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Abstract
Estrogen receptor (ER)-negative tumors represent 20–30% of all breast cancers, with a higher
proportion occurring in younger women and women of African ancestry1. The etiology2 and
clinical behavior3 of ER-negative tumors are different from those of tumors expressing ER (ER
positive), including differences in genetic predisposition4. To identify susceptibility loci specific
to ER-negative disease, we combined in a meta-analysis 3 genome-wide association studies of
4,193 ER-negative breast cancer cases and 35,194 controls with a series of 40 follow-up studies
(6,514 cases and 41,455 controls), genotyped using a custom Illumina array, iCOGS, developed
by the Collaborative Oncological Gene-environment Study (COGS). SNPs at four loci, 1q32.1
(MDM4, P = 2.1 × 10−12 and LGR6, P = 1.4 × 10−8), 2p24.1 (P = 4.6 × 10−8) and 16q12.2 (FTO,
P = 4.0 × 10−8), were associated with ER-negative but not ER-positive breast cancer (P > 0.05).
These findings provide further evidence for distinct etiological pathways associated with invasive
ER-positive and ER-negative breast cancers.

ER-negative tumors are associated with a worse short-term prognosis3 and have weaker
associations with reproductive risk factors2 than ER-positive tumors. There are also
important differences in genetic susceptibility to these two types of tumors. BRCA1
mutations predispose primarily to ER-negative disease, whereas most known common
susceptibility loci for breast cancer show stronger associations with ER-positive than with
ER-negative tumors4. Exceptions are three loci tagged by rs10069690 on chromosome 5p15
(ref. 5) (TERT-CLPTM1L), rs8170 at 19p13 (ref. 6) (BABAM1, also known as MERIT40)
and rs2284378 at 20q11 (ref. 7), which predispose primarily to ER-negative tumors, and loci
at 6q25 (ref. ref. 8) that confer higher risk for ER-negative than for ER-positive tumors.
With the aim of identifying susceptibility loci specific for invasive ER-negative disease, we
analyzed three genome-wide association studies (GWAS) in populations of European
ancestry and followed-up promising signals from each GWAS in the Breast Cancer
Association Consortium (BCAC).

The 3 GWAS included a total of 4,193 ER-negative breast cancer cases and 35,194 controls
of European ancestry drawn from 23 studies participating in the National Cancer Institute
Breast and Prostate Cancer Cohort Consortium (BPC3), the Triple-Negative Breast Cancer
Consortium (TNBCC) and the Combined BCAC ER-negative GWAS (C-BCAC) (Online
Methods and Supplementary Table 1).We selected 13,276 SNPs on the basis of rank P
values from the 3 GWAS, and these were genotyped in an independent set of 6,514 ER-
negative cases and 41,455 controls of European ancestry from 40 BCAC studies forming
part of the COGS Project (Online Methods and Supplementary Table 1). Samples were
genotyped using the iCOGS custom Illumina Infinium array that included a total of 211,155
SNPs selected in collaboration with other cancer consortia (Online Methods). We performed
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a fixed-effects meta-analysis of odds ratio (OR) estimates from the GWAS and follow-up
studies (quantile- quantile plot shown in Supplementary Fig. 1) and identified four loci
newly associated with ER-negative disease at P < 5 × 10−8 (Fig. 1 and Table 1; cluster plots
shown in Supplementary Fig. 2).

Two independently associated loci were located on chromosome 1q32.1 and were tagged by
two uncorrelated (r2 < 0.001) markers (from reference sequence NCBI Build 36): rs4245739
(P = 2.1 × 10−12, OR = 1.14, 95% confidence interval (CI) = 1.10–1.18) and rs6678914 (P =
1.4 × 10−8, OR = 1.10, 95% CI = 1.06–1.13). Conditional analyses of the two SNPs in
BCAC follow-up data showed comparable estimates, indicating that these are two distinct
signals (Supplementary Table 2). The other two loci were located at 2p24.1 (rs12710696,P =
4.6 × 10−8, OR = 1.10, 95% CI = 1.06–1.13) and 16q12.2 (rs11075995, P = 4.0 × 10−8, OR
= 1.11, 95% CI = 1.07–1.15). For each region, there was little evidence for heterogeneity of
effect by study (Table 1 and Supplementary Fig. 3a–d), and genotype-specific risks for
rs4245739, rs6678914 and rs12710696 were consistent with a log-additive model. For
rs11075995, departure from a log-additive model was significant (P = 0.039), and genotype-
specific estimates suggested a recessive effect (Supplementary Table 3).

