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Abstract

Across-nation differences in the mean of complex traits such as obesity and stature are 

common1–8, but the reasons for these differences are not known. Here, we find evidence that many 

independent loci of small effect combine to create population genetic differences in height and 

body mass index (BMI) in a sample of 9,416 individuals across 14 European countries. Using 

discovery data on over 250,000 individuals and unbiased estimates of effect sizes from 17,500 sib 

pairs, we estimate that 24% (95% CI: 9%, 41%) and 8% (95% CI: 4%, 16%) of the captured 

additive genetic variance for height and BMI across Europe are attributed to among-population 

genetic differences. Population genetic divergence differed significantly from that expected under 

a null model (P <3.94e−08 for height and P<5.95e−04 for BMI), and we find an among-population 

genetic correlation for tall and slender nations (r = −0.80 (95% CI: −0.95, −0.60), contrasting no 

genetic correlation between height and BMI within populations (r = −0.016, 95% CI: −0.041, 

0.001), consistent with selection on height genes that also act to reduce BMI. Observations of 
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mean height across nations correlated with the predicted genetic means for height (r = 0.51, 

P<0.001), so that a proportion of observed differences in height within Europe reflect genetic 

factors. In contrast, observed mean BMI did not correlate with the genetic estimates (P<0.58), 

implying that genetic differentiation in BMI is masked by environmental differences across 

Europe.

Many of the phenotypes that vary within human populations are complex, in that they are 

determined by alleles at multiple loci as well as by many non-genetic factors9–15. Therefore, 

it is reasonable to assume that regional differences in such traits also have a complex 

basis16–18. Understanding these regional differences requires knowledge of the relative roles 

of environmental versus genetic effects, which can be gained through estimating the amount 

of population genetic variance in phenotype, and by determining the amount of observed 

differences that can be explained by population genetic effects19. However to date, these 

estimates have yet to be made outside of laboratory study populations20, and experimental 

designs to estimate among-population differences due to genetic factors in human 

populations have been lacking due to the confounding of genetic and environmental effects.

At least 135 million European citizens are classed as obese21, which is expected to have 

major direct and indirect health and economic costs16, 22, 23. Regional differences across 

Europe in height and susceptibility to weight gain, as defined by body-mass-index (BMI), 

are well documented5, 18, 22–26, but the reasons for these differences are not well understood. 

Height and BMI are complex traits that have been extensively studied and there is strong 

evidence that both are influenced by a large number of genetic polymorphisms, with a 

significant proportion of their genetic variance captured by common SNPs11, 26–30. For 

height, there is strong empirical evidence for selection on height-associated single nucleotide 

polymorphism (SNP) loci within Europe26, 31, and between European populations as 

compared to the rest of the world32. However, it is unlikely that the true extent of the 

population-genetic effects has been captured, or well represented by a limited number of 

ascertained loci examined to date. For BMI, we do not know whether genetic differentiation 

exists, and for both traits estimates of the contribution of common loci to population genetic 

variance and the observed regional differences remain unknown (although see26).

In this study, we estimate the cumulative population genetic differentiation at multiple 

unlinked loci associated with height and BMI across 9,416 European individuals from 14 

countries, using population genetic analyses (Online Methods and Supplementary Figures 

S1 and S2). We performed GWAS meta-analyses on data from recent studies33, 34, to select 

independent loci (r2<0.1 and >1Mb distance using the PLINK clumping procedure35) that 

were associated with both traits in a large sample (~250,000 individuals for height and 

~350,000 for BMI) of European ancestry. We then re-estimated the effects of each SNP in a 

within-family design, which is unbiased of population stratification, and used these effect 

size to create a genetic predictor for height and BMI (also termed ‘profile’ or ‘polygenic 

score’)36. The proportion of variance in the profile scores attributable to population 

differences was estimated in a Bayesian mixed effects model, alongside the co-

differentiation of height and BMI, and the mean profile score for each nation (Online 

Methods and Supplementary Figure S1). Using theory and simulation study, we show that 
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whilst the use of within-family effect sizes provides unbiased estimated effect sizes, 

population genetic analyses conducted using loci that were ascertained from a standard 

GWAS can be biased if population stratification was not fully accounted for (Online 

Methods and Supplementary Figures S3, S4 and S5). In large-scale meta analyses, there is 

no certainty that population stratification has been completely controlled for and thus we 

repeated our analysis using (i) a non-ascertained set of unlinked (LD r2<0.1 and >1Mb 

distance apart), common (minor allele frequency > 1%), HapMap3 loci (~40,000 SNP loci), 

and (ii) a set of unlinked (LD r2<0.1 and >1Mb distance apart), common (minor allele 

frequency > 1%), HapMap3 loci selected based on their within-family association with each 

phenotype (~40,000 SNP loci for both traits). This provides genome-wide estimates of 

population genetic differentiation at common, unlinked loci, which are unbiased of 

population stratification or ascertainment biases, representing a lower-limit of the 

population-level effects.

Genetic differences among populations may occur by random chance processes, or through 

natural selection in our evolutionary past19, 37–45. Therefore, at all stages our results were 

compared to a null model representing the random chance process of genetic drift, which 

tests whether selection has acted on common variants to alter the frequency of height- and 

BMI-associated loci across populations. We estimate the population genetic co-

differentiation of height and BMI across populations, to examine whether differentiation of 

both phenotypes is independent, which asks whether selection has acted on both traits 

independently. We then estimate whether population genetic effects for both phenotypes 

reflect the pattern of observed differentiation. Finally, we determine whether population-

genetic effects are strongest at loci that are expected to explain the most variance in 

phenotype.

The maximum proportion of variance in a polygenic predictor (profile score) attributable to 

population differences was 24% (95% CI: 9%, 41%) and 8% (95% CI: 4%, 16%) for height 

and BMI, using 2,660 SNPs for height and 11,919 SNPs for BMI. For height, the largest 

proportion of population-level variance was captured by SNPs of the second lowest p-value 

threshold from the large-scale meta-analysis (Supplementary Figure S6). For BMI, the 

continual addition of SNPs increased the proportion of population-level variance 

(Supplementary Figure S6). These results reflect the fact that among-population variation is 

greater in a predictor explaining a greater proportion of the phenotypic variance within a 

population for both phenotypes (Supplementary Figure S7) and thus the estimates presented 

here may increase as prediction accuracy increases in future. Our results were confirmed in 

both the non-ascertained set of independent genome-wide loci, (for height: 8.6%, 95% CI 

3%, 15.7%; and for BMI: 2.8%, 95% CI 1.1%, 5.3%), and the independent set of loci 

selected on their association with both traits in the within-family analysis (for height: 11.9%, 

95% CI 4.5%, 21.8%; and for BMI 8% 95% CI: 3.4%, 14.7%). The lower among-population 

variance at the non-ascertained set of loci, reflects the fact that the prediction accuracy was 

reduced, likely through the addition of a very large number of loci with no detectable 

association with either phenotype. Subsequent results are presented using the predictor that 

captures the greatest amount of population- and individual-level variance (2,660 SNPs for 

height and 11,919 SNPs for BMI); however, the pattern of population means remained the 

same at both sets of genome-wide loci (Supplementary Figure S8).
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Model estimates of the predicted population genetic means for height and BMI are given in 

Figure 1 alongside the observed values which we estimate from an independent set of 

recently published data25,46, whilst accounting for time trends. Population genetic 

differences in allele frequency are expected to create genetic differences in height such that 

people of the Netherlands are on average 1cm taller than those in Italy, and create genetic 

differences in BMI such that on average people from Italy and Denmark differ by 0.2 BMI 

units (Figure 1 and Figure 2).

