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Abstract

Complex human traits are influenced by variation in regulatory DNA through mechanisms that are 

not fully understood. Since regulatory elements are conserved between humans and mice, a 

thorough annotation of cis regulatory variants in mice could aid in this process. Here we provide a 

detailed portrait of mouse gene expression across multiple tissues in a three-way diallel. Greater 

than 80% of mouse genes have cis regulatory variation. These effects influence complex traits and 

usually extend to the human ortholog. Further, we estimate that at least one in every thousand 

SNPs creates a cis regulatory effect. We also observe two types of parent-of-origin effects, 

including classical imprinting and a novel, global allelic imbalance in favor of the paternal allele. 

We conclude that, as with humans, pervasive regulatory variation influences complex genetic 

traits in mice and provide a new resource toward understanding the genetic control of transcription 

in mammals.
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Introduction

The genetic basis of most phenotypic variation can be assigned to variation in protein, RNA, 

or regulatory sequences. The significance of regulatory sequence has become increasingly 

apparent in recent studies comparing divergent taxa and populations1–4 and by the 

identification of thousands of SNPs that, although not predicted to change protein structure, 

are nonetheless strongly associated with human diseases and biomedical traits.5–8 Here we 

investigated the effects of genetic variation and parental origin on gene expression in 

multiple tissues in laboratory mice. The study design maximized the level of genetic 

variation while concurrently enhancing the capacity to assign transcripts to either one of the 

two parental alleles. Allele-specific expression (ASE) can be used to detect allelic imbalance 

in transcription in heterozygous mice, a process that requires genetic or epigenetic variation 

in cis. Therefore, we designed our experiment to include reciprocal F1 hybrids in order to 

detect and quantify statistically significant allelic imbalance in as many genes as possible.
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Previous publications have examined allelic imbalance in F1 mice using RNAseq 

(Supplementary Table 1). Four studies examined brain,9–12 one reported multiple tissues,4 

two used fetal placenta,13,14 one adult liver,15 and one whole embryo.16 However, some of 

the conclusions of these RNAseq studies have been controversial.17 A particularly 

controversial issue is the number of mouse genes subject to imprinting. Prior consensus 

estimates placed the number of imprinted genes in mouse at 100–200 (reference 18). An 

early application of RNAseq in brain tissue yielded a small number of novel imprinted 

transcripts9 but two subsequent studies claimed identification of >1,300 novel imprinted 

loci,10,11 including 347 autosomal genes with sex-specific imprinting.11 A re-analysis did 

not replicate these claims.12

In the context of these findings, we sought to improve knowledge of the control of gene 

expression in mouse. To maximize generalizability, we studied related but divergent 

genomes. We selected three inbred mouse strains (CAST/EiJ, PWK/PhJ and WSB/EiJ) 

representative of three subspecies within the Mus musculus species group (M. m. castaneus, 

M. m. musculus and M. m. domesticus, respectively). These strains were chosen to maximize 

the level of genetic diversity (e.g., 27.7 million SNPs and 4.6 million indels that vary in 

these strains4), the number of genes with expressed SNPs and/or indels (31,259 out of 

36,817 Ensembl v37 genes), and the number of such variants per gene (mean 19.9, standard 

deviation 26.9).

We conducted all possible pairwise crosses to form a 3×3 diallel (Fig. 1), and measured gene 

expression in brain, liver, kidney, and lung with age- and sex-matched biological replicates 

for each of the nine possible genotypic combinations. RNAseq was used to measure allele-

specific expression in brain and microarrays were used to assess gene expression in brain, 

liver, kidney and lung. Inclusion of the array data allowed a detailed comparison of two 

major expression platforms, determination of the proportion of genetic effects that are 

missed by examining a single tissue, and estimation of the degree to which strain, sex, and 

parent-of-origin effects in brain are reproduced in other tissues.

In designing this experiment, we attempted to optimize the discovery of regulatory variation 

and to address potential pitfalls (Supplementary Table 2). In particular, we included three 

genomes instead of two, allowing us to generalize our conclusions, to estimate the 

proportion of variants that have a cis regulatory effect, and to assist the aims of large scale 

projects like the International Knockout Mouse Consortium,19 Collaborative Cross20 and 

Diversity Outbred.21 We also increased the depth of sequencing, the number of replicates 

and included both sexes in order to improve power to detect ASE. We developed a novel 

approach to diploid genome alignment to customized genomes (‘pseudogenomes’)22–24 

created from the highest-quality and most current genomic data available.4

Allelic imbalance in an F1 animal requires the presence of a genetic or epigenetic regulatory 

variant acting in cis, because trans acting factors have equal opportunity to affect both 

alleles (Supplementary Fig. 1). Regulatory variation in cis causes differential expression 

from the linked allele, which is detected by a statistically significant imbalance in ASE 

derived from each parental allele in an F1 animal (Supplementary Fig. 2). We observe cis 

regulatory effects in >85% of all testable genes. We also find that the number of imprinted 
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genes is not substantially different from historical estimates, but we report a new genome-

wide parent-of-origin allelic imbalance favoring the paternal allele.

