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Abstract

Most psychiatric disorders are moderately to highly heritable. The degree to which genetic

variation is unique to individual disorders or shared across disorders is unclear. To examine shared

genetic etiology, we use genome-wide genotype data from the Psychiatric Genomics Consortium

(PGC) for cases and controls in schizophrenia, bipolar disorder, major depressive disorder, autism

spectrum disorders (ASD) and attention-deficit/hyperactivity disorder (ADHD). We apply

univariate and bivariate methods for the estimation of genetic variation within and covariation

between disorders. SNPs explained 17–29% of the variance in liability. The genetic correlation

calculated using common SNPs was high between schizophrenia and bipolar disorder (0.68 ± 0.04

s.e.), moderate between schizophrenia and major depressive disorder (0.43 ± 0.06 s.e.), bipolar

disorder and major depressive disorder (0.47 ± 0.06 s.e.), and ADHD and major depressive

disorder (0.32 ± 0.07 s.e.), low between schizophrenia and ASD (0.16 ± 0.06 s.e.) and non-

significant for other pairs of disorders as well as between psychiatric disorders and the negative

control of Crohn’s disease. This empirical evidence of shared genetic etiology for psychiatric

disorders can inform nosology and encourages the investigation of common pathophysiologies for

related disorders.

The current classification of psychiatric disorders reflects clinical syndromes with largely

unknown etiology and is based on historical descriptions provided by prominent clinicians

over the last 125 years. Family (including twin and adoption) studies provide consistent

evidence that genetic factors are involved in these syndromes1. In principle, family studies

allow quantification of the shared genetic etiology of disorders, through the estimation of

heritability (the proportion of variance in liability attributable to additive genetic factors),

and the genetic correlation between them. However, difficulties in ascertaining samples of

sufficient size mean that there are few estimates of genetic correlations. Nonetheless, family

studies suggest correlated familial genetic liabilities to bipolar disorder and schizophrenia2,3,

bipolar disorder and major depressive disorder2,3, and ASD and ADHD4–6 (Supplementary

Table 1). Phenotypic and genetic overlap has also been suggested for ASD and

schizophrenia7–11, ASD and bipolar disorder9, bipolar disorder and ADHD12, and major

depressive disorder and ADHD13. Some of these relationships have been supported by

recent evidence of shared molecular risk factors14–16, but the extent of these relationships

remains unclear, given the small proportion of risk associated with individually identified

variants.

The genomics era provides new opportunities to explore the shared genetic etiology of

disorders. Genome-wide association studies (GWAS) assess common genetic
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polymorphisms (for example, SNPs) at several hundred thousand positions in the genome.
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The experimental paradigm of GWAS involves the identification of individual variants

associated with case-control status17. However, these data can also be used to estimate the

total variance in liability explained by SNPs (SNP heritability, ) through the estimation

of genetic similarities (relationships) between cases and controls using SNP genotypes18,19.

The pairwise genetic relationships that contribute to the estimate are very small, but the

large number of pairwise relationships in a case-control sample generates estimates with

reasonable precision. The  value is an estimate of the total variance in liability to disease

explained by SNPs together. Genetic variation is estimated when case-case pairs and

control-control pairs are, on average, more similar across the genome than case-control

pairs. The  value is a lower bound for total narrow-sense heritability, as the former

cannot include contributions from causal variants not tagged by the measured SNPs, mostly

less common and rare causal variants. A bivariate extension20 of these genome-wide

methods estimates the genetic correlation (rg SNP) explained by SNPs between case-control

samples collected independently for two disorders (Online Methods). The correlation is

positive when the cases of one disorder show higher genetic similarity to the cases of the

other disorder than they do to their own controls. A negative correlation is possible if the

cases of one disorder are less similar across the genome to the cases of another disorder than

they are to controls of the other disorder. A genetic correlation of zero is estimated if the

genome-wide relationship between cases of one disorder is the same with the cases as with

the controls of another disorder. As a correlation, a high rg SNP value is achieved when the

covariance term between the traits is similar in magnitude to the variance terms. Therefore,

we also report the SNP-based coheritability of pairs of disorders, which is the covariance

between disorders on the liability scale and allows comparison of the shared liability

attributable to SNPs on the same scale as . Here we apply univariate and bivariate

methods to the five disorders of the PGC—schizophrenia21, bipolar disorder22, major

depressive disorder23, ASD24,25 and ADHD26—analyzed in the PGC Cross-Disorder Group

association study25, together with additional ADHD data sets27–30 (Table 1).