We next determined whether we could reject the null hypothesis that the population genetic 

differentiation observed for height and BMI reflected a pattern expected under neutrality. To 

do this, we compared our estimates to a null quantitative genetic model of multivariate 

population differentiation32, 47. We found strong evidence that the divergence of each trait 

was greater than would be expected under a neutral model (Figure 2). The overall level of 

neutral genetic differentiation was comparatively low and estimates of the population-level 

variance expected under drift were small for both height 1.2% (0.01%, 1.78% 95%CI) and 

BMI 1.9% (0.48%, 2.97 95%CI), and not significantly different to the average FST of the 

SNP sets between the populations of 1% for height and 1.2% for BMI. Our results were 

confirmed in both the non-ascertained set of independent genome-wide loci, (For height: p = 

3.29×10−06; and for BMI: p=0.018), and an independent set of loci selected on their 

association with both traits in the within-family analysis (For height: p = 2.67×10−06; and 

for BMI p = 8.35×10-05). We therefore reject the null model and our results suggest that 

population genetic differentiation across these 14 European countries for height and BMI 

have been driven by selection on standing genetic variation across geographical regions in 

our evolutionary past. The significant departure from a neutral model occurs because on 

average, the common loci comprising the genetic predictor are differentiated in a direction 

that is consistent with the direction of their effects on each trait, which in turn creates 

differences among countries in a genetic predictor that are greater than expected by chance.

Our rejection of the null hypothesis, that population differences in polygenic score for height 

and BMI are due to drift is not caused by potential SNP ascertainment biases or population 

stratification. Our interpretation that the differences in polygenic score between populations 

is due to selection for height and BMI does not depend on the LD between causal variants 

because we have used only independent loci; nor does it depend the SNPs used because we 

generate our null model estimates from the same set of SNPs that we use to create the 

genetic predictor (see Online Methods). Loss of LD, genotype-environment interactions, and 

genetic heterogeneity, can change the relationship between SNPs and the underlying causal 

variants across countries. However, this would reduce the likelihood of detecting population 

genetic differentiation in our approach and could not cause us to incorrectly reject our null 

hypothesis. In this study, we minimize these effects because profile scores were created from 

SNPs that had their effect sizes estimated within-populations of European ancestry.

Our framework provides an estimate of the co-divergence in population mean genetic profile 

scores between height and BMI (Figure 2), and we found a negative correlation among 

population genetic means of −0.80 (95% CI: −0.95, −0.60), which was consistent across 

predictors made genome-wide sets of loci (for genome-wide loci selected based on within-

family association with each trait: −0.89, 95% CI −0.97, −0.77; and for non-ascertained 

Robinson et al. Page 5

Nat Genet. Author manuscript; available in PMC 2016 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



genome-wide loci: −0.77, 95% CI −0.94, −0.55). This result implies selection acting on 

common loci in a way that increases height whilst reducing BMI and visa versa. Thus, we 

find that across the majority of the European countries a genetic predisposition to being a 

tall nation was associated with a genetic predisposition to being a slender nation (low BMI). 

Our model also enabled us to estimate the correlation among genetic profile scores within-

populations (Online Methods), which yielded an estimate of r = −0.016 (95% CI: −0.041, 

0.001). The fact that height and BMI are nearly uncorrelated at the individual-level means 

that selection acting on one trait would not be expected to elicit a response in the other, 

suggesting that selection has acted on both height and BMI-associated loci. We cannot rule 

out genetic differentiation in one trait being mediated to some extent by selection upon the 

other as some genes affect both phenotypes48. However, our results do strongly suggest that 

the population genetic co-divergence shown here is inconsistent with random genetic drift, 

because under drift the expectation is that the among-population genetic correlation should 

equal the within-population correlation47, 49.

We then tested if the phenotypic differences across the 14 European countries observed 

today reflect genetic differentiation at common height- and BMI-associated loci, or whether 

current environmental differences among countries (diet, economy, climate etc.) mask the 

population genetic differentiation that we detect. Our results show a strong association 

(r=0.51; 95% CI 0.39, 0.61; P<0.001) between the population genetic values and the 

observed phenotypic pattern for height (Figure 3). This suggests that the phenotypic height 

differences that we observe across countries are partially due to differences in allele 

frequency at common height-associated loci. For BMI, the pattern of population genetic 

differentiation did not reflect the observed pattern (r = −0.10; 95% CI −0.19, 0.01; P = 

0.584; Figure 3). This suggests that, although selection has created population genetic 

differentiation for BMI, environmental differences among countries mask population genetic 

differentiation. We also estimated the correlation between the phenotypic differentiation 

expected under drift and the observed values for both phenotypes and found no evidence of a 

correlation (Figure 3), implying that drift does not drive the observed national patterns of 

either trait.

We identified loci that contributed most to the genome-wide pattern of population genetic 

differentiation that we estimated for height and BMI (see Online Methods). We found 

greater differentiation in allele frequency across populations at SNPs with intermediate 

allele frequency, and an association between the expected additive genetic variance 

contributed by a SNP (estimated from the within-family effect size estimate and the SNP 

allele frequency) and its contribution to population genetic differentiation (Supplementary 

Figure S9 and Supplementary Figure S10), a pattern expected from our theory 

(Supplementary Figures S11 and S12). This suggests that SNPs making the largest 

contribution to the phenotypic variance are enriched for association with the genome-wide 

pattern of population genetic differentiation, and this is evidenced by the fact that the 

proportion of population-level variance is greater in a predictor explaining a greater 

proportion of the phenotypic variance for both phenotypes. We found no evidence for 

significant population differentiation at any SNP at a genome-wide threshold of p<7×10−7 

within our European prediction sample, implying that many loci of small effect across the 

genome combine to create the genome-wide population genetic differentiation that we 

Robinson et al. Page 6

Nat Genet. Author manuscript; available in PMC 2016 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



detect. Annotation of the top 500 contributing SNPs of each trait to genes followed by 

enrichment analyses, suggest that population genetic variation across the 14 countries for 

height and BMI is likely underlain by the combined effects of multiple pathways across the 

genome, with overlap in the genes involved (20% overlap of annotated genes, 

Supplementary Figure S13).