Results

Major drivers of differential gene expression in mice

Brain, liver, kidney and lung RNA from the same mice used for RNAseq were hybridized to 

expression microarrays. Clustering of gene expression data from 384 microarrays (4 tissues 

× 96 samples) partitioned the samples perfectly by tissue (Supplementary Fig. 3a), 

indicating that the predominant predictor of gene expression is tissue, even in the presence 

of extreme genetic diversity and representation of both sexes. After tissue, the samples 

partitioned by strain, then by parent-of-origin, and finally by sex. Microarray data also 

revealed that across different tissues strain effects are commonly shared (Supplementary 

Fig. 3b), suggesting that regulatory variation across diverse tissues often acts in a similar 

manner. Brain RNAseq total read counts and microarray intensity values were highly 

correlated (median r = 0.86, range 0.84–0.87).

Within each tissue, the overwhelming driver of differential gene expression was strain; this 

greatly exceeded the effects of parent-of-origin and sex (Fig. 2). For RNAseq, the first two 

principal components (PCs) accounted for ~30% of the total variation in autosomal total 

read count (TReC). The remaining top 10 PCs were also strongly determined by strain and, 

to a far lesser extent, parent-of-origin and sex, with no notable effects of the barcodes used 

for multiplexing (Supplementary Table 3).

Within each tissue, the three inbred strains form an equilateral triangle with the F1 samples 

located midway between the corresponding parental strains (Fig. 2). This indicates that there 

is no overall bias in the alignment of RNAseq reads to these three equally divergent 

genomes. The genetic architecture of regulatory variation in laboratory mice is also seen to 

be mostly additive, since, if dominance and parent-of-origin effects predominated, then the 

F1 samples would not be located midway between the parental strains.

Cis-regulatory variation is pervasive in diverse mice

Cis regulatory effects were found in 11,287 autosomal genes (89% of testable genes). More 

than 75% of these genes showed consistent additive effects, defined by having an additive 

TReC effect and an additive allele-specific read count (ASReC) effect in the same direction 

within a cross. For example, Mad1l1 shows allelic imbalance in all three crosses, indicating 

that, at the cis level, the PWK/PhJ allele is stronger than the WSB/EiJ allele, which in turn is 

stronger than the CAST/EiJ allele (Supplementary Fig. 4). Furthermore, this cis effect is 

consistent with the differential gene expression of the parental inbreds and the level of gene 

expression in the F1s can be explained as an additive effect. Some fraction of cis regulatory 

variants create strain effects that are undetectable in TReC or inconsistent between TReC 

and ASReC, due to dominance and other effects. For example, Fos shows allelic imbalance 

in all F1s in a manner consistent with total read counts in the parental inbreds, but the total 

level of gene expression in the F1s is best explained as an effect of dominance or over-

dominance (Supplementary Fig. 5). Copy number variation can also lead to inconsistency 
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between TReC and ASReC and result in underestimation of genes with cis effects (see 

Discussion).

Of the 11,287 autosomal genes with cis regulatory effects, 4,113 (36%) were detected 

between all three pairs of strains, 5,065 (45%) between two pairs, and 2,109 (19%) between 

one pair (Fig. 3a). Critically, all three subspecies contribute similarly to differential gene 

expression, indicating that there was no overall bias in read alignment to any one genome. 

Furthermore, the fold change distribution of allelic imbalance effect sizes showed a similar 

pattern among the three crosses and there was minimal skewing in the ratio of up- to down-

regulated genes in any cross (Fig. 3b). A similar pattern was seen with the microarray data 

across four tissues (Supplementary Fig. 6).

Phenotypic consequences and human relevance

To test the potential significance of cis regulatory variation, we compared our results to a 

comprehensive set of knockout mice phenotypes for 6,039 different genes and 29 phenotype 

dimensions (see URLs). Brain expressed genes with cis regulatory effects were significantly 

more likely to cause a behavioral or neurological phenotype in knockout mice (P = 0.012), 

relative to brain expressed genes with no cis effect. Furthermore, no such enrichment was 

found for the 1,348 genes that result in no overt phenotype after being knocked out (P = 

0.56) or those associated with the 27 other phenotype dimensions.

To test the human relevance of mouse cis regulatory variation, we compared our results to 

human eQTL studies. These comparisons were restricted to only those genes that have a 

one-to-one ortholog between mouse and human (n = 15,312 genes, see URLs). Brain 

expressed genes with a cis regulatory effect in mouse were much more likely to possess a 

human peripheral blood eQTL (P = 7.8 × 10−10).25 Published human brain eQTL studies 

have much smaller samples sizes, nonetheless, after comparing our results to a meta-

analysis26 of five available datasets (total n = 439), we observe a consistent enrichment (P = 

0.04).

Proportion of SNPs with cis regulatory effects

In contrast to previous F1 RNAseq studies, we included three genomes in our experimental 

design in order to allow multiple pairwise comparisons. In our experiment, for >90% of the 

genome, pairwise comparisons are possible between different subspecies (domesticus, 

musculus or castaneus), while for the remainder of the genome, just one subspecies is 

represented (domesticus or musculus).27 Therefore, we could make six comparisons: three 

between genomic regions of different subspecific origin and three between regions of the 

same subspecific origin. For each comparison, we examined the relationship between 

sequence diversity (SNPs/kb) and the fraction of genes that show differential gene 

expression (additive, consistent strain effects). The result was a positive logarithmic 

correlation (Fig. 4), indicating that the number of functional regulatory variants per kilobase 

increases as the number of total variants per kilobase increases. Furthermore, within each 

pairwise comparison, sequence diversity was correlated with the fraction and magnitude of 

genes with differential gene expression (DGE) (Supplementary Fig. 7) and this replicated in 

all four tissues.
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Each cis eQTL identified in this study is caused by at least one regulatory variant. Therefore, 

we can estimate the lower bound of the proportion of mutations that create a cis regulatory 

effect by dividing the number of cis eQTLs by the number of SNPs within genomic regions 

spanning all testable genes for a particular cross (Supplementary Fig. 8). The overall ratio is 

0.10% (±0.02%) so that approximately 1 in 1,000 SNPs create a cis regulatory effect. This 

estimate was stable across all crosses examined, and all regions independently of their 

phylogenetic origin. This estimate also generalized to genes of varying size and level of 

expression.