The strength of the association for each SNP differed significantly by ER status, and none of
the SNPs showed significant associations with ER-positive disease in the analysis of 25,227
ER-positive cases and 41,455 controls of European ancestry in BCAC (Supplementary
Tables 4 and 5). Notably, we observed no significant differences in ORs for ER-negative
tumors with and without the triple-negative phenotype (defined as ER-negative,
progesterone receptor (PR)-negative and HER2-negative) for rs6678914 (1q32.1, LGR6),
rs12710696 (2p24.1) and rs11075995 (16q12.2). However, rs4245739 (1q32.1, MDM4)
seemed to be specific to triple-negative tumors (case-only heterogeneity P value (Phet) by
triple-negative status = 0.005;Supplementary Table 5).

None of the four SNPs showed significant (P < 0.05) associations in studies of Asian
ancestry in BCAC, and only the 16q12.2 (FTO) variant was associated at P = 0.05 in
combined analyses of studies of African-American ancestry in BCAC and the African-
American Breast Cancer Consortium5 (AABC; Supplementary Table 6). However, estimates
for Asian and African-American populations were not significantly different from those in
Europeans (P > 0.05), and larger studies in these populations are needed to determine
whether risk associations exist. None of the markers were significantly associated with
increasing age at the onset of ER-negative disease in the BCAC follow-up data (Ptrend ≥
0.314), although there were some differences in age-specific estimates (Supplementary
Table 7). Furthermore, OR estimates were not significantly different for women with and
without a family history of any breast cancer in at least one first-degree relative, and risk
alleles were not over-represented in cases with a positive family history (Supplementary
Table 8).

rs4245739 (1q32.1) is located in the 3’ region of the MDM4 oncogene. MDM4 is a
repressor of TP53 and TP73 transcription and is important for cell cycle regulation and
apoptosis. rs4245739 resides in a linkage disequilibrium (LD) block of approximately 230
kb (Supplementary Fig. 4a) that also contains the tRNALys transcript and the genes
PIK3C2B and LRRN2 (Supplementary Fig. 5a). MDM4, tRNALys and PIK3C2B but not
LRRN2 are expressed in normal breast epithelium, breast cancer cell lines and breast
tumors9–11.There are no nonsynonymous SNPs correlated with rs4245739 in the 1000
Genomes Project populations of European ancestry (r2 > 0.10); however, correlated SNPs
are located in the promoter region of PIK3C2B (rs3014606, r2 = 0.94 and rs2926534, r2 =
0.94) and in the tRNALys transcript (rs11240753, r2 = 0.78 and rs4951389, r2 = 0.78).
Variants in the MDM4 locus correlated with rs4245739 have also been associated with
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breast cancer in BRCA1 mutation carriers who have predominantly ER-negative tumors12.
Thus, this region seems to be specifically associated with ER-negative disease and not with
overall breast cancer risk, as suggested by a previous, smaller candidate gene study13. To
our knowledge, no studies before the COGS collaboration have evaluated rs4245739 in
relation to the risk of ER-negative disease.

rs6678914 on chromosome 1q32.1 is located in intron 1 of the LGR6 gene (Supplementary
Fig. 4b). LGR6 and several other genes in this region, including UBE2T and PTPN7, are
expressed in breast tumors9.A correlated SNP (rs12032424, r2 = 0.96) is located in a
putative enhancer region in the same intron of LGR6 in normal breast epithelial cells,
although not in the triple-negative breast cancer cell line MDA-MB-231 (Supplementary
Fig. 5b). The rs6678914 SNP is not correlated with nonsynonymous SNPs in LGR6 (r2 >
0.10 in 1000 Genomes Project populations of European ancestry).

The SNP rs12710696 on chromosome 2p24.1 is located in an intergenic region, more than
200 kb from the nearest gene (OSR1) (Supplementary Fig. 4c). It is possible that the allele
marked by rs12710696 could influence a set of active enhancers, as the region contains
multiple overlapping chromatin marks in normal breast epithelial cells and the MDA-
MB-231 triple-negative breast cancer cell line (Supplementary Fig. 5c).