Finally, we examined population genetic differentiation in height and BMI at both a local 

and a world-wide scale. We found no evidence for population genetic differentiation across 

six Northern Italian villages50 (Supplementary Figure S14), suggesting that genetic 

differentiation among subgroups of such a genetically homogeneous population are likely to 

be small. We then examined population differentiation for height and BMI in the Human 

Genetic Diversity Panel (HGDP), as used in a previous study32 (Supplementary Figure S15). 

We found evidence to reject the null hypothesis that population genetic differentiation 

observed for height and BMI reflected a pattern expected under neutrality at genome-wide 

independent loci (Supplementary Figure S15). This extends previous work32, which reported 

no significant differentiation for BMI using a limited number of loci and we also find no 

evidence for population genetic co-differentiation of height and BMI, implying a pattern of 

selection that is specific to Europe.

The conclusions of our study are fourfold: (i) many common loci combine in a consistent 

manner to create population genetic differences for height and BMI; (ii) we reject our null 

hypothesis that the population genetic differentiation for height and BMI reflects a pattern 

expected under neutrality and thus conclude that selection drives the population genetic 

differentiation that we observed; (iii) population genetic differentiation for height and BMI 

are correlated within Europe, which is also to a greater level than expected under neutrality, 

implying that height loci under selection are enriched for effects that reduce BMI; (iv) the 

selection driven population genetic differences for height are associated with the phenotypic 

patterns we see across Europe. The selection driven population genetic differences for BMI 

are not associated with the phenotypic patterns and thus we conclude that environmental 

factors are masking the population genetic differences. While, genotype-environment effects 

and rare variants will play a role in shaping population genetic differentiation, the focus of 

this approach is on estimating the amount of population-level variance that is ‘tagged’ by a 

specific set of common SNP markers. As additional genetic variation is captured for both 

traits, it is likely that power will increase to fully capture the among population genetic 

effects. The theoretical and analysis framework builds upon previous approaches26, 32, is 

entirely general, and can be applied to estimate the role of commonly varying loci in shaping 

population differences in any set of phenotypes.

ONLINE METHODS

1. Estimating population-level genetic variance

One locus, two populations—Following32, 47, 51–53, if two populations are descended 

from a common ancestor, we can describe variance in the frequency of an allele k across 

populations as:
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[1.1]

where pk,r is the frequency of allele k within each population r, p̄k is the allele frequency 

across the entire sample and nr is the number of populations.

The ratio of the variance of allele frequencies among populations relative to the total 

variance in allele frequency of k can be described as:

[1.2]

which is equivalent to the classical estimator of FST describing allelic differentiation at a 

locus across populations52.

Consider a quantitative trait that is influenced by a single allele k, the genetic variance 

contributed the locus is:

[1.3]

where ak is the effect size on an arbitrary scale of allele k, and p̄k is the frequency of the 

allele k within the sample.

Assuming that ak is equal across the two populations, the among population variance is:

[1.4]

where θk is the allelic differentiation across the two populations estimated in Eq. 1.2.

The ratio of these two components at this locus is:

[1.5]

which describes the proportion of genetic variance attributable to population-level effects for 

allele k.

Thus for a causal variant, the proportion of additive genetic variance attributable to 

population-level effects is equal to estimating the amount of allelic differentiation, θ, at that 

locus51. Eq. 1.5 can be written another way if we consider the mean genetic value of a 

population for an allele:
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[1.6]

the mean genetic value across populations is then:

[1.7]

and the genetic variance across populations is then:

[1.8]

with the ratio of the variance across populations to the additive genetic variance within 

populations as:

[1.9]

Multiple loci and multiple populations—If we now consider a quantitative trait that is 

influenced by a set of nk alleles where xk is an indicator function for the allele k (x = 0, 1, 2 

copies for diploid individuals) of individual i. Considering only additive effects, the additive 

value for a trait of individual i is a sum of the locus specific effects across the nk alleles:

[1.10]

Additive variance at the population level is then:

[1.11]

where ḡr is the mean genetic value within each population r, and ḡ is the mean genetic value 

over all individuals in the sample. The ratio of the population-level variance to the total 

variance is then:

[1.12]

which describes the proportion of genetic variance attributable to population-level effects 

across loci.
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The quantity Q in Eq. 1.12 is equivalent to estimating the cumulative effects of θ across the 

loci that influence a quantitative trait. However, as there are multiple loci it now contains 

two components:

[1.13]

where the first component is the average θ across all loci, and the second component is the 

covariance between alleles k and j in their directional deviation multiplied by the product of 

their effects ak and aj, summed across loci, and then divided by their additive contribution to 

the trait variance.

Under drift the second component is expected to be zero, as neutral loci will not all 

consistently covary in the same direction as the effects of the loci, with variation around the 

expectation depending on the number of loci.

Under selection, the second component will be >0 because selection creates a match 

between effect size direction and frequency differences across the trait-associated SNPs. 

Therefore for a trait under differential selection across populations, trait-associated loci are 

expected to have higher values of θ than neutral loci, but they will also covary in a consistent 

manner across loci, creating consistent mean differences in profile score across populations.

2. Using estimated SNP effect sizes from GWAS

Population-level variance in a genetic predictor—GWAS results provide estimates 

of the additive value at a locus, which can then be used to create a genetic predictor ĝt = 

Σkxk,iβ̂k,m, where β̂k is the standardized regression coefficient of the SNP allele k.

Considering a single trait, we can create a genetic predictor for individuals across multiple 

independent data sets from different regions, and then the genetic predictor can be 

decomposed into components:

[2.1]

where µ is the mean of the genetic predictor (global mean genetic value), vr is the 

population-level additive genetic effects with value ḡr for each population r and variance , 

and ei is the residual variance representing the average individual-level effects within 

populations. This approach is only valid if the regression coefficients used to create the 

genetic predictor are unbiased of population stratification.

Eq. 2.1 can be estimated in a Bayesian MCMC mixed-effects model framework, to model 

the amount of population-level variance in the genetic predictor , and to gain model 

estimates of the population-level genetic values ḡr,m. An MCMC approach provides multiple 

posterior estimates of the parameters, which is important as it allows uncertainty in the 

parameter estimates to be carried through to all of the later analyses described below. This is 
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important especially if there is an imbalance in sample size among countries, because the 

greater uncertainty in the mean estimates of smaller sample sizes will be taken into account. 

If profile scores are created using different sets of SNPs, then comparisons among sets can 

be made by standardizing the genetic predictor to a z-score prior to analysis provides an 

estimate of the deviation of each individual, and thus each population, in SD. We can then 

calculate the proportion of variance attributable to among population effects as .