Classical imprinting is incomplete and under genetic control

We identified 95 genes with significant imprinting (Fig. 5a, full gene list in Supplementary 

Dataset). Imprinted genes were found on 16 chromosomes, with 62 of these 95 genes 

residing in well-known imprinting clusters (Supplementary Fig. 9). There were 52 novel 

imprinted genes and 43 genes with prior evidence of imprinting (see URLs). Of 128 genes 

with prior evidence of imprinting from the literature, 73 genes could be evaluated (expressed 

and containing exonic variation) and 42 genes (58%) were imprinted. The remaining 31 

unidentified genes were sufficiently expressed (median TReC 809, median ASReC 143) but 

did not meet criteria for parent-of-origin dependent expression (median P: 0.37, range: 0.01 

– 0.97) suggesting tissue-specific imprinting, lack of imprinting in brain, or strain effects on 

imprinting.

Allele-specific RNAseq data allows quantification of the strength of imprinting in each 

gene. For most genes, imprinting is incomplete. In maternally expressed genes, maternal 

reads represent an average 67% of ASReC (range: 51.5% – 97.9%). In paternally expressed 

genes, paternal reads represent an average 75.6% of ASReC (range: 50.6% – 99.7%). The 

strength of imprinting was highly replicable, with a mean variance of 3.2% within a cross. 

Of the 95 imprinted genes, 47 show a strain effect modifying the strength of imprinting 

(strain by parent-of-origin effect). We divided these 47 genes into two classes: those in 

which we can explain the differential gene expression based on a single strain effect (n = 11) 

and those where we cannot, suggesting a more complex model (n = 36) (Supplementary 

Table 4).

Global allelic imbalance in favor of the paternal allele

Imprinted genes were 1.5 times more likely to be expressed from the paternal than the 

maternal allele (Fig. 5b). This observation is consistent with the observation that paternal 

expression predominates in brain, while maternal expression predominates in placenta.9 To 

test whether this asymmetry in parent-of-origin effects extends beyond imprinted genes, we 

estimated the parent-of-origin effect in each cross and each sex separately. We found that 

54–60% of genes show higher expression from the paternal allele, significantly different 

from the expectation of 50% (P = 5.9 × 10−24, Fig. 6a, Supplementary Table 5). We also 

observed that genes with higher expression from one parental allele tend to cluster (Fig. 6b). 

Among the 19 autosomes, 15 have a higher proportion of genes whose neighbor has the 

same parental skew than expected by chance (P = 9.6 × 10−3, binomial test).
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We can calculate a rough estimate of the number of genes with paternal overexpression, 

simply by taking the difference between the number of genes with higher paternal minus 

higher maternal expression. For example, for female CAST/EiJ × PWK/PhJ reciprocal 

hybrids, there are 1,652 more genes with allelic imbalance in favor of the paternal allele 

(6,790 paternal minus 5,138 maternal overexpressed genes). As shown in Supplementary 

Table 5, the excess of genes with paternal overexpression ranges between 938 and 2,500 

(across reciprocal crosses stratified by sex). However, this likely represents an underestimate 

because, while we have high power to identify classical imprinting (Fig. 5a), we lack 

sufficient power to identify all genes with modest parental overexpression, while correcting 

for multiple testing.

To identify genomic features associated with parentally overexpressed genes, we first 

selected genes with consistent paternal or maternal overexpression in the three reciprocal 

crosses (with or without stratification by sex). These genes are not significantly clustered 

with known imprinted genes. However, when we examined the proximity of these genes to 

CpG islands, we found that the transcription start sites (TSS) of genes with consistent 

overexpression of the paternal allele in all three crosses (N = 467 with and 3,338 without 

stratification by sex) are closer to CpG islands (P < 1×10−5) relative to the remaining genes 

(Fig. 6c, 6d). This effect is not observed among maternally consistent genes (N = 116 and 

1,631, P = 0.60). Note that for the more restrictive group (consistently expressed in both 

sexes within each cross), there is a further enrichment for genes with TSS near CpG islands 

among paternally overexpressed and a significant depletion for genes with TSS near CpG 

islands among maternally consistent genes (Fig. 6c, P = 1 × 10−5).

For genes consistently overexpressing the paternal allele, we observe that the size of the 

strain effect is significantly smaller than for other genes (P < 1.2 × 10−4), implying that cis-

acting regulatory elements have less impact on these genes. Interestingly, proximity of a 

CpG island to the TSS is associated with smaller additive strain effect sizes, and genes with 

TSS that overlap CpG islands are also clustered in the genome. We conclude that, in 

addition to statistically significant allelic imbalance observed at the gene level (imprinting), 

there is an association between proximity of a CpG island to TSS and a pervasive allelic 

imbalance favoring the paternal allele in brain; this suggests that parent-of-origin dependent 

methylation may be implicated in this phenomenon.

