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Introductory Paragraph

Diffuse large B-cell lymphoma (DLBCL) is the most common lymphoma subtype and is 

clinically aggressive. To identify genetic susceptibility loci for DLBCL, we conducted a 

meta-analysis of three new genome-wide association studies (GWAS) and one prior scan, 

totaling 3,857 cases and 7,666 controls of European ancestry, with additional genotyping of 

nine promising SNPs in 1,359 cases and 4,557 controls. In our multi-stage analysis, five 

independent SNPs in four loci achieved genome-wide significance marked by rs116446171 

at 6p25.3 (EXOC2; P=2.33×10−21), rs2523607 at 6p21.33 (HLA-B; 2.40×10−10), 

rs79480871 at 2p23.3 (NCOA1; P=4.23×10−8), and two independent SNPs, rs13255292 and 

rs4733601, at 8q24.21 (PVT1; P=9.98×10−13 and P=3.63×10−11, respectively). These data 

provide substantial new evidence for genetic susceptibility to this B-cell malignancy, and 

point towards pathways involved in immune recognition and immune function in the 

pathogenesis of DLBCL.

Diffuse large B-cell lymphoma (DLBCL), the most common subtype of non-Hodgkin 

lymphoma (NHL)1, has an aggressive clinical course2. The risk of DLBCL is increased in 

individuals with a family history of NHL (odds ratio (OR)=1.4; 95%CI 1.1–2.0)3, 

supporting a genetic contribution. Also, relatives of DLBCL patients are at elevated risk for 

both DLBCL (RR=9.8, 95%CI 3.1–31) and Hodgkin lymphoma (HL, RR=2.0, 95%CI 1.05–
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4.0), but not indolent lymphomas4. Among candidate gene studies investigating 

susceptibility to DLBCL, only one locus, the LTA252G/TNF-308A haplotype on 

chromosome 6p21, reached genome-wide significance (P=2.9×10−8)5. In small GWAS of 

all NHL subtypes combined, no conclusive loci for NHL or DLBCL were identified in 

individuals of European background6–9, whereas a recent study conducted in East Asia 

identified a locus at 3q2710.

To discover new DLBCL susceptibility loci, in stage 1, we genotyped 2,878 DLBCL cases 

and 2,854 controls of European ancestry from 22 studies using the Illumina OmniExpress 

Beadchip (Online Methods; Supplementary Table 1; Supplementary Figure 1). A total of 

5,346 (93.3%) samples and 611,844 SNPs successfully passed rigorous quality control 

criteria (Online Methods; Supplementary Table 2). To augment the number of controls, 

genotype data from 3,536 cancer-free controls previously analyzed with the Omni2.5 SNP 

microarray were folded into the analytical build11, resulting in a total of 2,661 cases and 

6,221 controls for the stage 1 GWAS analysis (Supplementary Table 2).

In stage 1, with adjustment for gender, age and four eigenvectors (Online Methods), we 

observed an enrichment of SNPs with smaller P-values compared to the null distribution in 

the Q-Q plot with a lambda of 1.016 (Supplementary Figure 2). Two SNPs exceeded the 

threshold for genome-wide significance (P<5×10−8) whereas 20 SNPs showed highly 

suggestive associations (P<5×10−7) (Supplementary Figure 3). All but one SNP mapped to 

the HLA region of chromosome 6 (29.5Mb to 33.2Mb on Human Genome version 19 

coordinates).

In stage 2, we included data from two unpublished and previously genotyped GWAS 

(GELA/EPIC and Mayo) plus one published GWAS (UCSF7), totaling 1,196 DLCBL cases 

and 1,445 controls (Online Methods; Supplementary Tables 1, 3). Because different 

genotyping platforms were used, we imputed common SNPs for each study based on the 

1000 Genomes Project release version 312 and IMPUTE213 (Supplementary Table 4). In 

meta-analysis of all genotyped and high-quality imputed SNPs from stages 1 and 2 

(N=8,363,971), we identified 19 SNPs at genome-wide significance (P<5×10−8) 

(Supplementary Table 5) and 134 SNPs at a suggestive level of significance (P<5×10−7) 

(Supplementary Table 6); 123 of the 153 total SNPs mapped to the HLA region on 

chromosome 6. Based on these results, we selected and successfully designed TaqMan 

primers for eight promising SNPs (P<5×10−6) outside the HLA region and one SNP from 

the HLA region for stage 3 de novo genotyping in an additional 1,359 DLBCL cases and 

4,557 controls (Online Methods; Supplementary Tables 1, 3).