When multiple phenotypes have been recorded, the population-level variance and covariance 

can be decomposed as:

[2.2]

where ĝ is a matrix of genetic predictors of individual i for traits m, µ is a vector of trait 

mean genetic values, v is the population-level additive genetic value for m traits, and e is the 

residual variance representing individual-level effects for m traits. Again, Eq. 2.2 can be 

estimated in a multivariate Bayesian MCMC mixed-effects framework, to model the 

population-level variance for all traits m, the population-level covariance (co-

differentiation), and the residual covariance, which represents the within-population 

covariance in genetic predictors (within population genetic correlation).

Estimation and prediction bias—The regression coefficients used to create the genetic 

predictor must be unbiased of population stratification; otherwise a quantification of 

population genetic differentiation may be biased. We quantify this bias using a hypothetical 

design with two populations.

Consider a stratified discovery sample consisting of equal proportions of individuals from 

two diverged sub-populations, and a causal SNP Xk, which has an effect on phenotype of βk. 

The allele frequency of Xk is p̄k = 0.5(p1k + p2k), where p1k and p2k are the frequencies of 

SNP k in populations 1 and 2 respectively. We define the difference in allele frequency 

among populations as δk = p1k – p2k and  We denote the population 

means as ȳ1 and ȳ2. We define the difference in the population means as ȳ1 – ȳ2 = 2β(plk – 

p2k) + Δ, where the first term is the contribution from the variant to the population difference 

and the second term, Δ, is a non-genetic effect. If we ignore population stratification in the 

discovery GWAS:

dropping subscript k for convenience. Since,
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then,

and hence,

[2.3]

with bias: .

Across the genome the expectation of c for all SNPs is zero because the direction of allele 

frequency differentiation, will not match the direction of phenotypic differentiation across 

all SNPs. However, stratification bias in the regression coefficient estimates from the 

discovery GWAS, may create a match between effect size direction and frequency 

differences across SNPs identified as being genome-wide significant. This is because loci 

are more likely to be identified if the stratification in allele frequency differences matches 

both the difference in phenotypic mean among populations and the direction of effect size.

We can describe the non-central χ2 distribution with mean and variance of a test statistics 

(T) of association conditional on all parameters (including the allele frequency difference 

between the two populations) as:

[2.4]

[2.5]

where δ = p1 – p2. The expectation over β̂δ2 over δ is,

[2.6]

Hence, the expectation of the non-centrality-parameter (NCP) of detection, with the 

expectation taken over δ is,
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[2.7]

with q2 the proportion of variance explained by the variant. The variance of the NCP is:

[2.8]

Scaled by N, the mean and variance of the NCP are q2 + ¼N(ȳ1 – ȳ2)2 FST and 2q2 + 

½N(ȳ1 – ȳ2)2 FST, respectively. If we consider a polygenic phenotype that is stratified 

across two countries, with ȳ1 – ȳ2 = 1 SD, effect sizes of ~ 0.014 SD or less, and the 

variance explained (q2) of each SNP typically less than 0.1%, then even if FST ~ 0.01 across 

Europe, the mean and variance of the NCP will be mostly driven by stratification. This 

means that if population 1 has a greater mean height, then SNPs where the height increasing 

allele has a higher frequency in population 1 are far more likely to be detected than those 

where the height increasing allele is not differentiated between the populations. Conversely, 

SNPs where the height decreasing allele has a lower frequency in population 1 are also far 

more likely to be detected than non-differentiated SNPs. Therefore, the top trait-associated 

loci will have higher values of θ than neutral loci, and they will covary in a consistent 

manner across loci, creating consistent mean differences in profile score across populations, 

that is due to stratification bias in the GWAS (ascertainment bias), rather than selection 

unless population stratification is accounted for in the discovery GWAS.

If we consider U to be a dummy variable for sub-population, with U = 1 for population 1 

and 0 for population 2, then FST at each locus can be interpreted as the proportion of 

variance in Xk explained by U, so FSTk = R2(xk,U), with R2 the squared correlation between 

xk and U. Then essentially we can consider the problem as the effect of a SNP is biased due 

to the confounding effect of U. The confounding effect will be , with r the 

correlation of Xk and U which is analogous to Eq. 2.3 above.

If there is stratification, a correlation will be created between the SNP regression 

coefficients, β̂, and r, which will create a biased genetic predictor with mean differences in 

the predictor between the sub-populations. Thus, when creating a genetic predictor as the 

weighted sum of the top SNP effects for two populations:

[2.9]
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where the bias at each of the ascertained SNPs sum in a directional manner because SNPs 

where ȳ1 – ȳ2 and r are in the same direction (those that are differentiated in the same 

direction as the phenotype) get upwardly biased; and those where ȳ1 – ȳ2 and r are in 

opposing directions get downwardly biased.

In GWAS, the effect of each SNP is tested whilst controlling for the leading principal 

components, with the aim of removing the confounding effects of U. While this may control 

for a great deal of population stratification, there is no certainty that all stratification has 

been removed from the SNP regression coefficients of large-scale meta-analyses. Therefore, 

an alternative approach is to use a within-family analysis to estimate the SNP regression 

coefficients, avoiding population stratification biases, and then to confirm results using, a 

predictor at non-ascertained genome-wide loci to ensure that conclusions gained are not just 

a result of ascertainment biases.

3. Within-family analysis association analysis

There are numerous approaches to test association in family-based designs, where the aim is 

to estimate regression coefficients that are unbiased of population stratification. One 

approach is to partition association effects into orthogonal between and within-family 

components in which the former reflects population structure and the latter is only 

significant in the presence of linkage disequilibrium55. For sibling pairs, the model is:

[3.1]

where yi is the phenotype measured on individual i, and bk and wk are orthogonal between- 

and within-family components for a given SNP k, and e is the residual error, bk is calculated 

as  where nf is the number of members in a family and Σxk,f is the sum of the 

SNP values of all the members of a family. wk is calculated as wk = xk – bk and is thus the 

deviation from the family mean of each individual. The regression coefficient β̂w,k is thus a 

direct estimate of the additive genetic value of a marker that is unbiased of stratification bias.

A genetic predictor can then be made using the regression coefficients β̂w,k as:

[3.2]

The effect of LD can be minimized or eliminated by using a set of independent SNPs in 

linkage equilibrium.

4. Comparison of the population-level estimates to a null drift model

Testing selection from drift genome-wide—To compare the population-level 

estimates to their expectation under random genetic drift, a quantitative genetic framework 

for studying population differentiation can be used47.
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For SNP k, genotyped in population 1 and 2, the difference in allele frequency estimates 

approximately follows a normal distribution:

[4.1]

Weighting the SNP by its regression coefficients βŵ,k produces a genetic predictor for each 

SNP, gk, where the difference in mean between populations also approximately follows a 

normal distribution.