We were able to support this claim using a recently published whole genome parent-of-

origin brain DNA methylation dataset from reciprocal hybrids of 129X1/SvJ and CAST/EiJ 

mice.28 Genes with consistent overexpression from the paternal allele are closer to CpG 

islands that are preferentially methylated on the maternal allele (Supplementary Fig. 10). 

This observed relationship between paternal-overexpression and nearby maternal 

methylation is not simply the result of inherent differences between CpG islands with 

paternal versus maternal methylation bias.28

Two forms of dosage compensation on chromosome X

Gene expression on the X chromosome in mammals is believed to be subject to two forms 

of dosage compensation. The first equalizes the expression of X-linked genes in females and 

males29,30 and the second equalizes the average expression of X-linked genes with 
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autosomal genes31. In our dataset, the overall level of chromosome X gene expression is 

equivalent in males and females in all four tissues examined (Supplementary Fig. 11a). 

These data indicate that the silencing of one X chromosome in females equalizes the average 

expression of X-linked genes between females and males.29,30 In addition, chromosome X 

gene expression is equivalent to the autosomes in all four tissues examined (Supplementary 

Figs. 11b). These data support the hypothesis31 that, during the evolution of mammalian sex 

chromosomes from a pair of autosomes, expression of X-linked genes was doubled to 

compensate for the degeneration of their Y chromosome homologs. We also observed an 

effect of X chromosome controlling element (Xce32) genotype and a parent-of-origin effect 

in X chromosome inactivation skewing in females (Supplementary Fig. 12).33

A total of 346 chromosome X genes were found to possess a strain effect (77% of all 

expressed and testable genes), which is slightly lower than the rate for autosomes. This was 

expected, due to a reduction in the power to detect effects on chromosome X, since ASReC 

data can only be informative in female samples. Of the 527 testable X-linked genes, only 

four (0.76%) were differentially expressed between sexes, a rate similar to the autosomes 

(0.28%). Overall, however, sex did account for ~12% of the variation in chromosome X 

gene expression, largely driven by one gene: Xist.

Discussion

We find that more than 80% of mouse genes have expression levels dependent upon genetic 

variation. The majority of these differentially expressed genes fit an additive model and are 

subject to regulatory variation acting in cis. These cis regulatory effects have functional 

consequences for mouse phenotypes and usually extend to the human ortholog. Differential 

gene expression is positively correlated with sequence diversity at multiple evolutionary 

scales, and the proportion of mutations that create a cis regulatory effect remained relatively 

constant as mouse subspecies evolved. We observe two types of parent-of-origin effects on 

gene expression. We demonstrate that the number of imprinted genes is not substantially 

different from historical estimates. We also observe a global allelic imbalance in favor of the 

paternal allele at a large number of genes associated with CpG islands. For most genes, 

imprinting is incomplete, and cis acting mutations can modify the strength of imprint. 

Furthermore, we conclude that regulation of gene expression on chromosome X is similar to 

the autosomes and includes two forms of dosage compensation. Finally, we developed 

improved analytical tools with broad utility for RNA sequencing in many species (see 

URLs, Supplementary Table 2).22–24 These tools improve the power to detect allele-specific 

and parent-of-origin effects, while minimizing false discoveries and reference bias, detect 

and correct spurious transcriptome inference due to RNAseq read misalignment and allow 

analysis of expression on chromosome X without chromosome-wide confounding effects. 

Finally, a novel likelihood-based method to jointly analyze TReC and ASE from inbred and 

F1 mice (Supplementary Fig. 2) increases statistical power to detect genetic effects.

Cis regulatory effects were found in 11,686 genes (85% of testable genes). This number 

exceeds all prior mouse eQTL studies.34 We found that the expression of most transcripts 

show an additive pattern of inheritance, consistent with mouse,35 human36 and plant37 

studies. Interestingly, many genes have inconsistent patterns of inheritance between TReC 
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and ASE. We have determined that when one of the strains used to create the reciprocal F1 

hybrid has a copy number gain, typically no SNPs and small indels are called in that strain 

in that genomic region;4 this leads to allele specific reads from that strain being 

undercounted. However, patterns of TReC – which are independent of variant calls – are 

still informative for copy-number status.

Inbred mouse strains are assumed to possess a fixed genome across time, but mutations arise 

continuously. We observed two striking examples of de novo mutations altering gene 

expression via changes in gene dosage. Among the 96 samples included in the RNAseq 

study, we identified one XO female caused by paternal nondisjunction (supported by 

genotyping) and another mouse with a ~250 kb duplication spanning five genes 

(Supplementary Fig. 13).

Pinpointing the genetic variants that underlie mouse quantitative trait loci has been 

challenging because QTL detected in experimental crosses often span hundreds of genes. 

The data described here can help investigators prioritize candidate genes based on strain 

distribution patterns or tissue-specific expression. Furthermore, if differential expression of 

a particular gene is suspected to influence a phenotype, these data provide the means to 

create an “allelic series”, a set of animals bred intentionally to titrate the level of gene 

expression. This approach could complement, or even incorporate, gene-targeted knockout 

mice.

In humans, common disease-associated variants are enriched for regulatory DNA. 