The signal found on chromosome 16q12.2 is located in the fat mass– and obesity-associated
gene FTO (Supplementary Fig. 4d). This signal is tagged by rs11075995, located in a ~40-
kb LD block in intron 1 of FTO, within an enhancer region that appears to be active in both
normal and triple-negative breast cancer cells (Supplementary Fig. 5d). rs11075995 is
located ~40 kb distal to a region in intron 1 that contains multiple SNPs associated with
obesity in the Genetic Investigation of ANthropometric Traits (GIANT) Consortium14,15, as
well as a SNP associated with overall breast cancer risk (rs17817449)8. rs11075995 is not
correlated with any of the previously reported SNPs associated with obesity at genome-wide
significant levels in GIANT or with rs17817449 (P = 3.7 × 10−60, based on 123,864 subjects
in GIANT; ref. 15). However, rs11075995 is associated with body mass index (BMI), both
in GIANT (P = 1.51 × 10−6, based on 121,427 subjects) and our control population (P = 2.8
× 10−5, based on 20,952 controls in iCOGS; data not shown). Analyses adjusting and
stratifying by BMI on the basis of 3,071 ER-negative cases and 20,130 controls from 19
studies genotyped on the iCOGS array indicated that the association between rs11075995
and ER-negative disease is not explained or modified by our measure of BMI (BMI-adjusted
OR = 1.16, 95% CI = 1.09–1.24, P = 1.1 × 10−5; Pinteraction = 0.912; data not shown).
Furthermore, conditional analyses indicated that the ER-negative disease–specific signal
(rs11075995) is independent of rs17817449 (Supplementary Table 2). This finding adds to
the increasing evidence of distinct signals at the same locus for different subtypes of cancers
occurring at the same site, including, for example, 5p15.33 (TERT-CLPTM1L)16 and
14q24.1 (RAD51B, also known as RAD51L1)8 in breast cancer and 5p15.33 (TERT-
CLPTM1L)16 and HNF1B17 in ovarian cancer. Detailed fine mapping of known and newly
identified breast cancer–associated regions will be required to determine whether additional
subtype-specific signals exist in these regions.

In an attempt to investigate the likely genes responsible in the observed risk associations, we
examined associations between SNPs with available genotype (rs4245739, rs12710696 and
rs6678914) and RNA expression in data from 382 primary breast tumors, including 81 ER-
negative samples in The Cancer Genome Atlas (TCGA) database. None of the associations
were significant after Bonferroni adjustment for multiple comparisons, whether considering
only the immediately neighboring genes or all genes within a 1-Mb window of the lead SNP
(data not shown).
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To provide a comprehensive analysis of common genetic loci for ER-negative breast cancer,
we also evaluated associations between 67 known loci for overall breast cancer risk (26
previously reported and 41 newly identified8) and ER-negative disease. On the basis of our
meta-analysis of 10,707 ER-negative cases and 76,649 controls, 7 regions influenced risk of
ER-negative disease at P < 5 × 10−8: 1p36.22 (PEX14), 5p15 (TERT-CLPTM1L), 2
independent loci at 6q25.1 (ESR1), 12p11.22 (PTHLH), 16q12.1 (TOX3) and 19p13.1
(BABAM1) (Supplementary Table 9). Only seven loci identified so far, the four reported
here and the three previously reported located at 5p15 (ref. 5), 19p13.1 (ref. 6) and 20q11
(ref. 7), are specific to ER-negative disease.

In summary, our analyses provide further evidence for distinct etiological pathways for
invasive ER-positive and ER-negative breast cancers. Fine mapping and functional studies
of the susceptibility loci for ER-negative disease should provide important insights into the
biological mechanisms of ER-negative breast cancer, potentially leading to the identification
of new targets for therapy and prevention of this aggressive form of breast cancer.

ONLINE METHODS
ER-negative breast cancer GWAS

Three GWAS of ER-negative breast cancer were conducted in populations of European
ancestry by National Cancer Institute (NCI) BPC3 (refs. 7,18), TNBCC5,6 and C-BCAC.

ER-negative status for BPC3 and C-BCAC cases was determined from review of medical
records or state cancer registry information. TNBCC focused on triple-negative cases,
defined as individuals with ER-negative, PR-negative and HER2-negative breast cancer
using data from medical records5,6. The BPC3 GWAS included 2,188 ER-negative cases
and 26,477 controls from 8 studies (CPSII, EPIC, MEC, NHS, NHSII, PLCO, PBCS and
WGHS), geno-typed using different versions of Illumina SNP arrays7,18. A total of 1,718
triple-negative cases from 11 studies (ABCTB, BBCC, DFCI, FCCC, GENICA, HEBCS,
MARIE, MCBCS, MCCS, POSH and SBCS) were genotyped for the TNBCC GWAS using
Illumina SNP arrays5. Data for TNBCC controls (N = 3,670) were obtained from a Finnish
study (HEBCS) and publicly available controls of European ancestry from the United States
(CGEMS), Germany (KORA), Australia (QIMR) and the UK (Wellcome Trust Case Control
Consortium 2, WTCCC2) genotyped using Illumina arrays5. Samples from the four latter
studies are not counted in the total number of TNBCC studies because they only provided
controls for other studies. C-BCAC performed a meta-analysis of 9 GWAS that included
data on 10,052 breast cancer cases and 12,575 controls8. Five studies (ABCFS, MARIE,
HEBCS, SASBAC and UK2) provided data on ER status from medical records or cancer
registries and contributed data on 702 ER-negative cases and 7,713 controls of European
ancestry. All C-BCAC studies were genotyped with versions of Illumina arrays. Control
data for C-BCAC were obtained from individual studies or publicly available data.