[4.2]

Under drift, the expectation of the mean is zero across all SNPs genome-wide because drift 

would not create a consistent alignment of the direction of allele frequency differentiation 

and effect size across all loci. If there is selection, then the mean will no longer be zero and 

this is what we wish to test across multiple populations.

Following47, the matrix of population-level effects estimated in Eq. 2.2 can be denoted as Ar 

= (ḡr,m)r. If we consider a population consisting of a set r of nr local populations, with each 

population consisting of ni individuals, which are derived from a common ancestral 

population, then under drift Ar is expected to be distributed as multivariate normal:

[4.3]

where µ is the mean additive genotype in the ancestral population which is determined by 

the allele frequencies in the ancestral population, I is a unit vector relating observations to 

populations, GA is the ancestral variance-covariance matrix of the traits in question, θr is the 

matrix of population-level coancestry, and ⊗ is the Kroenecker product. Relatedness can be 

defined as the probability that randomly chosen alleles from a given locus of individuals i 
and i’ are identical by descent, with average coancestry between any two populations X and 

Y denoted by , which make the off-diagonal elements of the 

matrix θr, and average within-population relatedness  on the diagonal. Therefore, 

genetic values across local populations Ar are assumed to be multivariate normal and 

dependent upon the degree of relatedness to other populations, the ancestral additive 

variance-covariance of the traits, and the ancestral trait means.

While we know nothing of the ancestral genetic values, we can estimate the expected 

population-level values under drift and then compare our predicted values to these using the 

framework of Eq. 4.3. This requires a number of steps:
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i. Randomize the regression coefficients βŵ,k across SNPs. By keeping the 

effect sizes consistent, but attributing those effects across SNPs at random, 

our profile scores reflect the action of drift.

ii. Transform each set of profile scores to a z-score and using them in Eq. 2.2 

to provide 1000 estimates of the population genetic variance, and 

population means under drift denoted as.AD. These values are displayed in 

the figures as the neutral model estimates.

iii. Calculating the sample covariance matrix of these 1000 estimates, which 

provides an estimate of the expected population-level covariance in 

phenotype under drift, denoted as Σ.

iv. Using a Mahalanobis distance statistic to provide a relative measure of the 

deviation of our predicted population-level means from their multivariate 

theoretical expectation under drift47. This provides the χ2 test statistic, 

used to compare our predicted estimates to their drift expectation.

For (iv), the Mahalanobis distance of Ar from their multivariate expected value under drift 

AD is . There is a single mean estimate of Σ, but 

parameter uncertainty is accounted for by calculating D 1000 times, using the 1000 MCMC 

estimates of Ar and to the 1000 estimates of AD. D2 follows a χ2 distribution with degrees of 

freedom equal to the number of traits and populations, which thus provides a test of whether 

the predicted population-level genetic values deviate from a drift expectation. This is a 

common approach used to detect multivariate outliers. Because both the drift profile scores 

and the trait profile score are transformed to a z-score this comparison is on the same SD 

scale.

Although the assumption of normality for drift allele frequencies may be violated if there is 

substantial drift (which is not the case within Europe), we can appeal to the central limit 

theorem, as across many loci the estimated genetic values may still be assumed to follow a 

multivariate normal. Additionally, although our predictions will be imperfect predictions of 

the true genetic values this does not invalidate our null model. Our null model describes the 

expected allele frequency change under neutrality, which is independent of any 

ascertainment in the GWAS and independent of LD among SNPs because we are using 

within-family regression coefficients at independent SNP loci. Thus, neutrally evolving SNP 

loci will be well described by a comparison of their predictions to those made by randomly 

allocating effect sizes across SNPs, irrespective of any violations in our model assumptions.

Testing population genetic differentiation of a single SNP—Having determined 

whether population differentiation of a genetic predictor differs to the pattern expected under 

drift, we can then extend this framework to identify individual height and BMI associated 

loci that contribute to the population genetic effects.

In Eq 4.2,  and by standardizing the predictor of each SNP k to a 

variance of 1, ḡ1k – ḡ2k~N(0, 12). From Eq 2.2, we have estimated a population effect for 

each population, vr, representing estimates of the differences among populations in a 
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predictor for height and BMI. The cross-product of the standardized predictor of each SNP, 

ḡk and a vector of standardized population effects, vr, gives a standard normal density:

[4.4]

where δk
2 follows . Therefore, we gain a statistic of the contribution of each SNP to the 

identified pattern of population genetic. If the genome-wide pattern of population mean 

differences are driven by few highly differentiated SNPs then these loci will have a larger 

than expected, alternatively if there are a large number of loci of small differentiation that 

sum up to create the genome-wide pattern than no single locus will significantly differ from 

expectation.

5. Comparing predicted genetic differentiation to observed phenotypic differentiation

To examine the contribution of genetic effects to the observed phenotypic pattern, a distance 

matrix can be calculated between each pair of populations with respect to their average 

recorded phenotype. This observed phenotypic distance matrix Ho is calculated as

[5.1]

where r is the vector of observed mean phenotypes for n of r populations for trait m. hm is 

the number of phenotypes.

A distance matrix Hp for the profile scores of the quantitative traits can also be defined as

[5.2]

where ḡrn,m and ḡrn,m are the predicted population means for n of r populations for trait m. 
hm is the number of phenotypes.

The association between Ho to HP can be determined using a Mantel test statistic54:

[5.3]

where nr denotes the number of populations.

The distribution of this test statistic M(Ho, HP) can be compared to that expected under 

random genetic drift, by calculating to HP using the 1000 profile scores created from the 

randomly selected set of SNPs. When these 1000 drift derived HP matrices are compared to 

the observed Ho, it provides an expected distribution of the test statistic under drift, denoted 

HP,R.
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We can then examine the probability that the randomized product moment M(Ho, HP,R) is 

less than the observed statistic M(Ho, HP)

[5.4]

Parameter uncertainty is accounted for because H is calculated for each recorded MCMC 

chain t, with the fraction of cases where  determining the 

interpretation of the test statistic. A value of H close to one implies that the observed 

distribution of population means is more similar to the predicted means than would be 

expected at random, i.e. under random genetic drift. Again, standardizing the observed data, 

the drift profile scores, and the trait profile scores to a z-score enables Ho to HP to be 

compared on the same SD scale.

6. Simulation study of estimation and prediction bias

Approximations of the parameters—If individuals, and thus genotypes, are sampled 

randomly across randomly mating populations then the sampling distributions of p ̄k, θk and 

ak can be approximated. Recall from above that the variation among populations at a locus 

is:

[6.1]

Values of pk across multiple loci can be sampled from a uniform beta distribution with shape 

parameter of 1, which provides a representative distribution of the frequencies of ascertained 

SNPs in a sample. For the additive genetic effect at a locus, we expect a relationship 

between the effect size and the allele frequency55 such that the effect size for each causal 

variant can be sampled from a normal distribution as:

[6.2]

where h2 is the heritability, pk is the allele frequency, and nk is the number of causal variants. 