RESULTS

SNP heritabilities for the five disorders

In our linear mixed model, we estimate the variance in case-control status explained by

SNPs18 (heritability on the observed scale; CC estimates in Table 1). Cases in case-control

samples are highly ascertained compared to in the population, and, because the cohorts for

different disorders had different proportions of cases, CC estimates were difficult to interpret

and compare. For this reason, we report  values on the liability scale, in which a linear

transformation18 is applied based on a user-specified estimate of the risk of the disorder in

the study base population (disorder risk, K). For each disorder, we considered three values of

K (Table 1), and we converted  values to predicted risk to first-degree relatives

(λ1st SNP) given K. We benchmarked the λ1st SNP risk values to risk to first-degree relatives

(λ1st), consistent with estimates of heritability reported from family studies given K. Our

estimates of λ1st SNP values were robust, and our estimates of  values were reasonably

robust, to the likely range of K values and show that a key part of the heritabilities or
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familial risk estimated from family studies is associated with common SNPs. Twice the

standard error of estimates approximates the magnitude of the parameter that is possible to

detect as being significantly different from zero, given the available sample sizes31.

SNP coheritabilities and SNP correlations (rg SNP)

The relationships between disorders were expressed as SNP-based coheritabilities (Fig. 1).

The rg SNP value was high between schizophrenia and bipolar disorder at 0.68 (0.04 standard

error (s.e.)), moderate between schizophrenia and major depressive disorder at 0.43 (0.06

s.e.), bipolar disorder and major depressive disorder at 0.47 (0.06 s.e.), and ADHD and

major depressive disorder at 0.32 (0.07 s.e.), low between schizophrenia and ASD at 0.16

(0.06 s.e.) and non-significant for other pairs of disorders (Supplementary Table 1). The

rg SNP value for correlation is expected to be equal to the rg value from family studies only if

genetic correlation is the same across the allelic frequency spectrum and if the linkage

disequilibrium (LD) between genotyped and causal variants is similar for both disorders.

The sample size for ASD was the smallest but still could detect correlations of >|0.18|

different from zero in bivariate analyses with all other disorders.

Our results provide empirical evidence that schizophrenia, bipolar disorder and major

depressive disorder have shared genetic etiology. Because some schizophrenia and bipolar

disorder cohorts were collected in the same clinical environments, we investigated the

possible impact of the non-independent collection of schizophrenia and bipolar disorder

samples sets but found no significant change in the estimates related to this (Supplementary

Table 2). The correlation between schizophrenia and ASD was significant but small (0.16,

0.06 s.e.; P = 0.0071). In general, our analyses suggested that, whereas common genetic

variants contribute to both childhood-onset disorders (ASD and ADHD) and disorders

usually diagnosed after childhood (schizophrenia, bipolar disorder and major depressive

disorder), the sharing of common variants between these groups is modest.

The pattern of our results (in which pairs of disorders demonstrated genetic overlap) was

consistent with polygenic profile score32 results from PGC cross-disorder analyses25. The

profile score method uses SNP associations from one disorder to construct a linear predictor

in another disorder. The profile scores explained small but significant proportions of the

variance25, expressed as Nagelkerke’s R2 (maximum of 2.5% between schizophrenia and

bipolar disorder). To achieve high R2 values requires accurate estimation of the effect sizes

of individual SNPs and depends on the size of the discovery sample. In contrast, our

approach uses SNPs to estimate genome-wide similarities between pairs of individuals,

resulting in unbiased estimates of the relationships between disorders, with larger sample

sizes generating smaller standard errors for the estimates. Our estimates were on the liability

scale, allowing direct comparison to genetic parameters estimated in family studies, whereas

a genetic interpretation of Nagelkerke’s R2 values is less straightforward33.