In a meta-analysis of all three stages (Supplementary Table 7), we identified four non-HLA 

SNPs in three novel loci at 6p25.3 (rs116446171, P=2.33×10−21) near EXOC2, 8q24.21 

(rs13255292, P=9.98×10−13; rs4733601, P=3.63×10−11) near PVT1 and MYC, and 2p23.3 

(rs79480871, P=4.23×10−8) near NCOA1 (Table 1; Figures 1a–c). The two 8q24.21 SNPs 

displayed minimal linkage disequilibrium (LD, r2=0.03 in 1000 Genomes CEU population). 

Furthermore, in conditional analysis, both rs13255292 (conditional OR=1.22, P 

=1.39×10−12) and rs4733601 (conditional OR=1.18, P =2.84×10−10) remained genome-wide 

significant; together these data support the presence of two independent SNPs associated 
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with DLBCL at 8q24.21. We also observed two suggestive SNPs (P<5×10−7) 

(Supplementary Table 8), one at 5q31.3 (rs79464052, P=5.57×10−8) in ARAP3 

(Supplementary Figure 4), and one at 3q13.33 (rs2681416), although the latter SNP did not 

replicate in stage 2 or 3.

Within the HLA region, rs2523607 (P=3.35×10−9) was carried forward for replication in 

stage 3. This SNP, localized at 6p21 in HLA-B, reached a combined P=2.40×10−10 in a 

meta-analysis of all three stages (Table 1; Figure 1d). To further evaluate the association of 

HLA variants with DLBCL risk, we imputed classical HLA alleles at six loci (HLA-A, B, C, 

DRB1, DQA1, and DQB1) in the four GWAS datasets from stages 1–2 and conducted a 

meta-analysis (Online Methods). The imputation accuracy of HLA types was high 

(>95.2%) when compared to HLA sequencing (four-digit resolution) previously performed 

on a subset of the NCI samples14 scanned as part of this study in stage 1 (Online Methods). 

Of all SNPs and classical HLA alleles tested across the MHC, only the SNP rs2523607 

(OR=1.34, P=3.3×10−9 in stages 1 and 2) and the classical allele HLA-B*08:01 (OR=1.30, 

P=3.16×10−8 in stages 1 and 2) reached genome-wide significance (Supplementary Table 

9). These markers were in very high LD (r2=0.91), and after adjusting for the effect of HLA-

B*08:01, the association of rs2523607 was greatly weakened (P=5.5×10−3).

To gain additional insight into potential biological mechanisms, expression quantitative trait 

loci (eQTL) analyses were performed in two datasets consisting of lymphoblastoid cell lines 

(Online Methods). In one of the datasets, significant associations were observed for 

rs116446171 with HIST1H3F and rs2523607 with HCG27 (Supplementary Table 10), while 

in the other dataset significant associations (FDR<0.05) were observed for rs2523607 (using 

rs3130923 as a proxy, r2=0.94) with LY6G6E, FLOT1, and RNF5 (Supplementary Table 

11); no associations were observed for the other DLBCL-associated loci.

To explore plausible mechanisms for the non-coding variants identified in our GWAS, the 

sentinel SNPs and those in high linkage disequilibrium (r2≥0.8) in Europeans in the 1000 

Genomes Project were analyzed using HaploReg v215 (Online Methods; Supplementary 

Table 12). In addition, B-cell specific chromatin dynamics were assessed in a 

lymphoblastoid cell line (GM12878) using ChroMoS16, which utilizes the pre-computed 

chromatin state data for 9 cell lines (including GM12878)17. Of the 173 SNPs queried, 61 

had information for GM12878 (Supplementary Figure 5), and 3 SNPs were identified as 

active or weak promoters only in GM12878, while 22 SNPs were identified as strong or 

weak enhancers in GM12878. In the other 8 cell lines, these regions were mostly defined as 

neutral, weakly transcribed or polycomb repressed. These results suggest that some of our 