This approximation give larger effect sizes for loci with lower minor allele frequency, which 

is supported by theory and empirical observation15, 56.

θk is likely to vary across loci and we can assume greater differentiation at intermediate 

allele frequencies and sample θk as:

[6.3]

where a Beta distribution is used to sample θk as a continuous probability distribution with 

interval 0 and 1. The beta distribution is parameterized by shape parameters α and β, which 
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we set to 0.05 and 1 giving a uniform distribution with small mean and small probability of 

high θk. This distribution has been used previously to describe allele frequencies in 

population genetics [ref]. Multiplying this by pk(1 – pk) means that the value of θk is 

associated with the frequency pk, with intermediate frequencies having higher θk values, 

which is supported by theory and empirical evidence57, 58.

Differences in allele frequencies across populations can then be sampled as:

[6.4]

where Sr are mean differences among populations in profile score and pk,r gives the 

frequency of allele k within each population r. This creates small-scale differences among 

populations in allele frequency across loci that are consistent in direction, creating a value 

for the second component of Eq. 1.13 that is >0. From these sampled means allelic data can 

be sampled as:

[6.5]

where a Binomial distribution is used to sample xk,i,r which is an indicator for the allele k (k 
= 0, 1, 2 copies for diploid individuals) of individual i in population r, with 2 as the number 

of trails (2 alleles per diploid individual), with pk,r is the probability of selecting the causal 

SNP allele at each locus within each population.

The additive value for trait m for individual i within population r is then the sum of the locus 

specific effects across the nk loci:

[6.6]

The values ĝi,r can then be used in Eq. 2.1 to calculate the ratio of the population-level 

variance to the total variance.

GWAS results provide estimates of the additive value at a locus, but these estimates are 

made with error. The profile scores of the individuals within the sample thus contains the 

components:

[6.7]

where ei = ai + ∊i, with ai as the true genetic value and an error term ∊i which is the 

estimation error that is summed up across the loci used to create the profile score. This 

cumulative error is likely to increase as the number of false positive SNPs that are included 

within the profile score increases. This error can be approximated and included within the 

sampling as:
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[6.8]

where ∊k,r,m is sampled from a normal distribution with standard deviation z.

Eq. 6.1 through Eq. 6.8 approximate the sampling distribution of all parameters considered 

based on theoretical expectations The total variance of ĝi can be modified by varying the 

parameters of h2; the population-level variance  can be modified by varying the shape 

parameters of the beta distribution used to sample θk along with the selection parameter Sr; 

and the cumulative error variance within the profile score can be modified by altering z in 

Eq. 6.8. The number of SNPs included in the score can also be modified by ranking SNPs 

according to their variance explained, and selecting different sets based on the cumulative 

variance explained, assuming that GWAS SNPs are ascertained based on the variance 

explained by allele k at locus j as:

[6.9]

We performed simulations using Eq. 6.1 through Eq. 6.9. We fixed the proportion of 

population-level variance across simulations and examined how altering the amount of error 

variance and the number of loci ascertained influenced the estimates gained.

Simulation study using real genotype data—We used the common, independent, 

HapMap3 SNPs from the 17,500 sibling pairs used in the main empirical analyses 

(Supplementary Table 1) as the basis of a series of simulations. Causal variants were 

allocated to 5000 of the independent loci at random across the genome, with their effects 

sampled from a normal distribution, with mean of 0 and variance 1. The heritability of the 

trait was simulated to be 90% and a phenotype was created as y = Σxkbk + e, with e = N(0,1-

h2). 50 simulation replicates were conducted.

For each simulation replicate, we randomly selected 16,000 sibling pairs to create an 

estimation set, leaving 1,500 pairs as a prediction set. We then tested the effects of each SNP 

on the phenotype in the estimation set in three ways. First, we used a within-family sibling 

pair analysis implemented as the QFAM procedure in PLINK described in Eq. 3.1. Second, 

we selected one member of a sibling pair at random to create an unrelated set of individuals 

and then estimated SNP effects in a ordinary least squares regression (the standard GWAS 

approach) without any control for population stratification. Finally, we repeated the GWAS 

estimation controlling for the first 20 principal components estimated from the sibling pair 

sample.

We then used these three sets of estimates to create three different profile scores in the 

prediction set. We followed a recent approach to partition variance in a predictor in sibling 

pairs into genetic, environment, and common genetic and common environment terms33. 

Variance attributable to common genetic or common environment terms indicates population 
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stratification bias in the effect size estimates, enabling us to demonstrate that our within-

family estimates are unbiased of population stratification.

Additionally, we used the three sets of effect size estimates to create three different profile 

scores in the European prediction data of 9416 individuals used in the main empirical 

analyses. Our European prediction data was projected onto the first principal component 

estimated in the within-family sample, and then two groups of individuals were created 

based on the upper and lower quartiles of the distribution of the projected principal 

component. The first principal component has been shown to reflect population stratification 

within genotype samples and thus, we stratify the independent prediction sample by the 

predominant axis of potential bias in the discovery sample. If there is no population 

stratification bias in the estimates of the SNP effects then there should be no significant 

differentiation between the upper and lower quartile groups in the mean of the genetic 

predictor. We therefore compare the estimates gained from the three predictors to those 

made when a predictor is created using the true simulated effects, and to those made when a 

predictor is created using randomly allocated effect sizes under our null model. To test for 

ascertainment biases, we selected the top 100 and top 500 SNPs identified by a GWAS that 

does not control for population stratification, created two predictors at these SNPs, one from 

the GWAS effect size estimates and one from the within-family estimates, and then 

compared the mean differences between the upper and lower quartile groups. This identifies 

SNPs from a GWAS and then tests for population differentiation as in previous approaches.

Finally, we repeated the 50 simulations described above, but we created a genotype-

environment correlation. We used the same effect sizes and phenotype as in the simulation 

described above, but we added a z-score of the standardized individual-level eigenvalue of 

the first principal component estimated in the within-family data. Thus our phenotype was: y 
= Σxkbk + 0.2PC1 + e, where PC1 is the z-score standardized value for each individual at the 

first principal component. This creates a correlation between the phenotype and PC1 of ~0.2 

across simulations, representing a phenotypic difference that aligns to the major axis of 

genetic differentiation. Note that in this scenario there is no selection because causal variants 

are allocated at random across the genome and so on average across simulations their 

frequency is not expected to differ in a manner that will create a consistent directional 

difference in profile score along any axis of population stratification. We repeated the 

estimation and prediction into our independent European prediction sample to test for a 

directional deviation in mean profile score between the upper and lower quartile groups. 