Genomic partitioning of SNP heritabilities and coheritabilities

The heritabilities explained by SNPs can be partitioned according to SNP annotation by the

estimation of genetic similarity matrices from multiple, non-overlapping SNP sets. For the

five disorders and the five disorder pairs showing significant SNP correlation, we partitioned
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the  and SNP-based coheritabilities explained by functional annotation, allocating SNPs

to one of three sets: (i) SNPs in genes preferentially expressed in the central nervous system

(CNS+)34,35, (ii) SNPs in other genes and (iii) SNPs not in genes, with genes defined by 50-

kb boundaries extending from their start and stop positions. The SNPs in the CNS+ gene set

represented 0.20 of the total set, both in number and megabases of DNA. However, the

proportion of the variance explained by SNPs attributable to this SNP set was significantly

greater than 0.20 for schizophrenia (0.30; P = 7.6 × 10−8) and bipolar disorder (0.32; P = 5.4

× 10−6) and for schizophrenia and bipolar disorder coheritability (0.37; P = 8.5 × 10−8) (Fig.

2 and Supplementary Table 3). For other disorders or pairs of disorders, the estimates

explained by CNS+ SNPs did not differ from the values expected by chance (Supplementary

Table 3), although their large standard errors suggest that we cannot address this question

with precision. For data from the schizophrenia and bipolar disorder pair, we also partitioned

the heritabilities explained by SNPs by minor allele frequency (MAF) (Supplementary Table

4) and by chromosome (Supplementary Fig. 1). The high standard errors on estimates

limited interpretation, but the results are consistent with a polygenic architecture comprising

many common variants of small effect dispersed throughout the genome. The MAF

partitioning suggests that a key part of the variance explained by SNPs is attributable to

common causal variants (this was investigated in detail for schizophrenia35), but the low

contribution to the total variance explained by SNPs with MAF of <0.1 reflects, at least in

part, under-representation of SNPs with low MAFs in the analysis (minimum MAF = 0.01)

relative to those present in the genome.

Within-disorder heterogeneity

To benchmark the estimates of genetic sharing across disorders, we estimated sharing

between data subsets for the same disorder. We split the data for each disorder into two or

three independent sets and estimated  values for each subset and the SNP-based coher-

itability between each pair of subsets within a disorder (Fig. 3a and Supplementary Table 5).

The estimates of  from the data subsets were typically higher than the  estimate

from the combined sample; we note that published estimates from individual cohorts of

bipolar disorder18, major depressive disorder36 and ASD37 were also higher. Because both

traits in these data subset bivariate analyses are for the same disorder, the SNP-based

coheritability is also an estimate of  for the disorder, but these estimates were generally

lower than the estimates of SNP-based heritability from individual data subsets. These

results generated SNP-based correlations that were less than 1, sometimes significantly so

(Supplementary Table 5). The SNP-based correlation between schizophrenia and bipolar

disorder (0.68, 0.04 s.e.) was of comparable magnitude to the SNP-based correlations

between bipolar disorder data sets (0.63, 0.11 s.e.; 0.88, 0.09 s.e.; and 0.55, 0.10 s.e.; Fig.

3a,b, SNP-based coherit-abilities), adding further weight to the conclusion that

schizophrenia and bipolar disorder may be part of the same etiological spectrum.

The estimates of heritability from both univariate (Fig. 3a, red and pink bars) and bivariate

(Fig. 3a, blue bars) analyses are more heterogeneous for bipolar disorder, major depressive

disorder and ADHD than they are for schizophrenia and ASD. Several factors could explain

why SNP-based heritabilities from univariate analyses of a single data set could generate
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higher estimates than bivariate analyses of independent data sets35, including loss of real

signal or dilution of artifacts. Loss of real signal might occur because individual cohorts are

more homogeneous, both phenotypically (for example, owing to use of the same assessment

protocols) and genetically (for example, because LD between causal variants and analyzed

SNPs might be higher within than between cohorts). Artifacts could also generate consistent

differences in case genotypes relative to control genotypes within case-control data sets. In

the derivation of our methodology18, we emphasized that any factors making SNP

genotypes of cases more similar to those of other cases and making the genotypes of

controls more similar to those of other controls would produce SNP-based heritability. The

fitting as covariates of principal components derived from the SNP data corrects both for

population stratification and for genotyping artifacts, but residual population stratification

could remain, although this bias should be small38. Partitioning SNP-based heritability by

chromosome in analyses where each chromosome was fitted individually compared to

analyses where all chromosomes were fitted jointly is an empirical strategy to assess

residual stratification35,39, and we found no evidence of this type of stratification here

(Supplementary Fig. 1). Stringent quality control (as applied here) helps to remove artifacts,

but artifactual differences between cases and controls might remain, particularly for data sets

in which cases and controls have been genotyped independently40. As more data sets

accumulate, the contributions from artifacts are diluted because the random directional

effects of artifacts (including population stratification) are not consistent across data sets.

