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Abstract

Loss-of-function mutations protective against human disease provide in vivo validation of

therapeutic targets1,2,3, yet none are described for type 2 diabetes (T2D). Through sequencing or

genotyping ~150,000 individuals across five ethnicities, we identified 12 rare protein-truncating

variants in SLC30A8, which encodes an islet zinc transporter (ZnT8)4 and harbors a common

variant (p.Trp325Arg) associated with T2D risk, glucose, and proinsulin levels5–7. Collectively,
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protein-truncating variant carriers had 65% reduced T2D risk (p=1.7×10−6), and non-diabetic

Icelandic carriers of a frameshift variant (p.Lys34SerfsX50) demonstrated reduced glucose levels

(−0.17 s.d., p=4.6×10−4). The two most common protein-truncating variants (p.Arg138X and

p.Lys34SerfsX50) individually associate with T2D protection and encode unstable ZnT8 proteins.

Previous functional study of SLC30A8 suggested reduced zinc transport increases T2D risk8,9, yet

phenotypic heterogeneity was observed in rodent Slc30a8 knockouts10–15. Contrastingly, loss-of-

function mutations in humans provide strong evidence that SLC30A8 haploinsufficiency protects

against T2D, proposing ZnT8 inhibition as a therapeutic strategy in T2D prevention.

Genome-wide association studies (GWAS) have identified 65 genomic loci associated with

T2D risk7, highlighting previously unidentified pathological pathways. Translation into

novel therapeutic targets16 requires identification of causal mutations and genes, as well as

the directional relationship between protein activity and disease risk17. Toward this end,

loss-of-function (LoF) mutations that protect against disease (without adverse phenotypes)

are among the most useful findings from human genetics, suggesting targets that, upon

inhibition, may prevent disease in the general population.

To identify T2D-protective LoF variants, in 2009 we sequenced exons of 115 genes near

T2D GWAS signals (Supplementary Tables 1–2, Supplementary Fig. 1) in 758 individuals

from Finland or Sweden (modeling previous studies18). To increase power, we selected

individuals at the extremes of T2D risk: 352 young and lean T2D cases and 406 elderly and

obese euglycemic controls19 (Supplementary Table 3). In total, 1,768 non-synonymous

variants were identified (1,683 single nucleotide variants [SNVs] and 85 indels), 1,474

(83%) with minor allele frequency (MAF) <1% and 1,108 (63%) observed in only one

individual. We found no evidence of association with T2D when testing individual variants

or a burden of rare variants within genes (Supplementary Fig. 2). Genotyping 71 select

SNVs (with nominally significant association or predicted to impact protein structure) in

11,288 additional individuals also yielded results consistent with the null distribution

(Supplementary Fig. 3)

To increase power to detect association, we used the Illumina Human Exome Array to

further genotype a subset of SNVs in 21,096 Finnish or Swedish individuals (10,534 with

diabetes and 10,562 without, a superset of the individuals genotyped for the 71 SNVs,

Supplementary Table 4). Analysis focused on variants with clear functional interpretation:

nonsense, frameshift, or splice site mutations predicted to cause protein truncation

(Supplementary Table 5). Six such variants identified via the sequencing were present on the

Exome Array.

Of these variants, only a nonsense SNV (c.412C>T, p.Arg138X) in SLC30A8 (transcript

accession number NM_17385120) showed nominally significant association with T2D

(OR=0.46, p=0.012, Supplementary Table 6). A second SLC30A8 nonsense variant (c.

456G>A, p.Trp152X) was observed in one control (Supplementary Table 5) from

sequencing, but was absent from the Exome Array. As a further experiment, we genotyped

p.Arg138X in 26,566 additional European individuals (8,210 cases and 18,356 controls;

Supplementary Table 7): although only 16 heterozygotes were observed (two cases and 14

controls), the association with T2D risk was directionally consistent (OR=0.56, p>0.05).
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Based on the combined data, heterozygosity for p.Arg138X was estimated to yield a 53%

reduction in T2D risk (p=0.0067, N=48,115).

