 

shown in red along with corresponding statistics.
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Figure 2. 
Dual action of stroma is described by distinct gene expression patterns which are not 

expressed in cell lines. (a) Consensus clustered heat map of UNC primary tumor samples, 

metastases, and cell lines using genes from stromal factors. Samples clustered into 3 groups, 

describing samples with activated stroma, normal stroma, and samples with low or absent 

stromal gene expression. (b) Kaplan-Meier survival analysis of resected PDAC patients from 

the activated and normal stromal clusters shows that samples in the activated stroma group 

have worse prognosis, with a hazard ratio of 1.94 (CI = [1.11,3.37], p = 0.019). (c) Gene 

expression of stromal signatures are overexpressed in CAFs as compared to tumor cell lines. 

(d) Genes from both stromal signatures are specifically overexpressed by the mouse stroma 

in PDX tumors, and not expressed by the human tumor cells.
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Figure 3. 
Tumor specific gene expression suggests two subtypes of PDAC with similarities to other 

tumor types. (a) Consensus clustered heat map of primary tumors, metastatic tumors, and 

cell line models of PDAC using correlation as the underlying distance function shows two 

subtypes of PDAC. (b) Kaplan-Meier survival analysis of resected primary patients from 

each tumor subtype (36 basal-like, 89 classical) in a shows differential prognosis among 

subtypes with a hazard ratio of 1.89, and a 95% CI of [1.19, 3.02]. (c) Consensus clustered 

heat map of tumors in the ICGC PDAC cohort split by basal and classical factor gene 

expression into basal-like (n=56) and classical (n=47) tumors. (d) Basal-like tumors in the 

ICGC data set has a hazard ratio of 2.11, with a 95% CI of [1.14, 3.89]. Median follow up 

was 20 months (e) Consensus clustered heat map of TCGA Bladder cancer samples split by 

basal and classical factor gene expression into basal-like (n=128) and classical-like (n=95) 

tumors strongly agrees with BASE47 basal calls shown above the heat map. (f) Subtyping in 

the TCGA BLCA data set had a hazard ratio of 1.43, with a 95% CI of [0.84, 2.42] (g) 
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Consensus clustered heat map of the Perou breast cancer data set as split by basal factor 

genes (n=72 basal-like, n=223 not basal) strongly agrees with the division of samples into 

previously published basal and non-basal subtypes. (h) Basal-like breast cancer, as defined 

by our labeling, had a hazard ratio of 3.52, with a 95% CI of [1.94, 6.38].
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Figure 4. 
Multivariate survival analysis of tumor and stromal subtypes. (a) Heat map of tumor samples 

using 25 genes from each of the tumor and stromal factors, with samples sorted horizontally 

by classification. Signature scores for selected gene sets appear above for each sample. (b) 

Combined Kaplan-Meier survival analysis of resected primary patients from basal-like or 

classical tumor types and normal or activated stroma subtypes with differential survival (p < 

0.001 log-rank test). Differential prognosis among subtypes shows complementarity. 

Classical tumors with normal stroma subtypes (n=24) had the lowest hazard ratio of 0.39, 

and a 95% CI of [0.21, 0.73], while basal-like tumors with activated stroma subtypes (n=26) 

had the highest hazard ratio of 2.28 with a 95% CI of [1.34, 3.87]. (c) Kaplan-Meir survival 

analysis shows that patients with classical subtype tumors show less response to adjuvant 

therapy (HR = 0.76, 95% CI [0.40, 1.43]) compared to (d) basal-like tumors (HR of 0.38, 

and a 95% CI of [0.14, 1.09]). (e) Kaplan-Meir survival analysis shows that African-
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Americans have worse overall survival in both basal-like and classical subtypes, with a 

Hazard ratio of 2.28 and a 95% CI of [1.16,4.5].
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Figure 5. 
Associations between tumor and stroma subtypes, PDX tumors, KRAS mutations and 

SMAD4 expression. (a) Tumor subtype was not associated with PDX graft success rate 

(p=0.417). (b) Activated stromal subtype samples engraft with higher success rates than low 

or normal stromal subtype samples (p=0.019) (c) Basal-like tumor subtype PDX reach 200 

mm3 faster than classical subtype PDX (p=0.032). (d) PDX from samples with activated 

stroma subtype or normal stroma subtype do not have significantly different times to reach 

200 mm3 (p=0.170). (e) PDX tumors with faster growth rates were associated with earlier 

recurrences in patients (HR = 0.31, 95% CI [0.10, 0.92]. (f) KRAS mutation type is not 

uniformly distributed among race or subtype. KRAS G12D mutations are more prevalent in 

basal-like subtype tumors than classical tumors (p=0.030). (g) African Americans have more 

G12V mutations, while Caucasians have more G12D mutations (p<0.001). (h) SMAD4 

staining in primary tumors is predictive of successful PDX engraftment (p=0.044). (i) Basal-

like subtype PDX exhibit weaker SMAD4 staining than classical subtype PDX (p=0.015).
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Figure 6. 
Overcoming tumor cellularity reveals true heterogeneity among matched primary and 

metastatic sites. (a) Sample-sample correlations of matched primary and metastatic tumors 

using the 50 most differentially expressed genes across all samples (“DE50”) causes samples 

to group by organ location. (b) Sample-sample correlations using 25 genes each from 

classical and basal-like tumor lists (”T50”) caused samples to cluster instead by tumor 

subtype and patient of origin. (c) Correlation of samples within the same patient is higher 

when using T50 genes than when using DE50 genes. (d) Correlation of samples originating 

in the same organ was higher when using DE50 than when using T50. (e) Clustering of 

multiple samples from two patients using the DE50 divides samples by organ. Genes 

expressed highly in lung and liver tissue are noted with brackets. Clustering of the same 

samples using T50 genes separates samples by patient. Brackets note genes which 

differentiate the two patients. A diagram of sampled locations for these patients indicated by 
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concentric circles, illustrating how samples simultaneously exhibit both patient (inner color) 

and organ (outer color) specific gene expression.