For this reason, significant SNP-based coheritabilities between subsets of the same disorder

are unlikely to reflect artifacts and provide a lower bound for SNP-based heritability.

Pseudocontrols

One strategy adopted in GWAS to guard against artifacts from population stratification is to

genotype family trio samples (cases and their parents) and then analyze the data as a case-

control sample, with controls generated as genomic complements of the cases (pseudo-

controls). ADHD subset 1 and most of the ASD sample comprised case-pseudocontrol

samples and, consistent with this strategy limiting the impact of artifacts from population

stratification or genotyping, it is noted that the lowest SNP-based heritability for the five

psychiatric disorders was for ASD and that the estimate of SNP-based heritability was lower

for ADHD subset 1 than for ADHD subset 2. However, under a polygenic model, assortative

mating41 or preferential ascertainment of multiplex families could diminish the expected

mean difference in liability between pseudocontrols and cases37, which would result in an

underestimation of SNP-based heritability from case-pseudocontrol compared to case-

control analyses and would also result in nonzero estimates of SNP-based heritability from

pseudocontrol-control analyses, as shown in analysis of ASD data37.

SNP-based coheritabilities with Crohn’s disease

As a negative control analysis, we conducted bivariate analyses between each of the PGC

data sets and Crohn’s disease samples from the International IBD Genetics Consortium

(IIBDGC)42. Although onset of major depressive disorder is not uncommon after diagnosis

with Crohn’s disease43 and although gastrointestinal pathology is a common comorbidity

with ASD44, there is no strong evidence of a familial relationship between psychiatric

disorders and Crohn’s disease. Despite substantial hSNP 2 values for Crohn’s disease (0.19,
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0.01 s.e.), none of the SNP-based coheritabilities with the psychiatric disorders differed

significantly from zero (Fig. 3c, Supplementary Table 6 and Supplementary Note). Lastly,

genomic partitioning by annotation of the variance in Crohn’s disease explained by SNPs

showed, as expected, no excess of variance attributable to SNPs in the CNS+ gene set (Fig.

2). Our results provide no evidence of common genetic pleiotropy in Crohn’s disease and

ASD, consistent with a non-genetic, for example, microbial45, explanation for the

comorbidity of gastrointestinal symptoms in ASD.

Potential impact of misclassification of disorders

Misclassification among disorders could inflate estimates of genetic correlation and/or

coheritability46. Indeed, some level of misclas-sification in psychiatric disorders is expected.

For example, longitudinal studies47,48 of first admissions with psychosis showed that, with

long-term follow-up, ~15% of subjects initially diagnosed with bipolar disorder were

rediagnosed with schizophrenia, whereas ~4% of schizophrenia diagnoses were reclassified

as bipolar disorder. Cases selected for GWAS contributing to PGC are more likely to have

achieved a stable diagnosis compared to first-admission cases. However, assuming these

levels of misclassification, the genetic correlation between bipolar disorder and

schizophrenia for true diagnoses is still high, estimated46 to be 0.55. Likewise, because a

modest proportion of cases diagnosed with major depressive disorder, when followed over

time, ultimately meet criteria for bipolar disorder49, our estimated genetic correlation

between these two disorders may be modestly inflated by misclassification. However, if

moderate-to-high genetic correlations between the major adult disorders are true, then

overlapping symptoms and misdiagnosis among these disorders might be expected. The

rg SNP value between schizophrenia and major depressive disorder is also unlikely to reflect

misdiagnosis because misclassification between these disorders is rare49. Excluding 5 of the

18 PGC schizophrenia cohorts containing schizoaffective disorder cases21 (Supplementary

Table 7) or major depressive disorder cohorts ascertained from community rather than

clinical settings (Supplementary Table 8) had little impact on rg SNP estimates.