SLC30A8 encodes an islet zinc transporter ZnT8 (NP_77625020), which is necessary for

zinc flux into β-cell insulin-secretory granules4 and subsequent insulin crystallization10,12.

Upon co-secretion with insulin, zinc also fulfills auto- and paracrine signaling roles21. A

previously-identified common SLC30A8 missense variant (rs13266634; c.973T>A,

p.Trp325Arg) associates with T2D risk7,22, glucose5, and proinsulin6, at significance levels

beyond genome-wide thresholds.

Cellular characterization has suggested that the risk-increasing allele of p.Trp325Arg

reduces ZnT8 zinc transport activity8,9. In Slc30a8 knockout mice, however, the phenotype

varies with gender and genetic background: observations range from no effect on insulin

secretion or glucose homeostasis, to modest hyperglycemia on a high fat diet8–15.

Furthermore, a recent β-cell-specific Slc30a8 knockout proposes a multi-organ effect on the

resultant mouse phenotype, with circulating zinc shown to influence hepatic insulin

clearance21. Thus, the directional relationship between perturbed ZnT8 function and whole

organism phenotype is uncertain despite much genetic and biological data.

Because the observed protective association between p.Arg138X and T2D risk was

statistically modest, we sought additional evidence. Unfortunately, the near absence of

p.Arg138X outside Western Finland limited ability to further characterize its effect in other

populations (Supplementary Figs 4–5). We thus sought to identify a wider spectrum of

protein-truncating variants in SLC30A8, through investigation of the catalog of 35 million

variants collected by deCODE genetics through whole-genome sequencing23. The

p.Arg138X variant was not observed in this dataset. However, an independent protein-

truncating variant was observed at 0.17% frequency: a deletion (c.101_107del,

p.Lys34SerfsX50; Supplementary Figs 6–7) predicted to cause a frameshift and loss of all

six transmembrane domains in the islet specific transcript (NM_173851) of SLC30A84.

Heterozygosity for p.Lys34SerfsX50 was associated with 80% reduced T2D risk, with two

observations in 2,953 T2D cases (0.03%) versus 248 observations in 67,919 controls

(0.18%, OR=0.18, p=0.004; Supplementary Tables 8–9). Based on the ancestral relationship

between Norway and Iceland, we genotyped the variant in 5,714 Norwegians

(Supplementary Table 8) and observed zero carriers in 1,645 cases versus three carriers in

4,069 controls. Combining the evidence for p.Lys34SerfsX50 and p.Arg138X strengthened

the association between SLC30A8 protein-truncating variants and reduced T2D risk

(combined OR=0.32, p=2.4×10−4).

Both rare SLC30A8 variants are bioinformatically predicted to cause ZnT8 truncation and

consequently impact activity. To test this prediction, we assessed over-expressed, V5-tagged

ZnT8 variants (Trp325, Arg325, X138 [as well as Arg138X], and Ser34fsX50,) in HeLa

cells20 (Fig. 1a). Despite similar RNA transcript levels for all variants (Supplementary Fig.

8), only Trp325- and Arg325-ZnT8 proteins were easily detectable in cells8, with Arg138X,

X138-, and Ser34fsX50-ZnT8 present at low to undetectable levels (Fig. 1bc). Similar

results were obtained using antibodies against the native protein or the V5-tag, via Western
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blot (Fig. 1b) and immunofluorescence (Fig. 1c), and in HeLa as well as Ins1e rat

insulinoma cells (Fig. 1d). Co-expression of X138- or Ser34fsX50-ZnT8 with Trp325-ZnT8

did not decrease expression of the full-length allele, nor rescue expression of either

truncating variant (Supplementary Fig. 9).

We hypothesized that decreased expression of these two mutants might be due to protein

instability and/or enhanced degradation. Following treatment with chloroquine or MG132

(lysosomal and proteasomal inhibitors respectively24), higher X138- and Ser34fsX50-ZnT8

expression was detected via immunofluorescence (but remained undetectable via Western

blot; Fig. 1e, Supplementary Fig. 10). These results are consistent with (but do not prove)

instability and subsequent degradation of these truncated proteins25. Through additional

experiments (data not shown), we observed zinc transport in cells expressing Arg325- and

Trp325-ZnT8 but not X138- or Ser34fsX50-ZnT8 (expected given the low levels of mutant

protein). Further experiments are needed to assess the in vivo impact of these variants,

including susceptibility to nonsense-mediated decay and potential dominant negative effects

on protein oligomerization.