Therefore, animal models for such regulatory variation are needed to provide a more 

detailed understanding of genotype to phenotype relationships. We have shown that eQTL 

patterns are often independent of species and tissue, such that cis regulated genes in human 

blood often have a counterpart in the mouse ortholog, providing a tractable model to assess 

the effect of regulatory variation on phenotype.

We have provided a lower bound estimate of the proportion of variants that have a cis 

regulatory effect. We estimate that at least 1 in every 1,000 SNPs creates a cis regulatory 

effect. Therefore, at least 47,000 regulatory variants are segregating in the Collaborative 

Cross20 and Diversity Outbred21 populations. These regulatory variants likely contribute to 

the broad phenotypic distributions seen in those populations, and the small proportion of 

testable genes without regulatory variation (~15% in this study) are likely under selective 

pressure to maintain gene expression at a constant level. Furthermore, since human and mice 

average ~100 de novo mutations per generation,38,39 at least 1 in 10 offspring should have a 

new regulatory mutation. Given this proportion and the size of the human population, 

several million new regulatory variants are likely created each year.

There have been conflicting reports regarding the number of mouse genes subject to 

imprinting. If imprinting is restricted to genes that show significant allelic imbalance toward 

one parent, then our results indicate that the number of genes imprinted in mouse brain is in 

line with the historical consensus. On the other hand, parent-of-origin effects on gene 

expression appear to be asymmetric in mouse brain with favored expression of the paternal 

allele. This affects many genes distributed in every autosome and is present in all three 
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reciprocal crosses. The 467 genes that have consistent overexpression of the paternal allele 

in all three crosses and both sexes are strongly enriched for CpG islands near their TSS and 

tend to show smaller strain effects relative to inconsistent genes (Fig. 6). In addition, genes 

with consistent overexpression of the paternal allele are associated with differentially 

methylated CpG islands (Supplementary Fig. 10). These observations suggest that 

differential parent-of-origin-dependent resetting of methylation marks during early 

development is likely the mechanism responsible for global allelic imbalance.

We hypothesize that this global imbalance is ancestral to classical imprinting. In other 

words, small differences in parental methylation at CpG islands close to the TSS may have 

been exploited by natural selection to create “classical” imprinting. We propose that the 

difference in strain effect size between genes that are effected or not by this parent of origin 

effect could be explained by the fact that mutations in the promoters of genes of the later 

type are likely to create strong cis regulatory variants. On the other hand, mutations in CpG 

islands will only have an overall minor effect on the overall methylation. Lastly, this global 

allelic imbalance in favor of the paternal allele may partly explain why the majority of the 

novel imprinted genes described here (37 of 54) show modest overexpression of the paternal 

allele and also the surprisingly large number of genes found in two previous controversial 

studies.10,11

We verified two forms of dosage compensation on the X chromosome. First, for most of the 

genes on X, we found that males and females have similar expression. Although this has 

been demonstrated before using cell lines,40,41 here we provide additional evidence in live 

mice. Furthermore, we confirm that it is rare for genes to escape X inactivation in mouse, 

with this occurring in just 1.1 % of genes that could be tested all of which having been 

previously identified.42–44 This stands in sharp contrast to human females, where ~15% of X 

chromosome genes are biallelically expressed.45,46 Second, we found that the overall level 

of X chromosome expression is roughly equivalent to expression on the autosomes (Ohno’s 

hypothesis).31 Ohno’s hypothesis was initially supported by three microarray studies across 

several eutherian species,40,47,48 but then contradicted in 2010 by an RNAseq analysis of 

mouse and human tissues.49 And this controversy remains despite multiple recent 

studies.50–56 The main factor contributing to disparate results across studies has been 

whether to include genes with low expression.57,58 Since genes with no or low expression in 

somatic tissues are more abundant on X than autosomes,50 inclusion can lower the median 

X:autosome expression ratios. Our analysis considered all genes on chromosome X and 

clearly supports Ohno’s hypothesis in Mus musculus. This form of dosage compensation 

provides strong evidence that the level of gene expression is under evolutionary pressure.

In summary, our study demonstrates that in the laboratory mouse the vast majority of genes 

are subject to cis regulatory variation. Mouse models incorporating regulatory variation20,21 

should provide a powerful complement to null mutants19 in the search for mechanisms 

underlying human complex genetic traits.
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Online Methods

Ethical Statement

All animal work was conducted in compliance with the “Guide for the Care and Use of 

Laboratory Animals” (Institute of Laboratory Animal Resources, National Research 

Council, 1996) and approved by the Institutional Animal Care and Use Committee of the 

University of North Carolina.

Mice

The mice used in this study were inbred and reciprocal F1 hybrids of the wild-derived strains 

CAST/EiJ, PWK/PhJ, and WSB/EiJ. All animals were bred at UNC from mice that were 

less than six generations removed from founders acquired from the Jackson Laboratory (Bar 

Harbor, ME). Animals were maintained on a 14-hour light, 10-hour dark schedule with 

lights on at 0600. The housing room was maintained at 20–24°C with 40–50% relative 

humidity. Mice were housed in standard 20 cm × 30 cm ventilated polysulfone cages with 

laboratory grade Bed-O-Cob bedding. Water and Purina Prolab RMH3000 were available ad 

libitum. A small section of PVC pipe and nestlet material were present in each cage for 

enrichment.

