
A Meta-Analysis Identifies New Loci Associated with Body Mass 
index in Individuals of African Ancestry

A full list of authors and affiliations appears at the end of the article.

Abstract

Genome-wide association studies (GWAS) have identified 36 loci associated with body mass 

index (BMI), predominantly in populations of European ancestry. We conducted a meta-analysis 

to examine the association of >3.2 million SNPs with BMI in 39,144 men and women of African 

ancestry, and followed up the most significant associations in an additional 32,268 individuals of 

African ancestry. We identified one novel locus at 5q33 (GALNT10, rs7708584, p=3.4×10−11) and 

another at 7p15 when combined with data from the Giant consortium (MIR148A/NFE2L3, 

rs10261878, p=1.2×10−10). We also found suggestive evidence of an association at a third locus at 

6q16 in the African ancestry sample (KLHL32, rs974417, p=6.9×10−8). Thirty-two of the 36 

previously established BMI variants displayed directionally consistent effect estimates in our 
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GWAS (binomial p=9.7×10−7), of which five reached genome-wide significance. These findings 

provide strong support for shared BMI loci across populations as well as for the utility of studying 

ancestrally diverse populations.

There are notable racial and ethnic disparities in the prevalence of obesity in the United 

States; nearly 50% of African American adults are classified as obese compared to 35% of 

non-Hispanic whites1. Genome-wide association studies (GWAS) have identified 36 BMI 

loci at statistically significant levels (p<5.0×10−8)2–13, of these, 32 were identified in 

individuals of European ancestry3–8 and four in East Asian populations9,10. Large GWAS of 

BMI in populations of African ancestry are lacking, and will be important for identifying 

genetic variants that are unique or of greater importance to this population14–17. In this 

study, we conducted a large GWAS meta-analysis of BMI in men and women of African 

ancestry to search for novel loci, and tested associations with common variation at the 36 

known loci to better understand their relevance in African ancestry populations.

Thirty-six GWAS, totaling 39,144 men and women of African ancestry, were included in 

the Stage 1 meta-analysis of as many as 3,283,202 (minor allele frequency >1%) genotyped 

and imputed single nucleotide polymorphisms (SNPs) (Online Methods, Supplementary 

Tables 1–3, Supplementary Note). After applying both study-specific and overall Stage 1 

genomic-control corrections (Supplementary Table 2), 11 SNPs at five loci achieved 

genome-wide significance (p<5×10−8) (Table 1, Figure 1, Supplementary Figure 1). Four of 

these loci are known BMI loci (1q25, SEC16B; 4p12, GNPDA2; 16q12, FTO; and 18q21, 

MC4R). The fifth locus, at 5q33 (rs7708584, approximately 27 kb upstream of GALNT10, 

p=8.02×10−9), has not been previously associated with BMI at genome-wide significant 

levels in any population.

We subsequently selected the 1,500 most significantly associated SNPs from Stage 1 

(p<1.19×10−3) and examined associations with BMI in an independent sample of 6,817 men 

and women of African ancestry from seven additional studies (Stage 2) (Online Methods, 

Supplementary Tables 1–3, Supplementary Note). Of these 1,500 SNPs, 179 replicated at 

nominal significance (p<0.05) and had effects directionally consistent with Stage 1 

(Supplementary Table 4). A meta-analysis of Stages 1 and 2 revealed a second novel locus, 

6q16 (rs974417, located in an intronic region of KLHL32; Stage 2 p=3.5×10−3; Stage 1+2 

p=2.2×10−8) and confirmed our finding at rs7708584 at 5q33 near GALNT10 (Stage 2 

p=9.4×10−3; Stage 1+2 p=2.2×10−10). We further examined the associations of these two 

variants in a third stage composed of 25,451 individuals of African ancestry from an 

additional 12 studies. Support for an association was noted with both variants, although the 

strength of the association was greater for rs7708584 (GALNT10, p=7.1×10−3) than for 

rs974417 (KLHL32, p=0.09). In combining results across all three stages (n=71,412), 

rs7708584 (GALNT10) was significantly associated with BMI (p=3.4×10−11), whereas 

rs974417 (KLHL32) was nearly genome-wide significant (p=6.9×10−8) (Table 1, Figure 2a, 

b).