DISCUSSION

Our results show direct, empirical, quantified molecular evidence for an important genetic

contribution to the five major psychiatric disorders. The  estimates for each disorder—

schizophrenia, 0.23 (0.01 s.e.), bipolar disorder, 0.25 (0.01 s.e.), major depressive disorder,

0.21 (0.02), ASD, 0.17 (0.02 s.e.) and ADHD, 0.28 (0.02 s.e.)—are considerably less than

the heritabilities estimated from family studies (Table 1). Yet, they show that common SNPs

make an important contribution to the overall variance, implying that additional individual,

common SNP associations can be discovered as sample size increases50.  values are a

lower bound for narrow-sense heritability because they exclude contributions from some

causal variants (mostly rare variants) not associated with common SNPs. Although SNP-

based heritability estimates are similar for major depressive disorder and other disorders,

much larger sample sizes will be needed, as high risk for a disorder implies lower power for

equal sample size51. The  values are all lower than those reported for height (0.45, 0.03

s.e.)39, but the estimates are in the same ballpark as those reported for other complex traits
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and diseases using the same quality control pipeline, such as for body mass index (BMI)

(0.17, 0.03 s.e.)39, Alzheimer’s disease (0.24, 0.03 s.e.), multiple sclerosis (0.30, 0.03 s.e.)

and endometriosis (0.26, 0.04 s.e.)40.

Our results show molecular evidence of the sharing of genetic risk factors across key

psychiatric disorders. Traditionally, quantification of the genetic relationship between

disorders has been thwarted by the need for cohorts of families or twins assessed for

multiple disorders. Problems of achieving genetically informative samples of sufficient size

and without associated ascertainment biases for the rarer psychiatric disorders have meant

that few studies have produced meaningful estimates of genetic correlations. Notably, our

estimates of heritability and genetic correlation are made using very distant genetic

relationships between individuals, both within and between disorders, so that shared

environmental factors are unlikely to contaminate our estimates. Likewise, our estimates are

unlikely to be confounded by non-additive genetic effects, as the coefficients of non-additive

genetic variance between very distant relatives are negligible52.

The estimates of SNP-based genetic correlation (rg SNP) between disorders reflect the

genome-wide pleiotropy of variants tagged by common SNPs, and whether these are the

same as correlations across the allelic frequency spectrum may differ between pairs of

disorders. For example, a high rg SNP value but a low genetic correlation estimated from

family studies (rg) could indicate that the same common variants contribute to genetic

susceptibility for both disorders, although the diagnostic-specific variants are less common

variants. For this reason, the comparison of rg SNP with rg estimated from family studies is

not straightforward. Nonetheless, we benchmark our estimates in this way, calculating the

increased risk of disorder B in first-degree relatives of probands with disorder A (λA,B) from

the rg SNP value to allow comparison with literature values (Supplementary Table 1). A

meta-analysis53 reported increased risk of bipolar disorder in first-degree relatives of

probands with schizophrenia compared to first-degree relatives of control probands

(λSCZ,BPD) of 2.1, which implies a maximum genetic correlation between the disorders of

0.3 (assuming that the disorder risks for schizophrenia and bipolar disorder are both 1% and

their heritabilities are 81% and 75%, respectively; Table 1). However, a large-scale Swedish

family and adoption study54 estimated the genetic correlation between schizophrenia and

bipolar disorder to be +0.60, similar to that found here. Profiling scoring analysis using

genome-wide SNPs32 was the first method to clearly demonstrate a genetic relationship

based on molecular data, but quantification as a genetic correlation was not reported. The

evidence of shared genetic risk factors for schizophrenia and bipolar disorder was

strengthened by our analyses of the CNS+ gene set in which we saw a clear enrichment in

variants shared by these two disorders.