Standard genotyping quality control procedures were performed for each GWAS as
previously described5,7,8. Estimated per-allele log(OR) and standard error were calculated
for each SNP using unconditional logistic regression on allele counts (dosages), as
implemented in ProbABEL19. Analyses were adjusted by study, country of origin or
principal components as previously described5,7,8. Analyses assumed a log-additive genetic
model, and P values were based on the 1-degree-of-freedom Wald test. Quantile-quantile
plots from each GWAS showed no substantial evidence for cryptic population substructure
or differential genotype calling between cases and controls. The estimated inflation factor
(λ) was 1.02 for BPC3 (ref. 7), 1.04 for TNBCC6 and 0.98 for C-BCAC (Supplementary
Fig. 1).

Garcia-Closas et al. Page 10

Nat Genet. Author manuscript; available in PMC 2014 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



SNPs were selected for the iCOGS custom genotyping array separately by each participating
group (see details in Michailidou et al.8). BPC3 nominated independent SNPs with a 1-
degree-of-freedom log-additive trend test P < 0.02 or with P < 0.02 for one of several
auxiliary tests, including tests for dominant or recessive effects of the minor allele and case-
only tests comparing PR-positive to PR-negative tumors. SNPs from C-BCAC were selected
on the basis of the 1-degree-of-freedom trend test for ER-negative disease. TNBCC
nominated SNPs on the basis of log-additive trend test P < 0.01. Subsequent analyses that
combined OR estimates across GWAS and follow-up samples only included SNPs that had
been directly genotyped on the iCOGS array and had passed genotyping quality control.
SNPs successfully genotyped on iCOGS but not included on the chips used for the GWAS
were imputed within each GWAS before combining results with iCOGS data. Imputation
was performed within each study and genotyping array using the HapMap Phase 2 CEU
reference panel and MACH software package v1.0. SNPs with low imputation quality (r2 <
0.3) or minor allele frequency (MAF) < 1% were excluded.

iCOGS genotyping
Samples for follow-up analyses were drawn from 50 studies participating in BCAC (40 from
populations of predominantly European ancestry (including CTS, DEMOKRITOS, NBCS,
NBHS, OSUCCG, RPCI and SKKDKFZS from TNBCC), 9 of Asian ancestry and 1 of
African-American ancestry) with information on ER status. Most breast cancer cases in
BCAC studies have not been tested for BRCA1 mutations; however, the frequency of
mutations in the studied populations is expected to be low. Samples were genotyped as part
of the COGS Project using a custom Illumina Infinium array (iCOGS) at four genotyping
centers (Supplementary Table 1). The most common source of data for ER, PR and HER2
status was medical records, followed by immunohistochemistry performed on tumor tissue
microarrays (TMAs) or whole-section tumor slides. Breast cancer cases in the BCAC
follow-up with missing data on ER status and cases from one study (PBCS) that included
only ER-positive cases are excluded from this report. Studies were required to provide ~2%
of samples in duplicate.

The iCOGS chip included a total of 211,155 SNPs selected in collaboration with other
consortia of BRCA1 and BRCA2 mutation carriers (CIMBA), ovarian cancer (OCAC) and
prostate cancer (PRACTICAL). Genotype calling and quality control analyses were
conducted by a single analysis center at the University of Cambridge 8. A total of 13,276
SNPs proposed by the combined ER-negative GWAS yielded high-quality genotype data
(5,738 from BPC3, 4,628 from TNBCC and 2,910 from C-BCAC).

Statistical analysis
After quality control exclusions8, BCAC follow-up data were analyzed using the Genotype
Library and Utilities (GLU) package to estimate per-allele ORs and standard errors for each
SNP using unconditional logistic regression. Analyses were stratified by ancestry
(European, Asian or African). For samples of European ancestry, BCAC follow-up analyses
were adjusted for seven principal components (the first six plus an additional component to
reduce inflation for the LMBC study).