To identify additional novel loci that may be of importance across populations, we examined 

the 1,500 most significant SNPs from Stage 1 in publicly available data from the GIANT 

consortium of ~124,000 individuals European ancestry7 (Online methods). While 
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rs7708584 (GALNT10) was significantly associated with BMI in European ancestry 

populations (effect allele frequency [EAF]=0.42; p=1.2×10−5), rs974417 (KLHL32) was not 

(EAF=0.85; p=0.45), although it was directionally consistent. Through a meta-analysis of 

European and African ancestry individuals, we identified an additional novel variant at 7p15 

(rs10261878) that was also associated with BMI in European ancestry populations (GIANT: 

EAF=0.94, p=2.2×10−5). SNP rs10261878 at 7p15 is located in an intergenic region 39 kb 

upstream of microRNA 148a (MIR148A) and approximately 241 kb upstream of the gene 

NFE2L3. This variant was positively associated with BMI in Stages 1 (p=1.7×10−4) and 3 

(p=1.0×10−3) in the African ancestry GWAS, with a directionally consistent yet non-

significant association noted in the smaller Stage 2 (p=0.33) (Figure 2c, Supplementary 

Table 5). In combining results across studies of African (Stages 1, 2 and 3) and European 

ancestry (combined n=194,247), both SNPs rs7708584 (GALNT10, p=5.1×10−14) and 

rs10261878 (MIR148a/NFE2L3, p=1.2×10−10) were significantly associated with BMI; SNP 

rs974417 (KLHL32) failed to meet the genome-wide significance threshold (p=5.7×10−6). In 

individuals of East Asian descent from the AGEN10 and RIKEN9 consortia (n=27,715 and 

26,620, respectively) (Figure 3, Supplementary Table 6, Online Methods) rs7708584 

(GALNT10, p=0.002) and rs974417 (KLHL32, p=0.023) were directionally consistent and 

significantly associated with BMI, while rs10261878 (MIR148A/NFE2L3) was neither 

directionally consistent nor statistically significantly associated with BMI (p = 0.053). 

Lastly, we examined the associations with BMI in children of African ancestry (n=3,751) 

(Online Methods) and for all three SNPs, the associations were directionally consistent, but 

did not reach statistical significance (p>0.05) (Supplementary Table 7).

To further understand differences by ancestral background as well as characterize the 

functional and genetic epidemiologic architecture of the two novel BMI loci (5q33, 

GALNT10; 7p15, MIR148A/NFE2L3) and the suggestive locus at 6q16 (KLHL32), we 

performed several additional analyses. Local ancestry adjustment (in 69% of the Stage 1 

sample; Online Methods) resulted in numerically similar effect estimates (Supplementary 

Table 8) and we did not detect evidence of significant effect heterogeneity in analyses 

stratified by local ancestry (Supplementary Table 9). We found that the three BMI loci were 

associated with waist circumference (among n~20,000, of which many individuals overlap 

those studied here), but not with BMI-adjusted waist circumference, waist-to-hip ratio, or 

height18 (Supplementary Table 10), suggesting that the three loci are associated with overall 

body size, rather than with fat distribution. We found no evidence of pleiotropy with 

adiposity-related metabolic traits using GWAS data provided by trait-specific consortia in 

men and women predominantly of European ancestry19–23 (Supplementary Table 11).

We examined associations with BMI in our African ancestry Stage 1 sample of the index 

SNPs reported for the 36 previously established BMI loci in the European and Asian 

populations7,9,10 (Figure 3, Supplementary Table 12). The associations were directionally 

consistent with the effects reported in the original papers for 32 of the 36 established BMI 

loci (p-value for binomial test of direction=9.7×10−7) of which 16 variants associated with 

BMI at p<0.01 (p-value for binomial test <1.0×10−15) (Supplementary Table 12).