Our finding of a substantial rg SNP of +0.43 between schizophrenia and major depressive

disorder is notable and contrary to conventional wisdom about the independence of familial

risk for these disorders. However, because major depressive disorder is common, even a

high genetic correlation implies only modest incremental risk. Assuming the disorder risks

and heritabilities for schizophrenia and major depressive disorder given in Table 1, then the

genetic correlation between them of 0.43 predicts increased risk of major depressive

disorder in first-degree relatives of probands with schizophrenia compared to first-degree

Page 8

Nat Genet. Author manuscript; available in PMC 2014 September 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



relatives of control probands (λSCZ,MDD) of 1.6. In fact, meta-analysis of five interview-

based research studies of families are broadly consistent with our results (λSCZ,MDD = 1.5,

95% confidence interval (CI) = 1.2–1.8; Supplementary Table 9), suggesting that familial

coaggregation of major depressive disorder and schizophrenia reflects genetic effects rather

than resulting from living in a family environment that includes a severely ill family

member. If replicated by future work, our empirical molecular genetic evidence of a partly

shared genetic etiology for schizophrenia and major depressive disorder would have key

nosological and research implications, incorporating major depressive disorder as part of a

broad psychiatric genetic spectrum. A shared genetic etiology for bipolar disorder and major

depressive disorder has been shown in family studies2,3, but the rg SNP value of 0.47 was

lower than the estimate of 0.65 from a twin study55.

Our results show a small but significant rg SNP value between schizophrenia and ASD. A

lower genetic correlation between schizophrenia and ASD than between schizophrenia and

bipolar disorder is consistent with Swedish national epidemiological studies, which reported

higher odds ratios in siblings for schizophrenia and bipolar disorder54 than for schizophrenia

and ASD9. These results imply a modest overlap of common genetic etiological processes in

these two disorders, consistent with emerging evidence from the discovery of copy number

variants, in which both shared variants (for example, 15q13.3, 1q2.1 and 17q12

deletions56,57) and mutations in the same genes although with different variants (deletions

associated with schizophrenia and duplications associated with autism and vice-versa10).

The small ASD sample size thwarted attempts at further explorative partitioning of the SNP-

based coheritability for schizophrenia and ASD.

The lack of overlap between ADHD and ASD is unexpected and is not consistent with

family and data linkage studies, which indicate that the two disorders share genetic risk

factors5,6,58,59. Some rare copy number variants are seen in both disorders16. As noted

above, the use of pseudocontrols for many of the ASD and ADHD cohorts may affect all

results for these disorders. Ideally, we would investigate the impact of pseudocontrols, given

the hierarchical diagnostic system (autism but not autism spectrum is an exclusion criterion

for most ADHD data sets), on estimates of SNP-based coheritability, but the small ASD

sample size prohibits such analyses. We also found no overlap between ADHD and bipolar

disorder, despite support from meta-analysis results of an increased risk for ADHD in

relatives of individuals with bipolar disorder I (a subtype of bipolar disorder with more

extreme manic symptoms than the other major bipolar disorder subtype) and an increased

risk for bipolar disorder I in relatives of individuals with ADHD12. These findings could

mean that the familial link between the two disorders is mediated by environmental risk

factors or that shared genetic factors are not part of the common allelic spectrum.

Alternatively, the etiological link between ADHD and bipolar disorder might be limited to

bipolar disorder I or early-onset bipolar disorder12, which, therefore, is difficult for us to

detect. Our finding of genetic overlap between ADHD and major depressive disorder is

consistent with evidence from studies showing increased rates of ADHD in the families of

depressed probands and increased rates of depression in families of probands with

ADHD12,13.

Page 9

Nat Genet. Author manuscript; available in PMC 2014 September 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Our results should be interpreted in the context of four potentially important methodological

limitations. First, any artifacts that make SNP genotypes more similar between cases than

between cases and controls could inflate estimates of SNP-based heritability18, but to a

much lesser extent for SNP-based coheritability. Second, the sample sizes varied

considerably across the five disorders. Although  values are expected to be unbiased,

estimates from smaller samples are accompanied by larger standard errors, blurring their

interpretation. Third, although applying similar diagnostic criteria, the clinical methods of

ascertainment and the specific study protocols, including which specific interview

instruments were employed, varied across sites. We cannot now determine the degree to

which our results might have been influenced by between-site differences in the kinds of

patients seen or in their assessments. Fourth, by combining samples from geographic

regions, contributions from less common associated variants specific to particular

populations are diluted compared to what would have been achieved if the same sample size

had been ascertained from a single homogeneous population.