Tissue collection

Mice were sacrificed at 23±1 days of age by cervical dislocation without anesthesia (to 

avoid confounding effects on gene expression). All mice were euthanized between 10:00 

AM and 12:00 PM, immediately after removal from their home cage. Whole brain, liver (left 

lobe), kidneys (both), and lungs (all lobes) were rapidly dissected, snap frozen in liquid 

nitrogen, and pulverized using a BioPulverizer unit (BioSpec Products, Bartlesville, OK).

RNA extraction

Total RNA was extracted from ~25 mg of powdered tissue using automated instrumentation 

(Maxwell 16 Tissue LEV Total RNA Purification Kit, Promega, Madison, WI). RNA 

concentration was measured by fluorometry (Qubit 2.0 Fluorometer, Life Technologies 

Corp., Carlsbad, CA) and RNA quality was verified using a microfluidics platform 

(Bioanalyzer, Agilent Technologies, Santa Clara, CA).

RNAseq: sample preparation

The 96 samples were randomized to batches of 48 for library preparation using the Illumina 

(San Diego, CA) TruSeq RNA Sample Preparation Kit v2 with 12 unique indexed adapters 

(AD001-AD012). One microgram of total RNA per sample was used as input and each 

sample was assigned at least two different barcodes. Libraries were quantitated using 

fluorometry and 12 randomly selected samples were pooled at equimolar concentrations 

prior to sequencing, yielding a total of 8 multiplexed pools. The Illumina HiSeq 2000 was 

used to generate 100 bp paired-end reads. To account for lane and machine effects in cluster 

density and sequence quality, each sample was divided into four portions, and each portion 

was randomly assigned to one lane of one machine. The 384 portions (4 × 96 samples) can 

be partitioned into 18 groups (3×3×2) for each combination of paternal strain, maternal 
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strain, and sex. Chi-squared tests confirmed no signification associations between these 

group indicators and assignments of barcodes or to sequencing lanes.

RNAseq: alignment

We developed a customized RNAseq alignment pipeline for mouse sub-species containing 

considerable genetic diversity.22–24 This has the advantage of incorporating all known 

strain-specific genetic variants into the alignment reference sequence to improve alignment 

quality and to minimize bias caused by differences in genetic distance between the parental 

genomes to the reference sequence. First, reads from each F1 hybrid (six of the nine cells in 

the diallel) were aligned to the appropriate ‘pseudogenomes’22 representing each of the 

parental genomes using TopHat (v1.4, default parameters including segment length 25 bp, 2 

mismatches allowed per segment, 2 mismatches allowed per 100 bp read, and maximum 

indel of 3 bases). Pseudogenomes are approximations constructed by incorporating all 

known SNPs and indels into the C57BL/6 genome (mm9). We included all variants reported 

by a large-scale sequencing effort4 that included CAST/EiJ, PWK/PhJ, and WSB/EiJ (June 

2011 release). Second, we mapped coordinates from the pseudogenome-aligned reads to 

mm9 coordinates by updating the alignment positions and rewriting the CIGAR strings of 

each aligned read (necessary as indels alter the pseudogenome coordinates relative to mm9). 

Third, we annotated each aligned read to indicate the numbers of maternal and paternal 

alleles (SNPs and indels) observed in a given read and its paired-end mate. Considering the 

paired-end mates allowed the use of more paired-end reads determining ASE. Finally, 

alignments to maternal and paternal pseudogenomes were merged by computing the proper 

union of the separate alignments (i.e., the two alignments were combined such that a read 

aligning to the same position in both alignments was counted once). This final step was 

applied separately to all the lanes of a sample and the resulting alignment files were 

combined into a single alignment file. For inbred mice, only a single pseudogenome 

alignment was necessary followed by the same remapping and annotation stages.

Following alignment, we performed a series of quality control checks capitalizing on 

expectations for the proportions of reads that should align to each parental strain for the sex 

chromosomes, autosomes and mitochondrial genome. Ninety samples passed quality 

control.

RNAseq: read assignment

Three counts were obtained for each gene assessed with RNAseq: the total number of 

paired-end reads (for both inbred and F1 mice; total read count or TReC) and the numbers of 

paternal and maternal allele-specific paired-end reads (only for F1 hybrids; allele-specific 

read count or ASReC). A paired-end read was allele-specific if either end overlapped at least 

one SNP or indel that was heterozygous between the paternal and maternal strains. If a 

paired-end read overlapped more than one heterozygous SNP/indel, it was assigned to a 

parent only if it was fully consistent (all alleles reported were from one parent and zero were 

from the other). We then counted the number of reads mapped to a gene as the number of 

paired-end reads that overlapped exonic regions of a gene using the R function isoform/

countReads. Exon position information was assigned based on transcriptome annotation 

from Ensembl (Release 66 based on mm9, accessed 2/14/2012). There was no need to 
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correct for gene length because all analyses were gene-specific and gene length was thus 

constant in comparisons of the expression of that gene across samples. We included total 

number of reads per sample as a covariate.

RNAseq: statistical analysis

This is described in detail in Zou et al24 as well as the Supplementary Note.