Using the results from the Stage 1 meta-analysis, we searched for common variants within 

the established loci that better captured the association of the index SNP reported in the 

Monda et al. Page 3

Nat Genet. Author manuscript; available in PMC 2013 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



European and Asian populations. Seven regions (PTBP2, TMEM18, RBJ, NUDT3, BDNF, 

FTO, MC4R) harbored at least one variant that was correlated with the index SNP in the 

referent population (r2≥0.4) and was associated with BMI in the African ancestry GWAS at 

a significance level that was at least one order of magnitude greater than that observed for 

the index SNP (Online Methods, Supplementary Table 13, Supplementary Figure 2a–g). 

These variants were also associated with BMI in GIANT (Supplementary Table 13) and are 

likely to be better markers of the biologically functional allele, at least in populations of 

African ancestry. We also interrogated the evidence for possible independent secondary 

signals by visual inspection of all p-values of SNP – BMI associations for SNPs with r2< 0.2 

within the 1 Mb region of the index SNP. We did not detect evidence of independent 

secondary signals at any of the known BMI loci (at p<6.7×10−6; see Online Methods). As 

illustrated in Supplementary Figure 3, for most loci, the genetic data from African ancestry 

populations may assist in refining the location of the risk variant as there are fewer markers 

correlated with the strongest signals and/or a more narrowed region in which proxies reside.

To direct us to positional candidate genes, we examined the cis-associations between the 

index SNP and expression of gene transcripts within the flanking 1Mb-region (500 kb each 

side) in human brain, subcutaneous and omental adipose tissue, and liver24–27 (Online 
Methods, Supplementary Table 14). SNP rs7708584 near GALNT10 showed nominally 

significant (p<0.05) associations with GALNT10 expression (for two of the three transcripts 

available) in liver, omental, and subcutaneous fat (p=0.048, 0.00010, and 0.00017, 

respectively). Furthermore, we found suggestive cis-associations for rs10261878 near 

NFE2L3 with NFE2L3 expression in the same three tissues (p=0.039, 0.015, and 0.036 for 

liver, omental, and subcutaneous fat, respectively). However, despite the consistent 

associations observed for our lead SNPs in the GALNT10 and NFE2L3 loci, other nearby 

SNPs showed stronger association with the expression levels for the respective transcripts 

(Supplementary Figure 4). Subsequent conditional analyses adjusting for the most 

significant eQTL SNP in the region abolished the cis-associations between the BMI-

associated SNPs and the respective transcript expression levels (Supplementary Table 15). 

Taken together, these eQTL analyses could not confirm that the identified BMI-SNPs affect 

GALNT10 and NFE2L3 expression directly.

We did not find non-synonymous SNPs in GALNT10, NFE2L3 or KLHL32 that were 

correlated (r2> 0.2) with the most significant SNPs in the 1000 Genomes Project African 

ancestry populations (AFR). However, we did detect a number of correlated SNPs (r2>0.5) 

in regulatory sequences determined based on overlapping chromatin marks in multiple cell 

types, including brain and adipose tissue (Online Methods). Many of these SNPs (or good 

proxies in the 1000 Genomes Project AFR, r2 range 0.59–1.0), which are located in putative 

enhancer and promoter regions, had only marginally weaker associations in Stage 1 than the 

most significant SNPs reported in these regions (Supplementary Tables 16–19, 

Supplementary Figure 5a–c). Together these data suggest that the biologically relevant 

variants in all three regions may be regulatory in function.

The variant rs7708584 at chromosome 5q33 is located upstream of the gene 

galactosamine:polypeptide N-acetylgalactosaminyltransferase 10 (GALNT10), which 

catalyzes the first step in the synthesis of mucin-type oligosaccharides (Supplementary 
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Note). The protein is highly expressed in the small intestine and at intermediate levels in the 

stomach, pancreas, ovary, thyroid gland and spleen28. Suggestive associations between BMI 

and GALNT10 have been observed in a smaller sample of African Americans14 that are 

included in the present Stage 1 meta-analysis, although the lead SNP differed (rs2033195) 

and displayed only moderate LD (r2 = 0.27) with the lead SNP discovered herein. The 

variant at 7p15, rs10261878, is intergenic and located 39 kb from a microRNA gene 

(MIR148A), which has been found to be significantly up-regulated during adipogenesis29 as 

well as in human adipocytes30. In addition, human miR-148a has been shown to regulate 

CCKBR (cholecystokinin B receptor), which has been reported to play a regulatory role in 

the control of food intake31. The next closest gene (241 kb from rs10261878) is the nuclear 

factor (erythroid-derived 2)-like 3 gene (NFE2L3), a transcription factor that binds to 

antioxidant response elements of target genes and appears to play a role in differentiation, 

inflammation, and carcinogenesis32.