Under this scenario ascertainment bias are expected to be large because SNPs identified by a 

GWAS that does not control for population stratification should be those with the strongest 

genotype-environment correlation, creating a predictor with mean differences across the 

leading principal component. However, genome-wide the expectation is that the direction of 

SNP differentiation should not align with the direction of the effect size and the direction of 

the phenotypic differentiation, provided that predictors are created from SNP effect sizes 

that are unbiased of population stratification.
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7. Differentiation of height and body mass index across Europe

We apply this framework to examine population differentiation in height and body mass 

index (BMI) across Europe. Our analysis is a sequence of steps (Supplementary Figure S1): 

(1) quantify the association of genome-wide SNPs with height and BMI using large-scale 

meta-analyses; (2) re-estimate the SNP effects in a within-family design that is unbiased of 

population stratification; (3) use the within-family estimates to predict the genetic value 

(create a profile score) of individuals in an independent data set and obtain a genome-wide 

predictor with greatest predictive power for both phenotypes; (4) predict height and BMI 

across a number of populations from genomic data; (5) partition variance in genetic value 

into population- and individual-level effects and estimate the population-level covariance 

across traits to test for correlated population differentiation; (6) test whether the pattern of 

population-level (co)variance reflects a signal of selection or that expected by drift using a 

null model; (7) examine the amount of observed phenotypic differentiation that can be 

explained by genetic differentiation across populations; (8) confirm the results by creating a 

predictor by combining a non-ascertained set of genome-wide, common, independent, 

HapMap3 SNPs, and their within-family effect sizes that are unbiased of population 

stratification; and (9) identify the leading SNPs driving the genome-wide pattern of 

population genetic differentiation and test for a relationship between phenotypic variance 

explained by a locus and its association with population genetic differentiation.

Improvements on previous approaches—Our approach differs from a previous 

study32 in that it estimates population-level variance using individual-level genetic profile 

scores rather than simply deriving the population-level mean genetic value. This difference 

is key, because it enables both the amount of population genetic variance and the population 

means to be estimated relative to the amount of individual-level variance within each 

population. Additionally: (f) we use estimates of SNP effects that are unbiased of population 

stratification; (ii) we advocate estimating population-level variance from profile scores 

calculated from many thousands of SNPs genome-wide rather than only those reaching 

genome-wide significance thus capturing more of the trait variation and better characterizing 

the population-level effects; (iii) we adopt a multivariate approach which is appropriate as 

selection does not act upon single phenotypes independently47; and we estimate the co-

differentiation among phenotypes across populations, which can be compared to the 

individual-level within-population covariance; (iv) we estimate the correlation between the 

observed pattern of differentiation and the predicted genetic values relative to the 

expectation under drift; (v) all samples used in this study have European ancestry to 

minimize loss of LD; (vi) all of our parameters are estimated using an MCMC approach 

which allows 95% credible intervals to be placed on all estimates and allows uncertainty in 

the parameter estimates to be carried through to all of our later analyses. In general, this 

framework overcomes many previously limiting factors when examining population genetic 

differentiation because: (i) we examine differentiation across multiple genomic regions 

together, rather than focusing on specific regions, which is appropriate given the likely 

polygenic nature of genetic variation26, 59 ; (ii) we confirm our results in a non-ascertained 

set of data, thus avoiding the potential for ascertainment biases; and (iii) differences among 

populations are all assessed relative to each other in a single framework, not just along single 
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linear gradients or between two groups, which is appropriate given that populations radiate 

away from a common ancestor and each other47.

Imputation—All of the cohorts used in this study were independently imputed to the 1000 

genomes reference panel, using identical QC procedures on the initial datasets of per-SNP 

missing data rate of <0.02, minor allele frequency >0.01, per-person missing data rate <0.05, 

and Hardy-Weinberg disequilibrium p-value 0.001. Imputation for the majority of cohorts 

was performed in two stages. First, the target data was haplotyped using HAPI-UR60. 

Second, Impute261 was used to impute the haplotypes to the 1000 genomes reference 

panel62 (release 1, version 3). We then selected SNPs which were present across all datasets 

at an imputation information score of >0.8. A full imputation procedure is described at 

https://github.com/CNSGenomics/impute-pipe. The imputation for the Netherlans cohort 

was identical, except SHAPEIT263 was used for haplotyping. We performed these same QC 

steps again after combining data from different cohorts, including comparisons of allele 

frequencies across populations.

Selection of SNPs for genomic profiling across Europe—We performed GWAS 

meta-analyses on data from recent studies33, 34, to select independent loci (r2<0.1 and >lMb 

distance using the PLINK clumping procedure35) that were associated with both traits in a 

large sample (~250,000 for height and ~350,000 for BMI) individuals of European ancestry. 

We then re-estimated SNP effects at these loci in a within-family sibling pair dataset 

(Supplementary Table 1) using the QFAM procedure in PLINK described in Eq 3.1. Using 

an independent set of data (Supplementary Table 1), we then identified the set of loci that 

when combined with the within-family effect sizes into a predictor, captured the largest 

amount of phenotypic variance for each phenotype.

We then confirmed our results using a non-ascertained genome-wide set of unlinked (LD 

r2<0.1 and >lMb distance apart), common (minor allele frequency > 1%), HapMap3 loci, 

with height and BMI (~40,000 SNP loci) that passed QC in both the within-family and the 

prediction sample. We estimated the effects of these SNPs again using our within-family 

sibling pair dataset using the QFAM procedure in PLINK described in Eq 3.1.

Genomic profile scoring in a collection of European genomic data—We used 

these within-family effect sizes to create genomic profile scores for individuals across a 

collection of European genomics data. All data was imputed as described above, and details 

of the cohort are provided in Supplementary Table 1. From the POPRES study we selected 

individuals from France, Portugal, Spain, Italy and Switzerland whose grandparents were 

born in the same country as the sample individuals. From the Estonian and Finnish cohorts 

we selected 1000 individuals at random that were used for all analyses. For the Netherlands 

cohort, we selected 1000 individuals from the MinE ALS study (www.projectmine.com). 

These individuals were healthy controls, born in the Netherlands, whose grandparents and 

parents were also born in the Netherlands. From the Psychiatric genomic consortium and the 

Welcome Trust Case Control Consortium 2, we used control individuals from Bulgaria, 

Ireland, Norway, Denmark, Sweden and the UK (Supplementary Table 1). Eq. 2.2 was 

estimated using the R package MCMCglmm64, with uninformative inverse Wishart priors, a 
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burn in period of 7,000 iterations, a sampling interval of 10 iterations, and a total number of 

iterations of 17,000, providing 1000 posterior estimates.