In summary, we report SNP-based heritabilities that are significantly greater than zero for all

five disorders studied. We have used the largest psychiatric GWAS data sets currently

available, and our results provide key pointers for future studies. Our results demonstrate

that the dearth of significant associations from psychiatric GWAS so far, particularly for

major depressive disorder, ASD and ADHD, reflects lack of power to detect common

associated variants of small effect rather than the absence of such variants. Hence, as sample

sizes increase, the success afforded to other complex genetic diseases50 in increasing the

understanding of their etiologies is achievable for psychiatric disorders, as is already being

shown for schizophrenia60. We also provide evidence of substantial sharing of the genetic

risk variants tagged by SNPs between schizophrenia and bipolar disorder, bipolar disorder

and major depressive disorder, schizophrenia and major depressive disorder, ADHD and

major depressive disorder, and, to a lesser extent, between schizophrenia and ASD. Our

results will likely contribute to the efforts now under way to base psychiatric nosology on a

firmer empirical footing. Furthermore, they will encourage investigations into shared

pathophysiologies across disorders, including potential clarification of common therapeutic

mechanisms.

ONLINE METHODS

Data and quality control

A summary of the data available for analysis is listed in Table 1 and comprise data used in

the PGC–Cross-Disorder Group analysis25 together with newly available ADHD

samples27–30. Data upload to the PGC central server follows strict guidelines to ensure local

ethics committee approval for all contributed data (PGC; see URLs). Data from all study

cohorts were processed through the stringent PGC pipeline25. Imputation of autosomal SNPs

used CEU (Utah residents of Northern and Western European ancestry) and TSI (Toscani in

Italia) HapMap Phase 3 data as the reference panel21. For each analysis (univariate or

bivariate), we retained only SNPs that had MAF of >0.01 and imputation R2 of >0.6 in all

contributing cohort subsamples (imputation cohorts). Different quality control strategies

were investigated in detail for the raw and PGC imputed genotyped data of the International
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Schizophrenia Consortium, a subset of the PGC schizophrenia sample35. The Crohn’s

disease samples from IIBDGC42 were processed through the same quality control and

imputation pipeline as the PGC data, generating a data set of 5,054 cases and 11,496

controls from 6 imputation cohorts.

In each analysis, individuals were excluded to ensure that all cases and controls were

completely unrelated in the classical sense, so that no pairs of individuals had a genome-

wide similarity relationship greater than 0.05 (equivalent to about second cousins). This

procedure removed ancestry outliers (over and above those already removed in the PGC

quality control pipeline; Supplementary Fig. 2) and ensured that overlapping control sets

were allocated randomly between disorders in the bivariate analyses. Exact numbers of cases

and controls used in each analysis are listed in Supplementary Tables 1–8.

Linear mixed model for estimation of SNP-based heritability and coherit-ability

We used the methods presented in Lee et al.18,35. Briefly, we estimated the variance in case-

control status explained by all SNPs using a linear mixed model

where y is a vector of case (y = 1) or control (y = 0) status (the observed scale), β is a vector

for fixed effects of the overall mean (intercept), sex, sample cohort and 20 ancestry principal

components, g is the vector of random additive genetic effects based on aggregate SNP

information and e is a vector of random error effects. X is an incidence matrix for the fixed

effects relating these effects to individuals. The variance structure of phenotypic

observations is

where  is additive genetic variance tagged by the SNPs,  is error variance, A is the

realized similarity relationship matrix estimated from SNP data19 and I is an identity matrix.

All variances were estimated on the observed case-control scale and were transformed to the

liability scale, which requires specification of the disorder risk K to estimate . Risk to

first-degree relatives was calculated from K and  on the basis of the liability threshold

model62.

The bivariate analyses used a bivariate extension of equation (1) (ref. 20). The two traits

were measured in different individuals, but the equations were related through the genome-

wide similarities estimated from SNPs. Genetic and residual variances for the traits were

estimated as well as the genetic covariance σg12. The genetic correlation coefficient (rg) was

calculated by (σg12/(σg1σg2)) and is approximately the same on the observed case-control

scale as on the liability scale20 and so does not depend on specifications of K. The

covariance σg12 can be transformed to the liability scale, accounting for assumed disorder
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risks and proportions of cases and controls in the samples of each disorder20, and it equals

the coheritability52 rgh1h2. We used the approximated χ2 test statistic (estimate/s.e.)2 to test

whether estimates were significantly different from zero. We checked that this simple

approximation agreed well with the more formal and computer-intensive likelihood ratio test

for several examples. Heterogeneity of SNP-based heritabilities was tested using Cochran’s

Q (ref. 63) and Higgins’ I2 (ref. 64) values, acknowledging potential non-independence of

the six estimates (three subsets plus three subset pairs).