SNPs are within regions of active chromatin state predominantly within B cells and have a 

role in the B-cell cis-regulatory network. These results are consistent with growing evidence 

that disease variants from GWAS are more likely to map to active chromatin sites than 

neutral sites, as was shown recently for systemic lupus erythematosus17. HaploReg showed 

that the majority of DLBCL-related SNPs were observed in regions of DNAse 

hypersensitivity common across multiple cell lines (e.g., rs116446171, rs2523607, 

rs13255292, rs4733601 near EXOC2, HLA-B, PVT1 or 7SK) whereas rs147193201 was 

specific to B-cells. The preponderance of DNAse hypersensitivity points to the existence of 

motifs, such as enhancers, silencers, promoters, insulators and other control elements of 
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gene regulation. The proteins bound at these sites are known transcription factors such as 

NF-κB, c-MYC, GATA2 or genes that regulate transcription such as POL24H8, USF1 or 

POL2. These suggested mechanisms of action will require laboratory follow-up.

The susceptibility locus at 6p25.3 (rs116446171) maps near a plausible DLBCL candidate 

gene, EXOC2 (exocyst complex component 2), which is part of a large multiprotein complex 

responsible for vesicle trafficking and maintenance and intercellular transfer of viral proteins 

and virions18. EXOC2 functions at the interface between host defense and cell death 

regulation19. EXOC2 interacts with Ral proteins, and the Ral-exocyst regulatory node has a 

crucial role in the maintenance of epithelial cell polarity, cell motility and cytokinesis20,21, 

and in proliferation and metastasis20,22. It is notable that IRF4 is centromeric to EXOC2 and 

genetic variation in this region has been linked with chronic lymphocytic leukemia (CLL) 

risk23,24, and nominally to DLBCL risk25. However, rs116446171 was not in LD with the 

IRF4 CLL GWAS SNP rs87207123.

Two 8q24.21 variants (Figure 1b), rs13255292 and rs4736601 positioned at chr8:129.07Mb 

and chr8:129.26Mb, respectively, are approximately 1Mb telomeric to the 8q24 region 

linked with multiple cancers26, including CLL27. Both variants are in close proximity to 

PVT1, which is a non-coding RNA implicated in the MYC activation. Notably, a variant at 

8q24.21 (rs2019960) has been linked to HL28, but the pair-wise r2 values of this SNP with 

both of our SNPs were low (r2<0.02). The close proximity of PVT1 and the MYC oncogene, 

which is known to be deregulated in Burkitt lymphoma29,30 and some DLBCLs 31,32, 

suggests that germline variation in this region could also contribute to DLBCL risk.

The susceptibility locus at 2p23.3 (rs79480871) maps near NCOA1, nuclear receptor 

coactivator 1 and ITSN2, intersectin 2. The former gene acts as a transcriptional coactivator 

for steroid and nuclear hormone receptors and is a member of the p160/steroid receptor 

coactivator (SRC) family33, while the latter gene encodes a protein that is a member of a 

family of proteins involved in clathrin-mediated endocytosis34 and may also augment the 

induction of T-cell receptor endocytosis35. However, our bioinformatics analysis did not 

identify a clear link to genes in this region, supporting the need to refine this signal in future 

work.

Through imputation with SNP2HLA,36 our strongest associations in the HLA region were 

with the HLA-B SNP rs2523607 and HLA-B*08:01, which are in very high LD, and based 

on our available sample size we cannot definitively rule out an orthogonal effect of 

rs2523607 in favor of HLA-B*08:01. HLA-B encodes the HLA class I heavy chain 

paralogue, which heterodimerizes with a light chain (β2 microglobulin) to play a central role 

in presenting intracellularly processed self or foreign antigens to CD8+ cytotoxic T 

lymphocytes. Class I molecules have been linked to a variety of immune-mediated diseases 

and cancers including HL, follicular lymphoma, DLBCL7,14,37,38, and more recently 

marginal zone lymphoma (Vijai, submitted). Our results strongly suggest HLA-B*08:01 as 

the primary MHC association with DLBCL risk. This classical allele is carried by the so-

called ancestral 8.1 haplotype associated with other complex diseases (e.g., type I 

diabetes).39 Classical alleles of other HLA loci may also be involved (including those on the 

8.1 haplotype), but larger sample sizes will be required to evaluate this question.