Transforming population means onto the observed scale—The profile scores, ĝ 
created for each individual i for each trait m, can be approximately transformed back to the 

observed scale by:

[7.1]

where SD(m) is the standard deviation of the trait m in the discovery GWAS sample, which 

is the true SD of the observed phenotype within the population; and cov(zy,Zĝ) is the 

covariance within an independent prediction sample between a z-score of phenotype yi,m 

and a z-score of the trait profile score g^i,m.

Although there will be estimation error, we proceed under the assumption that cov(zy,zĝ) 

approximately describes the amount of phenotypic variation explained by the profile score 

within an independent population. To transform back to the observed scale the profile score 

is thus multiplied by a proxy of the amount of phenotypic variation explained and then 

multiplied by the SD of the observed phenotype within the population. While z-score 

comparisons are preferred for the analysis, because they do not rely on transformation and 

allow comparisons to occur on the same scale, the wi,m values can be used for graphical 

representation of the predictions relative to the true observed phenotypic differences across 

nations.

We used an independent sample of population data to determine the amount of phenotypic 

variance explained by our profile score, as measured by the cov(zy,Zĝ) in Eq 7.1. Individuals 

within the Health and Retirement Study (Supplementary Table 1) were unrelated, and the 

phenotype was adjusted by the first 20 principal components of the SNPs used in the 

predictor, to account for any population stratification before estimating the within-

population covariance. The SD of height and BMI measured in the sample of 17,500 quasi-

independent sib-pairs were estimated accounting for sex differences. Eq. 7.1 was then used 

to transform the profile scores onto the observed scale, and we present these graphically 

within the figures.

European phenotypic data—BMI and height measures for males for each of the 14 

European countries were taken from recently published estimates25, 46. For BMI, measures 

were available from 1980 to the present day, and for height measures were available from 

1860 to the present day. Both phenotypes were adjusted for time trends before estimating the 

population means within a mixed effects model. The model estimates of these means are 

then compared to the predicted genetic means as described above as described in Eq 5.1 to 

5.4.

Testing the contribution of each SNP to the pattern of population 
differentiation—As described above in Eq. 4.4, we estimated a χ2 value for each SNP and 

tested for the association between a SNPs contribution to differentiation and its minor allele 
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frequency, and expected contribution to phenotypic variation estimated as 2pqβ2̂ using the 

within-family effect sizes. We then performed GWAS meta-analyses on data from recent 

studies33’34, excluding cohorts present in our within-family and prediction samples. We 

excluded a number of cohorts that were used in the GIANT meta-analyses. For height, we 

excluded the Netherlands Twin Gene study, Twin UK, the Queensland Institute of Medical 

Research (QIMR) sample, the Framingham Study sample, and the Netherlands Twin 

Register. For BMI, cohort-level summaries were not available for all samples and we could 

only exclude the QIMR sample.

Positional and functional annotation of SNPs—Our aim in this section was to 

describe the positional genic annotation and gene ontology categories for height-and BMI-

associated SNPs that contribute most to the genome-wide pattern of population genetic 

variance. We select the top 500 differentiated height and BMI SNPs, and did three things:

i. based on the genomic position of these SNPs we assigned them to genes 

and we simply estimated the number of overlapping genes involved in the 

genetic differentiation of height and BMI.

ii. based on the genomic position of these SNPs we assigned positional genic 

annotation categories of: (1) 3’ untranslated region (3’UTR); (2) 5’ 

untranslated region (5’ UTR); (3) intronic variants; (4) non-coding 

transcription variants; (5) 1 to 1,000 base pairs downstream; (6) 1 to 1,000 

base pairs upstream; (7) missense transcription variants; (8)synonymous 

transcription variants; (9) non-coding exonic variants.

iii. based on the genomic position of these SNPs we assigned them to 

Ensembl gene identities and then to gene ontology (GO) terms.

We then conducted statistical testing for parts (ii) and (iii). As a baseline, we used the top 

10,000 SNPs for height and BMI. We then repeated steps (i) through (iii) using this larger 

set of SNPs. We first compared count data of the number of SNPs within each genic 

category from the highly differentiated SNPs, to count data from he top 10,000 SNPs. This 

provides a list of potentially enriched genic categories of highly differentiated SNPs. We 

used Fischer’s exact tests (hypergeometric test), with Bonferroni P-value correction. Second, 

we then compared count data of the number of SNPs within each GO term from the highly 

differentiated SNPs, to count data from the top 10,000 SNPs. Again, we used Fischer’s exact 

tests, with Bonferroni P-value correction. From this analysis, we selected a list of the top 20 

potentially enriched functional categories for each trait. We assign P-values to our 

comparisons of count data, but use these only as a guide to select the top categories, rather 

than a definitive test of enrichment. All annotation was conducted using the R library 

biomaRt from Bioconductor (www.bioconductor.org).

Genomic profile scoring worldwide—We repeated our analyses for height and BMI 

using data from the Human Genome Diversity Panel as analyzed in32. We imputed the data 

following our protocol outlined above.

Code availability—Full computer code for the analysis and the values used to produce the 

figures is available from the lead author.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Observed divergence and predicted genetic divergence in height and body mass index 
(BMI) and height across 14 European nations
Across Europe, the observed means and predicted genetic means for height and BMI of 14 

European nations are shown. From recently published data, we estimated national 

differences in mean height and BMI for 14 European nations accounting for time trends 

(Figure 1), with a European average height of 171.1 (95% CI: 169.6, 172.8) and average 

BMI of 25.0 (95% CI: 24.7, 25.3) across nations for males between the years 2000 and 

2010.
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Figure 2. Predicted genetic differentiation compared to the expectation under drift for height 
and body mass index across 14 European nations
Mean predicted genetic (blue) and null model (grey) values of 14 European nations are 

shown, with 95% credible intervals, for (a) height (cm) and (b) body mass index (BMI 

units). ISO2 country codes indicate each nation. The average p-value of differentiation from 

the null expectation is p<4.3e−14 for height and p<8.7e−07 for BMI. (c) Pattern of population 

co-differentiation of height and body mass index across 14 European nations (blue). The 

negative population genetic co-differentiation of −0.80 (95% CI: −0.95, −0.60) is 

represented by a blue ellipse.
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Figure 3. Association between observed population means and predicted genetic population 
means for height and body mass index across 14 European nations
Predicted population genetic means and observed population means for (a) height and (b) 

body mass index (BMI). P values give the significance of the multivariate Pearson product 

moment correlation between the predicted population genetic means and the observed 

population means for both traits. For height, the correlation (r = 0.51; 95% CI 0.39, 0.61) 

was greater than that expected under the null model (r = 0.03, 95% CI −0.21, 0.17). For 
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BMI, the correlation (r = −0.10, 95% CI −0.19, 0.01) was not significantly different from the 

null expectation (r = −0.08, 95% CI −0.24, 0.15).
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