Disorder risk for the study-based population (disorder risk, K)

Estimates of  and SNP-based coheritability from the linear model are on the case-

control scale and so depend partly on the proportion of cases and controls in the sample.

Transformation to the liability scale allowed benchmarking of  to estimates of

heritability from family studies, and the transformation accounts for the proportion of cases

in the sample and depends on the assumed disorder risk (K). The appropriate choice of K

depends on the definitions of both the phenotype (including ascertainment strategy) and the

population, which might differ between cohorts. We considered lower and upper bounds for

K in Table 1 to cover the range of possible values. rg SNP estimates are independent of scale

and hence are not dependent on the choice of K.

Genome-partitioning linear mixed model

We partitioned the variance explained by the SNPs in several ways. For example, for the

univariate linear model

with

where n is the number of subsets from any non-overlapping partitioning of SNPs; n = 22 for

the joint analysis by chromosome, n = 5 for the analysis by MAF bin and n = 3 for the

analysis of SNP by gene annotation in which SNPs were classed as CNS+ genes (2,725

genes representing 547 Mb), SNPs in other genes (14,804 genes representing 1,069 Mb) and

the remaining SNPs not in genes. Gene boundaries were set at ± 50 kb from the 5′ and 3′

UTRs of each gene, and CNS+ genes were the four sets identified by Raychaudhuri et al.34

(one set comprised genes expressed preferentially in the brain compared to other tissues, and

the other three sets comprised genes annotated to be involved in neuronal activity, learning

and synapses). The CNS+ set was found to explain more of the SNP-based heritability than

expected by chance for schizophrenia35. All methods have been implemented into the freely

available GCTA software65.
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aSome cohorts include cases and pseudocontrols, where pseudocontrols are the genomic

complements of the cases derived from genotyping of proband-parent trios.

bUsed in Figures 1 and 3 Supplementary Tables 1–8.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Evidence for genome-wide pleiotropy between psychiatric disorders. Proportion of variance

in liability (SNP-based heritability) and proportion of covariance in liability between

disorder (SNP-based coheritability) for five major psychiatric disorders. The 95% error bars

represent the estimates ± 1.96 s.e. SCZ, schizophrenia; MDD, major depressive disorder;

BPD, bipolar disorder.
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Figure 2.
Genomic partitioning of SNP-based heritability and SNP-based coheritability by annotation.

Shown is the proportion of SNPs attributable to genes in the CNS+ set (red), the proportion

of SNP-based heritability attributable to SNPs in the CNS+ set (dark green), the proportion

of SNP-based coheritability attributable to SNPs in the CNS+ set (light green) and the

proportion of SNP-based heritability for Crohn’s disease attributed to SNPs in the CNS+ set

(orange). The 95% error bars represent the estimates ± 1.96 s.e. ***P < 1 × 10−5 in a test of

whether the proportion of heritability explained by SNPs was equal to the proportion of SNP

for the CNS+ set.
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Figure 3.
SNP-based heritabilities and coheritabilities. (a) For each disorder, SNP-based heritabilities

are estimated from univariate analyses of the full data set (dark green) or of sample subsets

(red and pink bars). These heritabilities are also estimated from bivariate analyses in which

different subsets of the same disorder comprise the two traits (blue). Test of the

heterogeneity of estimates, P value for Cochran’s Q: schizophrenia, 0.3; bipolar disorder, 1

× 10−6; major depressive disorder, 4 × 10−3; ADHD, 9 × 10−6; ASD, 0.99; Higgins’ I2:

schizophrenia, 21%; bipolar disorder, 86%; major depressive disorder, 71%; ADHD, 91%;

ASD, 0%). (b) For comparison, the coheritabilities using the full data sets reported in Figure

1 are shown. (c) As a negative control, estimates of coheritabilities with Crohn’s disease, a

disease not expected to be genetically related to psychiatric disorders, are shown. We

estimated 95% error bars using ± 1.96 s.e.
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