GWAS and BCAC follow-up results were combined using inverse variance–weighted fixed-
effects meta-analysis, as implemented in METAL20. Forest plots showing study-specific
estimates and fixed-effects meta-analysis for SNPs showing genome-wide significance were
drawn using the command metan in STATA v.12. Samples that overlapped among the three
GWAS and the BCAC follow-up were identified by concordance of genotypes and removed
from either the GWAS or follow-up data set before this analysis so that each data set
contributing to the meta-analysis was independent of the others (see Supplementary Table 1
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for the counts of case and control included in the analyses after removing overlapping
samples). Heterogeneity by study was evaluated using the Q statistic.

Analyses in this report focused first on the 13,276 SNPs proposed by the ER-negative breast
cancer GWAS. For SNPs showing evidence of association with ER-negative breast cancer at
P < 1 × 10−6, we also evaluated correlated SNPs in the rest of COGS and reported on the
most significant SNP in the region. For the regions that reached genome-wide statistical
significance (P < 5 × 10−8), we performed additional analyses examining heterogeneity in
the associated effect by tumor type and subject characteristics using the most significant
SNP in the region. The associations between these SNPs and ER-positive breast cancer were
assessed using 25,227 ER-positive cases of European ancestry in BCAC who had been
genotyped as part of the COGS Project. Differences in the strength of the associations with
ER-positive and ER-negative breast cancers were assessed using case-only analyses
(Supplementary Table 5). Stratum-specific estimates of per-allele OR by categories of age
and family history of disease were obtained from logistic regression models (Supplementary
Tables 6 and 7), and differences in ORs across strata were tested using an ordinal-product
interaction term.

We also assessed associations between the most significant markers and ER-negative breast
cancer in Asian and African-American populations. The Asian-ancestry analyses included
1,547 ER-negative cases and 6,624 controls in 9 studies from BCAC. The African-American
analyses included 91 ER- negative cases and 252 controls in 1 BCAC study and 988 ER-
negative cases and 2,745 controls in 9 studies from AABC5 (Supplementary Table 1). Both
the Asian-ancestry and African-American analyses adjusted for the first two principal
components of genetic variation, calculated separately in each ancestry group. Differences
by ancestry were tested by a χ2 test comparing summary ORs across the three ancestry
groups.

Bioinformatics
In an attempt to identify functionality in regions of interest, we used the open-source R/
Bioconductor package FunciSNP version 0.1.14 (Functional Integration of SNPs)21 (S.K.R.,
S.G. Coetzee, H. Noushmehr, C. Yan, J.M. Kim et al., unpublished data), which
systematically integrates 1000 Genomes Project SNP data (June 2011 data release) with
chromatin features of interest. For each of the four newly associated ER-negative breast
cancer markers we analyzed all SNPs within a 1-Mb window that were in LD (r2 > 0.5) with
the index marker (according to the 1000 Genome Project CEU panel). We assessed whether
these SNPs colocalized with 13 different chromatin features that capture open chromatin
regions and enhancers across the genome, using data generated by next-generation
sequencing technologies. Information on open chromatin states (H3K9ac and H3K14ac),
nucleosome-depleted regions (DNase I and FAIRE), enhancers (H3K4me1) and active/
engaged enhancers (H3K27ac) was either generated by the Coetzee Laboratory (S.K.R. et
al., unpublished data) or harvested from the Encyclopedia of DNA Elements (ENCODE)
Project. All chromatin features were identified in normal human mammary epithelial cells
(HMECs) and triple-negative breast cancer cells (MDA-MB-231). We used the UCSC
Genome Browser (see URLs) with potentially functional SNPs identified using FunciSNP
and chromatin features tracks to generate images (Supplementary Fig. 5).

Ethics
All women in participating studies provided written consent for the research, and approval
for the study was obtained from the local ethical review board relevant to each institution.
Collection of blood samples and clinical data from subjects was performed in accordance
with local guidelines and regulations.
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Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Association and recombination plots. (a–d) Results are shown for the 1q32.1 (rs4245739;
MDM4) (a), 1q32.1 (rs6678914; LGR6) (b), 2p24.1 (rs12710696) (c) and 16q12.2
(rs11075995; FTO) (d) loci in populations of European ancestry. Data from ER-negative
breast cancer GWAS are plotted as circles; LD between each SNP and the top SNP (blue) is
indicated by the color of the symbol. Estimates from the combined analysis of GWAS and
BCAC replication data are plotted as squares, with the top SNP shown in blue.
Recombination rates, plotted in light blue, are based on the HapMap CEU samples (Utah
residents of Northern and Western European ancestry), and genomic coordinates are based
on GRCh37 of the human genome.
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