The most significant SNP at chromosome 6q16 (rs974417) is intronic in the kelch-like 32 

gene (KLHL32). Kelch-like genes have propeller domains that bind substrate proteins, 

promoting substrate ubiquitination, which modulates protein function. We also detected 

evidence of recent positive selection in and downstream of KLHL32 (Supplementary Figures 

6–9, Supplementary Note).

In the largest GWAS meta-analysis of African ancestry populations to date, we identified 

two novel loci and one highly suggestive locus influencing BMI. The most informative 

SNPs in each of these three loci explain 0.10% of the variance in BMI in African ancestry 

populations compared to 0.05% in Europeans and 0.03% in Asians (Table 1, Supplementary 

Table 6). Using the most significant ancestry-specific markers from each locus, the 36 

known BMI loci explain 1.30% of the variance in BMI in men and women of African 

ancestry compared with 1.67% and 1.25% in European and Asian ancestry populations, 

respectively (Supplementary Tables 12 and 13). We provide evidence for a shared genetic 

influence on BMI across populations, as directionally consistent associations were observed 

with the majority of known BMI risk variants. This observation suggests that the 

biologically functional alleles are ancient and likely arose before migrations out of Africa. In 

addition, we were able to refine the window of association of some of the previously 

established BMI loci, which may eventually help identify the biologically functional 

variant(s). In this study, we did not identify common variants for BMI that are likely to 

contribute to population differences in the prevalence of obesity. The ability to map novel 

loci and replicate signals at established loci found in other populations reflects differences in 

allele frequency and effect size, which are influenced by population differences in recent 

demographic history and linkage disequilibrium with the functional variant as well as 

genetic and environmental modifying factors. Further studies will be needed to test the 

biologically functional alleles at the known loci as well as the contribution of less common 

variation that has yet to adequately surveyed by genome-wide SNP arrays. Taken together, 

these findings demonstrate the importance of conducting genetic studies in diverse 

populations in order to identify novel susceptibility loci for common traits.
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Online Methods

Study Design

We utilized a three-stage design consisting of a GWAS meta-analysis (Stage 1), a follow-up 

of 1,500 SNPs (Stage 2), and a focused follow-up of the three novel loci (Stage 3). Stage 1 

included results from 36GWAS of 39,144 men and women of African ancestry (37,956 

African American and 1,188 African; Supplementary Table 1). We took forward the 1,500 

most significantly associated SNPs (p-value <0.0003) for examination in 6,817 additional 

men and women of African ancestry from seven GWAS (Stage 2, all African American). 

The three SNPs that reached genome-wide significance (p<5×10−8) after the meta-analysis 

of Stage 1 and Stage 2 results were taken forward for further confirmation in 25,451 

additional African ancestry subjects from twelve studies. All participants in these studies 

provided written informed consent for the research, and approval for the study was obtained 

from the ethics review boards at all institutions. A description of each participating study as 

well as details regarding the measurement and collection of height and weight data are 

provided in the Supplementary Note.

Genotyping and Quality Control

Genotyping in each study was conducted using Illumina or Affymetrix genome-wide SNP 

arrays. The size of each study ranged from 50 to 8,421 individuals. The details of the array, 

genotyping quality control procedures, and sample exclusions for each study that 

contributed data are listed in Supplementary Table 1 and Supplementary Table 2.