Cerhan et al. Page 4

Nat Genet. Author manuscript; available in PMC 2015 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Our study represents the largest DLBCL GWAS in individuals of European descent. We did 

not observe a notable signal for a locus previously reported for DLBCL on 3q27 in East 

Asia10, rs6773854 (reported as OR=1.47, P=1.14×10−11), which was based on a discovery 

set of 253 B-cell NHL cases (148 DLBCLs). Although our current study had a similar MAF 

of 0.22 among controls, we observed an OR=1.06 and a P-value of 0.81 for this SNP 

(Supplementary Table 13), suggesting that the reported marker may not be correlated with 

the functional susceptibility allele in Europeans. Of the two suggestive loci (P<5×10−7) 

reported in the literature8,40, we did not observe an association for rs751837 with DLBCL 

(OR=0.97, P=0.46), identified in a small Japanese GWAS (OR=3.51, P=3.3×10−7)40, but 

we did observe a consistent albeit attenuated association for rs10484561 (OR=1.18, 

P=1.5×10−4) which was initially reported on a subset of the studies in stage 1 (OR=1.36, 

P=1.46×10−7)8. Previously, an InterLymph study of ~1,800 DLBCLs and ~6,500 controls 

reported a strong signal for a dinucleotide haplotype in the LTA/TNF locus (LTA 252A>G/

TNF–308G>A) at 6p21.3 (OR=1.31, P=2.9 x10−8)5. Although nearly all of the cases from 

the previous publication were included in our current GWAS, the signal we observed overall 

was weaker (OR=1.15, P=8.5×10−4). The attenuation was not explained by study design 

(case-control, cohort) or adjustment for population substructure (data not shown), but could 

be due to population sampling differences, heterogeneity, or chance.

To explore the heritability of DLBCL, we estimated the contribution of all common SNPs to 

the variance explained by fitting all genotyped autosomal SNPs simultaneously using the 

method proposed by Yang et al41 in the Stage 1 dataset. We estimated that common SNPs, 

including but not limited to the loci discovered in this study, explain approximately 16% of 

the variance for DLBCL overall.

In summary, our findings represent an important step in defining the contribution of 

common genetic variants to risk for DLBCL. Our findings are notable because we have 

newly defined associations of several regions with susceptibility to DLBCL, and these 

regions harbor plausible candidate genes for further investigation. Further studies are 

required to discover additional common susceptibility loci as well as functional analyses that 

can explain the biological underpinnings of these new susceptibility loci.

ONLINE METHODS

Stage 1: DLBCL-GWAS

As part of a larger initiative, we conducted a genome-wide association study (GWAS) of 

diffuse large B-cell lymphoma (DLBCL) using cases and controls of European descent from 

22 studies of non-Hodgkin lymphoma (NHL) (Supplementary Table 1), including nine 

prospective cohort studies, eight population-based case-control studies, and five clinic or 

hospital-based case-control studies. All studies were approved by their respective 

Institutional Review Boards, and informed consent was obtained for all participants. Cases 

were ascertained from cancer registries, clinics or hospitals, or through self-report verified 

by medical and pathology reports. To determine NHL subtype, phenotype data for all NHL 

cases were harmonized to the hierarchical classification proposed by the InterLymph 

Pathology Working Group42,43 based on the World Health Organization (WHO) 

classification44.
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All DLBCL cases with sufficient DNA (n=2,878) and a subset of controls (n=2,854) 

frequency matched by age, sex, and study to the entire group of NHL cases, along with 4% 

quality control duplicates, were genotyped on the Illumina OmniExpress at the NCI Cancer 