These genetic and functional data suggest SLC30A8 haploinsufficiency reduces T2D risk.

However, confidence would be further increased through observation of multiple, additional,

putative LoF variants demonstrating protective effects. As part of the T2D-GENES and

GoT2D consortia, we sequenced SLC30A8 exons in 12,294 individuals spanning multiple

ethnicities (Supplementary Table 10). Nine additional protein-truncating variants were

identified – two frameshift indels and two nonsense, four splice site, and one initiator codon

SNV – in 23 heterozygous individuals from African American, East Asian, and South Asian

ancestries (Supplementary Data Set 1). p.Arg138X was seen in three additional carriers (one

case and two controls); p.Lys34SerfsX50 was not observed.

In aggregate, carriers of these additional variants exhibited 60% reduced T2D risk (four case

versus 18 control observations, OR=0.38, p=0.0025), with similar effects and statistical

significance observed upon analysis of only frameshift or nonsense variant carriers (two

case versus 13 control observations, OR=0.37, p=0.0027). Combining all data from

sequencing and genotyping in 149,134 subjects, heterozygosity for any of the 12 protein-

truncating variants was associated with 65% reduced T2D risk (OR=0.34, p=1.7×10−6), a

statistically significant association even after correction for ~20,000 genes in the human

genome (Table 1).

We investigated potential confounding factors for the observed protective association. We

first assessed whether the p.Trp325Arg haplotypic background might influence results.

While p.Lys34SerfsX50 and p.Met50Ile variants were isolated to the protective common

variant haplotype, the remaining variants (including p.Arg138X) were observed on the risk

common variant haplotype. Thus, independent protective protein-truncating variants were

observed on opposite p.Trp325Arg haplotypic backgrounds. Second, we tested for a

survivor effect, where rare variant carriers with diabetes would die at a younger age.

However, (a) carrier ages did not significantly differ from non-carrier ages for either

p.Arg138X (69.6±8.4 versus 65.5±11.0 for cases [p>0.1], 46.4±15.7 versus 50.3±15.5 for

controls [p>0.1]) or p.Lys34SerfsX50 (70.5±4.5 versus 65.6±13.8 for cases [p>0.1],
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48.5±20.1 versus 50.0±23.2 for controls [p>0.1]), and (b) p.Lys34SerfsX50 association

attained equivalent significance even when analysis was restricted to age-matched controls.

Finally, we acknowledged the noted challenges to control for population stratification in rare

variant association studies26. We had insufficient data to perform a family-based

transmission disequilibrium test (pedigree information was only available for Icelanders,

with three carrier parents all transmitting the risk allele to affected children). However, the

consistent association of multiple independent protein-truncating variants across multiple

cohorts and ancestries argues against population stratification as entirely responsible for the

protective association.

These data thus provide compelling evidence that mutations inactivating one copy of

SLC30A8 reduce T2D risk in humans. In addition to T2D risk, the common SLC30A8

variant (p.Trp325Arg) is associated with proinsulin and fasting plasma glucose levels at

genome-wide significance5,6, as well as 2-hr glucose levels post-oral glucose tolerance test

(OGTT) at nominal significance (Supplementary Table 11)27. We asked whether rare

protein-truncating SLC30A8 variants also affected T2D-related phenotypes, particularly

glycemic traits that might be indicative of altered islet function.