Statistical Analysis

In all GWAS, imputation to phased haplotype data from the founders of the CEU and YRI 

HapMap Phase 2 samples (build 21) was performed using MACH 1, IMPUTE22 or 

BEAGLE3. SNPs with lower imputation quality scores (r2<0.3) (Supplementary Table 2) as 

well as SNPs with a small number of allele counts after stratifying by sex and case-control 

status were excluded from analyses. Local ancestry, defined as the number of European 

chromosomes (continuous between 0–2), was estimated for the majority of the Stage 1 

African ancestry studies (Supplemental Table 8), using HAPMIX4. To evaluate the effect of 

admixture on the allele distribution between African and European segments we stratified 

the analysis of each variant by local ancestry at each locus (Supplementary Table 9).

Stage 1—GWA analyses were performed by each of the participating studies. BMI was 

regressed on age, age2, and study site (if needed) to obtain residuals, separately by sex and 

case-control status, if needed. Residuals were inverse-normally transformed to obtain a 

standard normal distribution with a mean of 0 and a SD of 1. For studies with unrelated 

subjects, each SNP was tested for additive association with BMI by regressing the 

transformed residuals on the number of copies of the SNP effect allele, adjusting for 

population structure as measured by the first ten eigenvectors calculated for each study. 

Analyses were stratified by sex and case-control status (if needed). For studies that included 

related individuals, family-based association tests were conducted that take into 

consideration the genetic relationships among the individuals. Study-specific lambda values 

ranged from 0.95 to 1.08 (Supplementary Table 2). We applied genomic control (GC) in the 
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Stage 1 analysis (i.e. divided by the median of all χ2 statistics for each study) to eliminate 

any remaining over dispersion before combining the GWAS in the meta-analysis. In Stage 1, 

we conducted a fixed effect meta-analysis using the inverse variance weighted method 

implemented in the program METAL5. We performed a second GC correction of the Stage 1 

meta-analysis results (lambda = 1.136) before selecting SNPs for follow-up.

Stages 2 and 3—The 1,500 most significant SNPs from Stage 1 were examined in an 

additional 6,817 individuals, with each SNP being analyzed as described for Stage 1 and 

meta-analyzed using the inverse-variance method using METAL. As in Stage 1, each SNP 

was tested for association with BMI by regressing the transformed residuals on the number 

of copies of the SNP effect allele, adjusting for population structure as measured by the first 

ten eigenvectors calculated for each study. Further testing of the 3 novel variants was 

conducted in an additional 25,451 individuals (Stage 3). Results from all stages were meta-

analyzed using the inverse-variance method in METAL.

Examination in individuals of European ancestry—We also examined the 1,500 

most statistically significant SNPs from Stage 1 in the GIANT consortium (n=123,706 

individuals of European ancestry)6. Of these, 1,390 were genotyped or imputed in GIANT 

and 1,328 had data for n>50,000 and a MAF>1%. We conducted a meta-analysis of Stages 

1+2+3+GIANT in the same manner as described above. The three novel variants were also 

examined in the AGEN and RIKEN consortia7,8 and the Pediatric Research Consortium 

(PeRC) (see Supplementary Note).

Estimation of Variance Explained

The total fraction of variance explained was calculated using the formula 2f(1−f)*a2, where 

f is the frequency of the variant and a is the additive effect of the variant9. When calculating 

percent variance explained in the African ancestry sample, for the previously-discovered 

BMI variants that were not genome-wide significant in Stage 1, we used data from the Stage 

1 sample; for those that were genome-wide significant we used data from the Stage 2 

sample; and for the novel BMI variants we used data from the Stage 2+3 samples to avoid 

inflating the estimates due to the winner’s curse. When summing percent variance explained 

for the 36 previously-discovered BMI variants (Supplemental Table 12), we utilized the 

more informative SNP discovered through fine-mapping at the seven loci (listed in 

Supplemental Table 13). However, for these seven variants Stage 1 results were used and 

estimates may be biased; Stage 2 and 3 studies only participated in the look-up of the top 

SNPs from preceding Stages.