Genomic Research Laboratory (CGR). Genotypes were called using Illumina GenomeStudio 

software, and quality control duplicates showed >99% concordance. Monomorphic SNPs 

and SNPs with a call rate of <95% were excluded. Samples with a call rate of ≤93%, mean 

heterozygosity <0.25 or >0.33 based on the autosomal SNPs, or gender discordance (>5% 

heterozygosity on X chromosome for males and <20% heterozygosity on the X chromosome 

for females) were excluded. Furthermore, unexpected duplicates (>99.9% concordance) and 

first-degree relatives based on identity by descent (IBD) sharing with Pi-hat>0.40 were 

excluded. Ancestry was assessed using the GLU struct.admix module based on the method 

by Pritchard et al.45 and participants with <80% European ancestry were excluded 

(Supplementary Figure 6). After exclusions, 2,661 (92.5%) cases and 2,685 (94.1%) controls 

remained (Supplementary Table 2). Genotype data previously generated on the Illumina 

Omni2.5 from an additional 3,536 controls from three of the studies (ATBC, CPSII, and 

PLCO) were also included11, resulting in a total of 2,661 cases and 6,221 controls for the 

stage 1 analysis. Of these additional 3,536 controls, 703 (~235 from each study) were 

selected to be representative of their cohort and cancer-free11, while the remainder were 

cancer-free controls from an unpublished study of prostate cancer in the PLCO. SNPs with 

call rate <95%, with Hardy-Weinberg equilibrium P-value<1×10−6, or with a minor allele 

frequency <1% were excluded from analysis, leaving 611,844 SNPs for analysis 

(Supplementary Table 4). To evaluate population substructure, a principal components 

analysis (PCA) was performed using the Genotyping Library and Utilities (GLU), version 

1.0, struct.pca module, which is similar to EIGENSTRAT46. Plots of the first five principal 

components are shown in Supplementary Figure 7. Association testing was conducted 

assuming a log-additive genetic model, adjusting for age, sex, and four significant principal 

components. All data analysis and management was conducted using GLU.

Stage 2: In Silico Analysis of Three Independent DLBCL GWAS

Three independent DLBCL GWAS provided genotyping data for a meta-analysis, 

(Supplementary Table 1), which included data generated with the following commercial, 

SNP microarrays: Illumina HumanHap 660W for Mayo (393 DLBCL and 172 controls), 

HumanCNV370-Duo for UCSF7 (254 DLBCLs and 748 controls), and HumanHap 610K for 

GELA (549 cases). In all studies, subjects with a genotyping call rate <95%, duplicates, 

related individuals, and SNPs with a call rate <95% were removed prior to imputation 

(Supplementary Table 4). The GELA study was conducted on cases only; controls were 

drawn from a pool of 928 individuals from the French component of the EPIC cohort, who 

were previously scanned on Illumina HumanHap 660W or 610K47,48. We subsequently 

chose a subset of 525 individuals with matched ancestry as determined from the principal 

components analysis. In total, there were 1,196 cases and 1,445 controls in stage 2.

Imputation was conducted separately for each study in stages 1 and 2 using IMPUTE213 and 

the 1000 Genomes Project version 312. The imputation analysis was restricted to common 

SNPs (cut-off MAF>0.01 with imputation accuracy INFO score >0.3).
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Association testing was conducted for each study using SNPTEST version 2, adjusting for 

age, sex, and any significant principal components. We evaluated the top 10 eigenvectors for 

the GELA, Mayo and UCSF studies, respectively, in each baseline risk model adjusting for 

both age and gender. Based on the significance level (P<0.05) of the regression coefficient 

for eigenvectors, we chose to adjust for three eigenvectors (EV1, EV7 and EV8) for GELA 

in the final association model, while no eigenvectors met criteria for adjustment of either the 

Mayo or UCSF studies.

All meta-analyses were performed using the fixed effects inverse variance method based on 

the beta estimates and standard errors from each study.

Stage 3: Replication studies and technical validation

In stage 3, eight SNPs in the most promising loci outside of the HLA region and one SNP 

from the HLA region (Supplementary Table 7) were taken forward for de novo replication in 

an additional 1359 cases and 4557 controls from four studies (Supplementary Table 1), 

except for rs2523607, which was not genotyped in one of the studies (NCI replication). 