Among traits analyzed (Supplementary Table 12), the strongest association was observed in

Iceland between p.Lys34SerfsX50 and random (non-fasting) glucose: non-diabetic carriers

of the protective allele had lower glucose (β=−0.17s.d.; N=182 carriers; p=4.6×10−4), with a

consistent effect seen in three Norwegian carriers (β=−0.3s.d., p>0.1). Glucose was lower at

one hour in the small number of p.Lys34SerfsX50 carriers characterized by OGTT (β=

−0.73s.d.; N=4 carriers; p=0.05). We did not observe a significant difference in fasting

glucose or insulin, although the directions of effect were consistent with the above: lower for

fasting glucose (average β=−0.10s.d.; N=146 carriers; p>0.1) and higher for fasting insulin

(β=0.24s.d.; N=52 carriers; p=0.09). The co-directionality of glucose levels and T2D risk

parallels the pattern observed for p.Trp325Arg, where the T2D-protective allele also

associates with lower glucose (Supplementary Table 9), providing further evidence against a

survivor effect or population stratification as driving the protective association.

In summary, we identified 12 rare, predicted protein-truncating SLC30A8 variants (Fig. 2).

Carriers of these variants had 65% reduced T2D risk at a level of significance adequate to

correct for ~20,000 genes in the human genome (p=1.7×10−6). Non-diabetic Icelandic

carriers of p.Lys34SerfsX50 also demonstrated lower glucose levels (β=−0.17s.d.,

p=4.6×10−4). Notably, initial sequencing of 115 genes in 758 extreme individuals produced

only two observations of p.Arg138X, without significant evidence of association of low-

frequency or rare variants individually or in aggregate for any of the sequenced genes.

Rather, establishing the association of SLC30A8 protein-truncating variants with T2D

protection at levels of exome-wide significance (correction for 20,000 genes) required

genotyping ~150,000 individuals spanning multiple ethnicities. Detecting similar effects in

genes without prior evidence of association may require analysis at a similar or larger scale,

for not only T2D but also other complex traits.

Previous modeling of the relationship between ZnT8 activity and T2D risk centered on

p.Trp325Arg, where mildly attenuated zinc transport is concomitant with increased T2D
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risk8, and Slc30a8 knockout mice, where phenotypic heterogeneity is observed13,15. We find

a clear and consistent association between putative SLC30A8 LoF variants and T2D risk,

across multiple ethnic backgrounds, demonstrating convincingly that a 50% reduction in

gene dosage protects against T2D in humans. These data reject the model that SLC30A8 LoF

is associated with as little as a 1.2-fold increase in T2D risk (similar to that for the common

p.Trp325Arg variant) at significance of p≈10−9. Phenotypic interrogation of human

mutation carriers is needed to determine the physiological mechanism behind this protective

association and establish the effects of SLC30A8 haploinsufficiency in the pancreas and

other tissues21.

The observed human genetics data present several implications for SLC30A8 function in

T2D pathophysiology. The identification of multiple disease-associated protein-altering

variants in SLC30A8 unambiguously (albeit unsurprisingly) documents SLC30A8 as the

causal gene behind GWAS association signals. The observation that protein-truncating

variants protect against T2D defines the directional relationship between SLC30A8 activity

and T2D risk in humans. The expanded SLC30A8 allelic series offers a more functionally-

informative catalog of variation versus p.Trp325Arg alone, enabling future experiments

investigating potential mechanisms. Although significant work is required to understand

how reduced SLC30A8 activity lowers T2D risk, the current observations motivate

experiments to test ZnT8 inhibition in T2D treatment in human populations.

Methods

Sequencing and genotyping

Individuals were selected for initial sequencing from several population-based cohorts from

Finland and Sweden. A custom hybrid selection array was used to target genes, which were

sequenced on an Illumina HiSeq 2000. Additional individuals from these same cohorts, as

well as other cohorts drawn from different European populations, were genotyped for the

SLC30A8 nonsense SNV p.Arg138X through the Illumina HumanExome v1.1 array. All

sequenced individuals were also genotyped, with data showing 100% concordance.

Icelandic individuals were genotyped for the frameshift p.Lys34SerfsX50 variant using a

combination of whole-genome sequencing and imputation (either direct imputation based on

chip-genotyping, or through familial-based imputation). Sanger sequencing was used to

confirm carriers. Norwegian individuals were genotyped with a fragment-length-based

method using differentially-labeled fluorescent primers, with Sanger sequencing again used

to confirm carriers. Further SLC30A8 sequencing (aimed at identifying further rare variant

carriers) was performed as part of a whole-exome sequencing experiment, with the Agilent

SureSelect Human All Exon platform used to capture exons and an Illumina HiSeq 2000

used for sequencing.