Microarray: processing and QC

Brain, liver, kidney and lung RNA from the same mice used for RNAseq were hybridized to 

Affymetrix Mouse Gene 1.1 ST 96-Array Plate arrays using a GeneTitan instrument from 

Affymetrix according to the manufacturer’s protocols. We used robust multiarray average 

method (RMA) implemented in the Affymetrix gene expression console with default 

settings (median polish and sketch-quantile normalization) to estimate normalized 

expression levels of transcripts. During normalization, we masked 78,632 probes (~10% of 

all probes) containing any known SNPs in these three mouse inbred strains.4 We used 

28,310 probe-sets after excluding control probe-sets and those without mRNA annotation. In 

order to evaluate overall performance of arrays, we used hierarchical clustering using the R 

function hclust with the average link function and principal component analysis (PCA). For 

inbred strains and reciprocal F1 crosses between the inbred strains, we fitted linear fixed 

effect models for each transcript to test for strain, parent-of-origin, dominance, and sex 

effects (full details below).

Microarray: statistical analysis

For inbred strains and reciprocal F1 crosses between the inbred strains, we fitted linear fixed 

effect models for each transcript to test for strain, parent-of-origin, dominance, and sex 

effects as following:

where “strain” is a vector for comparisons of two inbred strains, “parent-of-origin” is a 

vector for comparisons of reciprocal F1 crosses, “dominance” indicates reciprocal F1 

crosses, “sex” indicates female, “plate” is a catogorical variable indicating multiple 96-well 

plates and “dissection” is a categorical variable indicating different disecction dates, 

respectively. We test the strain, parent-origin, dominance, and sex effects as follows:

For multiple testing correction, we used false discovery rate (FDR) and declared tests to be 

significant if q-value was < 0.05.
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Paternal expression bias in RNAseq data

To quantify the paternal expression bias shown in Fig. 6a, we permuted a random subset of 

1,000 genes (minus known imprinted genes) 2,000 times. We used a random subset of genes 

to avoid P-value inflation due to possible correlation between genes (this test is therefore 

conservative, yet still highly significant). For each random subset of 1,000 genes, we tested 

whether the expected paternal expression proportion was different from 50% using a 

Wilcoxon rank-sum test (we used the median result from 2,000 simulations). These tests 

were performed separately for each combination of cross and sex (and were significant in 

each case) and then collapsed into one P-value using Fisher’s combined probability test.

This parent-of-origin effect on allelic imbalance was observed on every autosome and there 

was evidence of clustering. To quantify the magnitude of clustering shown in Fig. 6b, we 

performed the following procedure. For each cross and each sex, we checked whether 

neighboring genes have the same direction of parent-of-origin effect. We recorded of 

proportion of such genes within each chromosome after pooling results from three crosses 

and both sexes. Then we compared these chromosome-wise proportions with what would be 

expected under the null: p2 + (1−p)2, where p is the proportion of paternally overexpressed 

genes for the corresponding chromosome. We found that, in 15 out of 19 autosomes, the 

observed proportion was higher than expected.

To further explore this clustering, we calculated the distance from the transcription start site 

(TSS) to the nearest CpG island for all 467 genes that were consistently paternally expressed 

and all 116 genes consistently maternally expressed. We compared these distances to those 

for the remainder of expressed genes (inconsistent parental expression) to generate 

respective distributions. As shown in Fig. 6c, paternally expressed genes tend to be closer to 

CpG islands than inconsistent genes, and maternally expressed genes tend to be further away 

from CpG islands. To formally test the significance of this difference, we randomly sampled 

467 and 116 genes from the whole gene list and calculated mean squared deviation of the 

curves. We repeated this procedure 100,000 times and calculated the p-value as the 

proportion of times where the mean squared deviation from randomly sampled genes was 

larger than the one from unperturbed data. The resulting P-values were < 10−5 for paternally 

expressed genes (i.e. out of 100,000 permutations, none was as extreme as the empirical 

result) and 10−5 for maternally expressed genes.

Relationship between paternal expression bias and DNA methylation

As shown in Supplementary Fig. 10, we tested whether genes with consistent 

overexpression from the paternal allele were closer to CpG islands with parent-of-origin 

methylation. To accomplish this, we used a dataset (www.ncbi.nlm.nih.gov/geo/query/

acc.cgi?acc=GSE33722) from a recent publication by Xie et al.28 This dataset consists of 

whole genome parent of origin brain DNA methylation data from reciprocal hybrids of 

129X1/SvJ and Cast/EiJ mice. Since this dataset included just one mouse per reciprocal 

cross, we first integrated CpG methylation counts over each CpG island and applied a 

simple filter criterion: if both mice had a maternal methylation proportion higher than 

paternal, we declared this CpG island to be preferentially maternally methylated, for the 

purposes of this analysis. Likewise, if both mice had a paternal methylation proportion 
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higher than maternal, we declared it to be preferentially paternally methylated. The 

remaining CpG islands with no preferential methylation were used as a reference group.