Bioinformatic Analysis of the Novel BMI Loci

In an attempt to identify functionality in non-coding regions at the three loci, we utilized 

FunciSNP version 0.9910, which systematically integrates the 1,000 Genomes SNP data 

(1KGP, April 2012) with chromatin features of interest. In order to capture regulatory 

elements, we used 73 different chromatin features generated by next-generation sequencing 

technologies in brain and adipose tissues from the NIH Epigenomics Roadmap11 as well as 

known DNaseI hypersensitive locations, FAIRE-seq peaks, and CTCF binding sites from 

more than 100 different cell types, which were collected from the ENCODE data12.
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All SNPs with an r2 value >0.5 with each index SNP in the 1KGP AFR populations in a 

1Mb window around each index variant were catalogued. We used the UCSC Genome 

Browser (http://genome.ucsc.edu/) to illustrate the correlated SNPs which overlap chromatin 

features from these tissues as well as chromatin features from seven cell lines utilized in the 

ENCODE Project (Supplementary Figures 5a–c). All of the results from these analyses are 

provided in Supplementary Tables 16–19.

eQTL Analyses

Liver, subcutaneous, and omental fat tissue—The determination of eQTLs in liver, 

subcutaneous and omental fat tissue have been described in detail previously13. In brief, 

liver, subcutaneous, and omental fat tissue were obtained from patients of European ancestry 

who underwent bariatric surgery. Expression of a total of 39,280 oligonucleotide probes 

targeting transcripts representing 34,266 known and predicted genes was assessed. All 

patients were genotyped on a genome-wide SNP array and association between SNPs and 

gene expression data was adjusted for age, race, gender, and surgery year using linear 

regression. Results are presented in Supplementary Table 14 and Supplementary Figure 4.

Brain cortical tissue—We examined the cis-associations (defined as genes within 1 Mb) 

between each of the BMI SNPs and expression of nearby genes in brain (cortical tissue)14. 

The eQTL analyses have been described in detail previously (GEO database: GSE8919)14. 

In brief, DNA and RNA of neuropathologically normal cortical brain samples of 193 

individuals (average age [range]: 81 [65–100] yrs) of European ancestry were isolated and 

genotyped for a genome-wide SNP array and HapMap genotypes were imputed. RNA 

expression was assessed for 24,357 transcripts of which 14,078 transcripts met the QC 

criteria. Association analyses between SNPs and expression data assumed an additive model 

and were adjusted for sex and age at death. Results are presented in Supplementary Table 14 

and Supplementary Figure 4.

Association Testing of Previously Established BMI Loci

To characterize alleles that might better represent the biologically functional variant at the 

36 previously-discovered BMI loci, we searched for LD proxies among individuals of 

African ancestry. Using HapMap data (CEU or JPT/CHB) to estimate LD, we identified all 

SNPs that were correlated (r2≥0.4) with the index SNP (within 250 kb, or larger to include a 

nearby gene). Next, we tested these SNPs for association with BMI in the Stage 1 African 

ancestry sample. We applied a locus-specific significance criterion α, which accounts for 

multiple testing [the number of tag SNPs in the HapMap YRI population that capture 

(r2≥0.8) all common SNPs (MAF ≥0.05) correlated with the index signal in the HapMap 

CEU or JPT/CHB populations]. This alpha level does not account for the number of regions 

evaluated and reflects a balance between the need to correct for multiple comparisons and 

the prior knowledge that each region harbors a risk variant for BMI. We also looked for 

novel independent associations, focusing on the genotyped and imputed SNPs that were 

uncorrelated with the index signal in the initial GWAS populations (r2<0.2). Here, we 

applied a Bonferroni correction for defining novel associations as significant in each region, 

as 0.05/the total number of tags needed to capture (r2≥0.8) all common risk alleles across all 

risk regions in the YRI population (α=6.7×10−6).
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Detection of recent positive selection in Africans and Europeans at a novel BMI locus

We evaluated the evidence for recent positive selection at our novel loci using several 

statistical techniques, the BioVU African American GWAS data, and data from the 

International HapMap Project and the Human Genome Diversity Project (HGDP). We 

compared adjusted allele frequencies among BioVU, and HapMap phase 3 participants from 

West African Yoruban (YRI) and East African Luhya (LWK) using Treeselect15. The LWK 

sample is differentiated from the YRI and samples of African Americans16. Allele 

frequencies in the African American sample were adjusted by subtracting the expected 

contribution of European alleles, where pAA is the allele frequency in African Americans 

obtained from experimental data, pEA is the allele frequency in Europeans obtained from 

HapMap, pAF is the estimated allele frequency in African founders, and α is the average 

proportion of ancestry from Europeans, or 0.2. The adjustment is then performed by solving 

the following expression for pAF.