These studies were performed using protocols approved by the ethics committees of

Helsinki University Hospital, Finland and Lund University, the Data Protection Commission

of Iceland and the National Bioethics Committee of Iceland, the Regional Committee for

Research Ethics and the Norwegian Data Inspectorate, and the Massachusetts Institute of
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Technology Institutional Review Board, as well as with informed consent from all

participants.

Association analysis

Association analysis was performed separately for three groups of variants: p.Arg138X,

p.Lys34SerfsX50, and the remaining variants. For p.Arg138X, association analysis was

separate for each analyzed cohort, and used a linear mixed model so as to account for

sample structure including population stratification and genetic relatedness. Results were

combined via a fixed-effects meta-analysis. For p.Lys34SerfsX50, association analysis was

performed in Iceland using logistic regression, with controls matched to cases based on how

informative the imputed genotypes were, and in Norway using a simple logistic regression

with significance calculated via the score statistic. For the remaining variants, all individuals

were analyzed jointly via a collapsing method, treating carriers of any variant

indistinguishably, and regressing phenotype on the presence of any variant, with a linear

mixed model used to account for sample structure. The resulting three association statistics

were combined via a random-effects meta-analysis to obtain combined estimates of effect

size and statistical significance.

For further details, see Supplementary Information.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Over-expression of p.Arg138X- and p. Ser34fsX50-ZnT8 in HeLa cells
We sought to experimentally evaluate whether the p.Arg138X or p. Ser34fsX50 ZnT8

variants resulted in decreased ZnT8 expression and/or activity. (a) Depiction of SLC30A8

open reading frames in C-terminal V5-tagged constructs (tag highlighted in green). (b)
Western blot of HeLa lysates following transient over-expression of V5-tagged ZnT8

variants (anti-V5-tag). Antibody against tubulin was used as a loading control for each

sample, and untransfected cell lysate was used to demonstrate specificity of anti-V5

antibody. (c, d) Immunofluorescent staining of ZnT8 variant expression in (c) HeLa and (d)
Ins1e cells. ZnT8 was detected using antibodies against the C-terminal V5-tag (anti-V5) or

the N-terminus of the endogenous protein (anti-ZnT8), as indicated. BFP-V5 and
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untransfected HeLa cells serve as controls. Cells were co-stained with Hoechst-33342 to

mark nuclei. Within each row of images for the indicated antibody and objective, identical

exposure times were used across all proteins. (e) ZnT8 variant expression, as detected by

anti-V5 immunostaining, following 4hr treatment with inhibitors of the lysosome

(chloroquine, 100 μM) or the proteasome (MG132, 10 μM). Images were acquired using a

10x objective and identical exposure times. Scale bars, 100 μM.
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Figure 2. Protein-truncating variants identified in SLC30A8
Through sequencing and genotyping of nearly 150,000 individuals across 5 ethnicities, we

identified 12 SLC30A8 variants – each rare and predicted to cause premature protein

truncation. (a) Shown is the position of each variant on the islet-specific SLC30A8 transcript

(NM_17385120). p.Met50Ile is predicted to alter the initiator codon in other transcripts of

SLC30A8. Lines are drawn from each variant to ethnicities for which carriers were observed,

with greater widths corresponding to ethnicities with more observations. Lines are further

drawn from each ethnicity to the populations (cohorts) from which carriers were identified.

From left, cohorts are: JHS, WFS, Botnia, Danish, deCODE, Finnish, HUNT2, KORA,

Malmo, PIVUS/ULSAM, WTCCC, LOLIPOP, Singapore Indians, and KARE (cohort

information in Supplementary Information). Ethnicities or cohorts with no observations are

not shown. (b) Graphical representation of the case and control frequencies for each

observed variant; case frequencies in red (above) and control frequencies in blue (below).

Wider bars correspond to variants with more observations. A quantitative and complete

representation of these data is given in Table 1.
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