Moffitt et al. Page 21

Nat Genet. Author manuscript; available in PMC 2016 June 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Moffitt et al. Page 22

Ta
b

le
 1

D
em

og
ra

ph
ic

s 
an

d 
U

ni
va

ri
at

e 
C

ox
 a

na
ly

si
s

A
ll

R
es

ec
te

d 
w

it
h 

Su
rv

iv
al

U
ni

va
ri

at
e 

C
ox

 p
-v

al
ue

M
ic

ro
ar

ra
y 

P
ri

m
ar

y
R

N
A

se
q 

P
ri

m
ar

y
R

N
A

se
q 

P
D

X

R
ac

e

C
au

ca
si

an
12

8
12

1
0.

50
7

99
9

25

A
fr

ic
an

 A
m

er
ic

an
23

18
0.

33
3

10
3

8

O
th

er
8

7
0.

82
1

5
0

3

G
en

de
r

F
90

83
0.

34
8

67
5

23

M
80

68
0.

34
8

55
8

14

T
 S

ta
ge

T
1

4
4

0.
42

0
2

1
2

T
2

22
20

0.
53

0
20

2
5

T
3

13
1

12
2

0.
74

3
91

9
28

T
4

1
1

0.
11

5
1

0
0

N
 S

ta
ge

N
0

49
43

0.
06

8
36

7
10

N
1

11
2

10
6

0.
06

8
80

5
25

M
 S

ta
ge

M
0

16
0

14
9

11
5

12
35

M
1

3
0

2
0

1

A
dj

uv
an

t T
he

ra
py

Y
es

74
70

0.
05

5
44

5
21

N
o

30
28

0.
05

5
27

3
7

D
if

fe
re

nt
ia

tio
n

W
el

l
16

13
0.

94
0

16
0

1

M
od

er
at

e
49

47
0.

39
8

49
1

3

Po
or

34
31

0.
40

7
34

1
2

PD
X

G
ra

ft
 S

uc
ce

ss
44

37
0.

16
4

11
8

37

G
ra

ft
 F

ai
lu

re
18

12
0.

16
4

9
3

0

M
ar

gi
n

Po
si

tiv
e

58
52

0.
02

6
34

5
17

N
eg

at
iv

e
93

88
0.

02
6

75
7

17

To
ta

l
19

3
16

3
14

3
15

37

Nat Genet. Author manuscript; available in PMC 2016 June 17.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Moffitt et al. Page 23

Ta
b

le
 2

Su
m

m
ar

y 
of

 a
ss

oc
ia

ti
on

s 
w

it
h 

cl
in

ic
al

 c
ov

ar
ia

te
s 

an
d 

su
bt

yp
es

Tu
m

or
 S

ub
ty

pe
F

is
he

r'
s 

E
xa

ct
St

ro
m

a 
Su

bt
yp

e
F

is
he

r'
s 

E
xa

ct

C
ov

ar
ia

te
C

la
ss

ic
al

B
as

al
-l

ik
e

p-
va

lu
e

N
or

m
al

A
ct

iv
at

ed
p-

va
lu

e

G
en

de
r

M
al

e
50

16
0.

84
9

15
36

1

Fe
m

al
e

64
19

17
43

R
ac

e
C

au
ca

si
an

90
27

0.
52

1
26

65
1

A
fr

ic
an

 A
m

er
ic

an
13

2
3

7

T
 S

ta
ge

T
2

16
6

0.
59

5
14

1

T
3

87
25

25
59

N
 S

ta
ge

N
0

35
9

0.
53

2
11

22
0.

64
9

N
1

72
25

21
54

M
ar

gi
n

Po
si

tiv
e

38
8

0.
38

5
7

22
0.

62
9

N
eg

at
iv

e
65

22
22

49

A
dj

uv
an

t T
he

ra
py

Y
es

48
13

0.
43

7
10

30
0.

76
9

N
o

21
9

5
19

D
if

fe
re

nt
ia

tio
n

Po
or

23
11

0.
47

9
11

18
0.

20
3

W
el

l
49

16
13

44

M
uc

in
L

ow
 M

uc
in

49
24

0.
04

2
18

43
0.

79
2

H
ig

h 
M

uc
in

23
3

6
19

St
ro

m
a

N
or

m
al

31
8

0.
14

4

A
ct

iv
at

ed
57

31

Nat Genet. Author manuscript; available in PMC 2016 June 17.


	Abstract
	Results
	Virtual microdissection of PDAC
	NMF distinguishes normal and tumor compartments
	Identification of stroma-specific subtypes
	Identification of tumor-specific subtypes
	Tumor-specific subtypes in patient-derived xenografts
	KRAS codon mutations, tumor-specific subtypes, and race
	Other commonly mutated genes and altered pathways in PDAC
	Low intra-patient heterogeneity in tumor-specific genes

	Discussion
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Table 1
	Table 2