We also evaluated the HapMap Phase II and HGDP data with the integrated haplotype score 

(iHS)17 and Haplotter and the cross-population extended haplotype homozygosity (XP-

EHH) statistic using the HGDP selection browser18,19. We also evaluated BioVU using 

5,000 random autosomal SNPs with STRUCTURE v2.3.3, and on average the participants 

were 20.7% European and 79.3% African ancestry20,21.

We observed evidence for recent selection near the KLHL32 gene within the YRI HapMap 

data using iHS (Supplementary Figure 4) and in the HGPD African participants 

(Supplementary Figures 5a–d). Nominal evidence of selection was observed within YRI and 

African American populations using the Treeselect statistic, with the transcription factor 

binding site SNP rs1206131 (p = 0.003 in the African Americans, and p = 0.005 in YRI and 

at the SNP rs9387284 (p = 0.004 in the YRI and p = 0.026 in the African Americans) 

(Supplementary Figure 6a, b). The Treeselect method also demonstrated a significant allele 

frequency differentiation between African and African-ancestry populations (Fst~0.01) at 

the transcription factor binding site SNP rs1206131. In panel (b), rs1206131 is the most 

significant SNP for this test in the region +/− 400kb. The test from the African American 

branch of the tree in (a) was slightly less significant at rs1206131 and the most significant 

SNP was downstream, which is also under the iHS and XP-EHH peaks from Africans in the 

HGDP and HapMap data. The graph of HGDP allele frequencies at this SNP shows that the 

ancestral T allele has increased frequencies throughout Africa relative to other major global 

populations (Supplementary Figure 7). Average (standard deviation, maximum) Fst values in 

this region between YRI and African American were 0.001(0.001, 0.015), between YRI and 

CEU were 0.040 (0.045, 0.304), and between African American and CEU were 0.011(0.013, 

0.082).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Manhattan plot displaying results of the BMI association meta-analysis in the Stage 1 

studies. Colored genomic loci indicate novel associations (red) and those detected 

previously (blue).
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Figure 2. 
Regional plots of three novel genome-wide significant loci identified in men and women of 

African ancestry. (a) rs7708584 (GALNT10 region), (b) rs974417 (KLHL32 region), and (c) 

rs10261878 (MIR148A/NFE2L3 region). For 2a and b, Stage 1 p-value represented by 

purple circle and Stage 1+2+3 p-value represented by purple square; for 2c, Stage 1 p-value 

represented by purple circle, African ancestry Stage 1+2+3 p-value represented by purple 

diamond, and African ancestry + GIANT p-value represented by purple square. SNPs are 

plotted by their position 500kb on either side of the index SNP on the chromosome against 

their association (−log10 P) with BMI using the Stage 1 data. SNPs surrounding the top 
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SNPs are colored to indicate the local LD structure using pairwise r2 data from the May 

2012 AFR panel of the 1000 genomes.
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Figure 3. 
Effect estimates (95% CI) per BMI-increasing allele for the 3 novel loci discovered in 

individuals of African ancestry (1st section, in descending order of African effect size), the 

32 loci discovered in individuals of European ancestry (2nd section, in descending order of 

European effect size), and the 4 loci discovered in individuals of Asian ancestry (3rd section, 

in descending order of Asian effect size). Results for individuals of African ancestry 

depicted by red dots (Stage 1+2+3 for novel loci, Stage 1 for previously-discovered loci); 

results for individuals of European ancestry depicted by black squares from Speliotes EK et 

al, 20107; and results for individuals of Asian ancestry depicted by green triangles from 

Okada Y et al, 20129 and Wen W et al, 201210.
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