Genotyping was conducted using custom TaqMan genotyping assays (Applied Biosystems) 

at the NCI Cancer Genomics Research Laboratory. Each assay was optimized and validated 

with 270 HapMap samples and additional CEPH samples (SNP500Cancer), and these 

samples were used as genotyping controls for clustering and reproducibility. All validated 

assays had 99% or higher concordance with HapMap and completion with control DNA was 

>97%. Blind duplicates from stage 3 samples (64 pairs; ~3%) yielded 100% concordance.

In technical validation, we observed a high correlation of genotyping calls from the 

OmniExpress microarray with confirmatory TaqMan assays in 455 stage 1 duplicate 

samples for two genotyped (rs13255292, r2=1.00; rs4733601, r2=1.00) and four imputed 

(rs116446171, r2=0.92; rs2523607, r2=0.99; rs2681416, r2=1.00; rs79480871, r2=0.94) 

SNPs. We also observed a high correlation of genotyping calls from the Illumina 

HumanHap 660W microarray with confirmatory TaqMan assays in stage 2 duplicate 

samples from the Mayo study (N=165) for two genotyped (rs13255292, r2=1.00; rs4733601, 

r2=1.00) and four imputed (rs116446171, r2=1.00; rs2523607, r2=1.00; rs79480871, 

r2=0.85; rs79464052, r2=0.95) SNPs.

HLA imputations and analysis

We imputed dense SNPs as well as classical HLA alleles (A, B, C, DRB1, DQA1, DQB1) 

and coding variants across the HLA region (chr6:29.5–33.2Mb, hg19) in the stage 1 (NCI) 

and stage 2 (MAYO, USCF2 and GELA/EPIC) studies using SNP2HLA36. The imputation 

was based on a reference panel from the Type 1 Diabetes Genetics Consortium (T1DGC), 

and consisted of genotypes from 5,225 individuals of European descent who were typed for 

HLA-A, B, C, DQA1, DQB1, DRB1, DPA1, DPB1 4 digit alleles. To assess imputation 

accuracy, we compared the imputed HLA alleles to HLA sequencing data (to 4 digits) 

available on a subset of samples from the NCI GWAS14, and found high concordance rates 

for HLA-A (97.3%), B (98.5%), C (98.1%) and DRB1 (97.5%). Due to the limited number of 

SNPs (N=7,253) in the T1DGC reference set, imputation of HLA SNPs was conducted with 

IMPUTE2 and the 1000 Genomes reference set as described above. A total of 68,488 SNPs, 
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201 classical HLA alleles (two- and four-digit resolution) and 1,038 AA markers including 

103 AA positions that were ‘multi-allelic’ with three to six different residues present at each 

position, were successfully imputed (info score >0.3 for SNPs or r2>0.3 for alleles and AAs) 

and available for analysis. Multi-allelic markers were analyzed as binary markers (e.g., 

allele present or absent) and using a global test, and a meta-analysis was conducted where 

we tested SNPs, HLA alleles and AAs across the HLA region for association with DLBCL 

using PLINK49 or SNPTEST as described above.

Expression quantitative trait loci (eQTL) analysis

To evaluate the effect of our top loci (and SNPs in LD based on r2>0.8 in HapMap-CEU 

release 28) on gene expression, we conducted an eQTL analysis on lymphoblastoid cell lines 

using two independent datasets: Childhood asthma50 and HapMap51. For the childhood 

asthma dataset 50, peripheral blood lymphocytes were transformed into lymphoblastoid cell 

lines for 830 parents and offspring from 206 families of European ancestry. Using extracted 

RNA, gene expression was assessed with the Affymetrix HG-U133 Plus 2.0 chip. 

Genotyping was conducted using the Illumina Human1M Beadchip and Illumina 

HumanHap300K Beadchip, and imputation was performed using data from the 1kGP. All 

SNPs selected for replication were tested for cis associations (defined as gene transcripts 

within 1 Mb), assuming an additive genetic model, adjusting for non-genetic effects in the 

gene expression value. To gain insight into the relative importance of associations with our 

SNPs compared to other SNPs in the region, we also conducted conditional analyses, in 

which both the DLBCL SNP and the most significant SNP for the particular gene transcript 

(i.e., peak SNP) were included in the same model. Only cis associations that reached 

P<6.8×10−5, which corresponds to a false-discovery rate (FDR) of 1%, are reported 

(Supplementary Table 10).