Next, we calculated the distance from each gene’s TSS to the closest CpG island for each 

parental methylation group and examined the distribution of these distances with respect to 

parental expression. In other words, we examined distributions for all combinations of 

methylation group (maternal, paternal and others) and expression group (paternal and 

maternal), six combinations in total. In order to avoid bias due to differential CpG island 

count per group, we calculated distance to a down-sampled subset equivalent to the smallest 

group, and to make the result more robust we used 10,000 permutations of the median 

distance between TSS and the closest CpG island. Supplementary Fig. 10 shows a 

comparison of consistently paternally expressed genes versus inconsistently expressed 

genes, using the following log ratio: log10 (paternally expressed: TSS to nearest CpG island 

[bp] / inconsistently expressed: TSS to nearest CpG island [bp]). In short, this plot examines 

whether consistent paternally expressed genes tend to be closer than inconsistent genes with 

each class of CpG islands. We find that paternally expressed genes have the greatest 

enrichment for maternally methylated islands (permutation P = 0) followed by paternally 

methylated islands (P = 0.0034). This greater enrichment for maternal over paternal 

methylated island is itself significant as well (P = 0.0015).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Diallel crossing scheme and sample sizes. We selected three divergent inbred strains 

representative of three subspecies within the Mus musculus species group. We generated 

offspring from all possible pairwise crosses to form a 3×3 diallel, including age- and sex-

matched biological replicates for each of the nine possible genotypic combinations. Mice 

were aged to 23 days, sacrificed, and total RNA extracted from whole brain, liver, kidney, 

and lung. Sample size shown is for RNAseq (52 female, 39 male). RNAseq was performed 

on RNA extracted from brain and microarrays were run on RNA extracted from brain, liver, 

kidney, and lung.
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Figure 2. 
Principal components of brain RNAseq and microarray expression levels across four tissues. 

Each point represents one animal with shape indicating sex (circle = female, square = male) 

and color indicating genotype. For the F1 animals, the outer color indicates maternal strain 

and the inner color paternal strain. (a) PC1 versus PC2 of the brain RNAseq total read 

counts for all autosomal genes. The three inbred strains form a near-perfect triangle with the 

F1 samples located between their corresponding parental strains. PC1 and PC2 account for 

31% of the variance in TReC, indicating that genetic background is the overwhelming driver 

of gene expression difference, greatly exceeding the effects of parent-of-origin and sex. (b) 

PC1 versus PC2 of microarray expression values for all autosomal genes across four tissues. 

The pattern seen in the brain extends to multiple diverse tissues.
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Figure 3. 
Balanced contribution of different subspecies to the identification of cis regulated genes. (a) 

Venn diagram showing the number of genes with allelic imbalance (FDR < 0.05) in each 

cross and the relationship to other crosses. (b) Distribution of the allelic imbalance effect 

size for the 11,287 autosomal genes that showed allelic imbalance in at least one cross. In 

each cross, the proportion is the fraction of allele-specific reads from the strain listed second 

in the legend (i.e., PWK or WSB). The inset magnifies the distribution of effect sizes in the 

vicinity of 0.5 and provides, in the background, the distribution of effect size for genes that 

did not reach statistical significance for a strain effect (filled distributions).
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Figure 4. 
Differential gene expression is positively correlated to sequence diversity at multiple 

evolutionary scales. Each square indicates the relationship between the local level of 

sequence diversity (SNPs/kb) and the fraction of genes that show differential gene 

expression (proportion of genes with additive, consistent strain effects), for regions of the 

genome with the same or different subspecific origin (indicated by dendrograms). Colored 

circles represent strain (magenta: PWK, blue: WSB, green: CAST), while colored text 

represents the subspecific origin in the regions of the genome considered (magenta: 

musculus, blue: domesticus, green: castaneous). For each of the six pairwise comparisons, 

only expressed genes with allele-specific information were considered and only SNPs within 

the entire gene body (±10 kb) were included. The portion of the genome considered for each 

of these six comparisons was approximately, from left to right in the figure: 50 Mb, 150 Mb, 

175 Mb and 2.25 Gb for the final three comparisons.
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Figure 5. 
Imprinted genes in mouse brain. (a) Paternal expression ratio for 95 genes with a significant 

parent-of-origin effect. Each dot corresponds to a reciprocal cross (e.g., CASTxPWK vs 

PWKxCAST) and dot size is proportional to the parent-of-origin effect P-value. Genes 

known from the literature to be maternally expressed are shown in red, those known to be 

paternally expressed in blue, and novel imprinted genes in black (n = 54 novel genes). Genes 

with a strain by parent-of-origin effect are underlined (n = 47 genes). (b) Distribution of the 

parental expression proportion in the vicinity of 0.5 for genes that are imprinted (lines) and, 

in the background, genes that did not reach statistical significance for parent-of-origin-

dependent expression (filled distributions).
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Figure 6. 
Global allelic imbalance in favor of the paternal allele. (a) Distribution of the proportion of 

paternal expression for all genes, except the 95 imprinted genes described in Figure 5. The 

distribution reflects aggregate data for ~10,000 genes × 3 crosses × 2 sexes. The dashed red 

line represents a reflection of the values to the left of 0.5 (the expectation if no paternal skew 

was present). (b) Genes with consistent allelic imbalance (found in all three crosses) are 

clustered in most autosomes. The red lines denote the expected proportion of clustering 

based on the number of genes with consistent paternal or maternal expression in every 

autosome. (c) Genes with consistent paternal expression in all three crosses and both sexes 

(N = 467) tend to be closer to CpG islands, while those with consistent maternal expression 

(N = 116) tend to be farther away, relative to inconsistent genes (N = 9,540). Plotted is the 

cumulative proportion of genes with a given distance between transcriptional start site (TSS) 

and the nearest CpG island. (d) Expanded analysis including genes not fully consistent in 

both sexes, but still consistent in all three crosses. Genes with consistent paternal expression 

(N = 3,338) retain enrichment for CpG islands, while those with consistent maternal 

expression (N = 1,631) are not different from inconsistent genes (N = 5,154).
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