The HapMap dataset consisted of a publicly available RNAseq dataset51 from transformed 

lymphoblastoid cell lines from 41 CEPH Utah residents with ancestry from northern and 

western Europe (HapMap-CEU), samples available from the Gene Expression Omnibus 

(GEO) repository (http://www.ncbi.nlm.nih.gov/geo) under accession number GSE16921. 

Genotyping data for the same HapMap-CEU individuals were directly downloaded from 

HapMap (www.hapmap.org). Since rs2523607, rs79480871 and rs116446171 were not 

genotyped in HapMap, we selected rs3130923, rs6746301 and rs7762424 as respective 

proxies, as they were the strongest linked SNPs available in HapMap (r2=0.94, 0.69 and 

0.54 in 1kGP-CEU, respectively). Correlation between expression and genotype for each 

SNP-probe pair was tested using the Spearman’s rank correlation test with t-distribution 

approximation and were estimated with respect to the minor allele in HapMap-CEU. P-

values were adjusted using the Benjamini-Hochberg false-discovery rate (FDR) correction 

and eQTLs were considered significant at an FDR≤0.05 (Supplementary Table 11).

Bioinformatics: ENCODE and Chromatin State Dynamics

Using 1000 Genomes data, we identified SNPs with r2≥0.8 with our sentinel SNP that were 

reported to be non-synonymous or nonsense variants. We utilized HaploReg v215, which is a 

tool for exploring non-coding functional annotation using ENCODE data, to evaluate the 

genome surrounding our SNPs (Supplementary Table 12). To assess chromatin state 
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dynamics, we used Chromos16, which has pre-computed data from ENCODE on 9 cell types 

based on Chip-Seq analyses17. These pre-computed data have genome-segmentation 

performed using multivariate hidden Markov-model to reduce the combinatorial space to a 

set of interpretable chromatin states. The output from Chromos separates data into 15 

chromatin states corresponding to repressed, poised and active promoters, strong and weak 

enhancers, putative insulators, transcribed regions, and large-scale repressed and inactive 

domains (Supplementary Figure 5).

Heritability analyses

To estimate the contribution of all common SNPs to the variance explained, we used the 

method proposed by Yang et al41, which was extended to dichotomous traits52 and 

implemented in the Genome-wide Complex Trait Analysis (GCTA) software53. The genetic 

similarity matrix was estimated from our stage 1 data using all genotyped autosomal SNPs 

with a minor allele frequency >0.01. We used restricted maximum likelihood (REML), the 

default option for GCTA, to fit the appropriate variance components model that included the 

top 10 eigenvectors as covariates. The final estimate of heritability on the underlying 

liability scale assumed that the lifetime risk of DLBCL was 0.007454.

Estimate of recombination hotspots

To identify recombination hotspots in the region we used SequenceLDhot55, a program that 

uses the approximate marginal likelihood method56 and calculates likelihood ratio statistics 

at a set of possible hotspots. We tested five unique sets of 100 control samples. PHASE v2.1 

program was used to calculate background recombination rates57,58 and LD heatmap was 

visualized in r2 using snp.plotter program59.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Association results, recombination hot-spots, and linkage disequilibrium (LD) plots for 
the regions newly associated with diffuse large B-cell lymphoma (DLBCL)
(a–d) Top, association results of GWAS data from stage 1 DLBCL-GWAS (grey diamonds) 

and combined data of stages 1–3 (red diamond) are shown in the top panels with −log10(P) 

values (left y axis). Overlaid are the likelihood ratio statistics (right y axis) to estimate 

putative recombination hotspots across the region on the basis of 5 unique sets of 100 

randomly selected control samples. Bottom, LD heatmap based on r2values from combined 
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control populations for all SNPs included in the GWAS. Shown are results for 6p25.3 (a), 

8q24.21 (b), 2p23.36 (c), and p21.33 (d) regions.
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