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Abstract
To identify genetic variants associated with head circumference in infancy, we performed a meta-
analysis of seven genome-wide association (GWA) studies (N=10,768 from European ancestry
enrolled in pregnancy/birth cohorts) and followed up three lead signals in six replication studies
(combined N=19,089). Rs7980687 on chromosome 12q24 (P=8.1×10−9), and rs1042725 on
chromosome 12q15 (P=2.8×10−10) were robustly associated with head circumference in infancy.
Although these loci have previously been associated with adult height1, their effects on infant head
circumference were largely independent of height (P=3.8×10−7 for rs7980687, P=1.3×10−7 for
rs1042725 after adjustment for infant height). A third signal, rs11655470 on chromosome 17q21,
showed suggestive evidence of association with head circumference (P=3.9×10−6). SNPs
correlated to the 17q21 signal show genome-wide association with adult intra cranial volume2,
Parkinson’s disease and other neurodegenerative diseases3-5, indicating that a common genetic
variant in this region might link early brain growth with neurological disease in later life.

MAIN TEXT
Head circumference in infancy is used as a measure for brain size and development6-7.
Normal variation in head circumference seems to be associated with cognitive and
behavioral development8-10. Larger head circumference in infancy is associated with higher
IQ scores in childhood10-12. The underlying mechanisms however, are poorly understood.
Head circumference is a complex trait with a high heritability of around 0.7-0.913. Several
rare mutations with large effects on head circumference have been identified14-17, including
those resulting in microcephaly and intellectual disability15-17. Common genetic variants
that influence normal variation in head circumference in early life have not yet been
identified.

To search for common genetic variants associated with head circumference in infancy, we
performed a meta-analysis of GWA studies. We reasoned that finding such common variants
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might lead to enhanced understanding of molecular mechanisms important for variation in
brain development.

We meta-analyzed association statistics from ~2.5 million directly-genotyped and imputed
SNPs in infants of European descent from seven discovery GWA studies (N=10,768;
Supplementary Table 1). In all studies head circumference in infancy (age 18 months, range
6 to 30 months) was measured from the occipital protuberance to the forehead, using a
flexible, non-stretching measure tape following standardized procedures. If multiple
measurements were available for one individual in this time window, only the measurement
performed closest to the age of 18 months was used (Supplementary Tables 1 and 2). Since
the relationship between head circumference and age during infancy is non-linear and the
variance increases with age, we calculated sex- and age-adjusted SD-scores of head
circumference in each study separately18.

In the discovery phase we identified three lead signals (Manhattan plot is shown in
Supplementary Fig. 1); two independent loci on chromosome 12 and one on chromosome
17, which showed suggestive evidence for association with head circumference in infancy.
These three loci represent the first three independent loci of the discovery analysis and were
at 12q24.31, in SBNO1 (rs7980687, Pdiscovery=3.3×10−7; Figure 1a), at 12q15, near
HMGA2 (rs1042725, Pdiscovery=6.6×10−7; Figure 1b) and at 17q21.1, near CRHR1/MAPT
(rs11655470, Pdiscovery=1.4×10−6; Figure 1c). Other loci, suggesting an association with
infant head circumference (P<1×10−5) are described in Supplementary Table 3.

Table 1 shows the associations of these three lead SNPs in each cohort. We followed up
these three associations in six independent replication samples of European descent
(N=8,321; Supplementary Table 2). We genotyped the most strongly associated SNP from
each locus (rs7980687 from 12q24.31; rs1042725 from 12q15; rs11655470 from 17q21.1),
or a closely-correlated proxy (HapMap R2). Consistent associations were observed for both
signals on chromosome 12 in the replication samples (P=0.003 and P=8.1×10−5 for
rs7980687 and rs1042725 respectively). Marginal evidence of association for rs11655470
was seen in the replication samples (P=0.093). Genomic control correction was applied
during the discovery meta-analysis stage to adjust the statistics generated within each cohort
(λ-values ranging from 1.007-1.054, Supplementary Table 1). Results from the replication
cohorts were combined with the genomic control corrected discovery results to get the
overall meta-analysis results. Combining discovery and replication samples (N=19,089;
Table 1), each A allele of rs7980687 in SBNO1 was robustly associated with a 0.074 SD
larger head circumference (95% CI: 0.049, 0.099; P=8.1×10−9, explained variance 0.24%)
and each T allele of rs1042725 near HMGA2 with a 0.065 SD smaller head circumference
(95% CI: −0.085, −0.045; P=2.8×10−10, explained variance 0.33%). This reflects a
difference of around 1.2 and 1.0 mm in head circumference respectively. The effect of each
T allele of rs11655470 near CRHR1/MAPT did not reach genome-wide significance in the
combined analysis (effect 0.048 SD larger head circumference; 95%CI: 0.028, 0.068;
P=3.8×10−6, explained variance 0.21%). These three associations showed low heterogeneity
(P>0.1, I2=5-33%).

Additionally, the signals in SBNO1 and near HMGA2, but not the one near CRHR1/MAPT,
were associated with height measured at the same visit as head circumference
(Supplementary Table 4). When we adjusted the model for current height, the associations
of rs7980687 and rs1042725 with head circumference were slightly attenuated (effect size
0.057 SD; 95%CI: 0.035, 0.080; P=3.8×10−7 and −0.048 SD; 95%CI: −0.066, −0.030;
P=1.3×10−7 for rs7980687 and rs1042725 respectively, Supplementary Table 5). The
association of the third signal near CRHR1/MAPT was unaffected. In depth mediation
analysis showed that the effects of rs7980687 and rs1042725 on head circumference were
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only partly (12% and 24% respectively) explained by height (Supplementary Fig. 2,
Supplementary Table 6). The effect of rs11655470 was a completely direct effect of the SNP
on head circumference (Supplementary Table 6). To further adjust for possible population
stratification we added principal components to the model, in cohorts where these measures
were available (total N = 12,763). This did not materially change the effect on head
circumference, indicating that the utilized association tests are robust to population
stratification (Supplementary Table 7). The three variants were not associated with other
covariates such as breast feeding, socioeconomic status or educational level (data not
shown). We did not find evidence for an interaction of these variants with infant sex or
breastfeeding after Bonferroni correction (P>0.017, Supplementary Table 8 and 9).

In order to further investigate an effect of the three lead signals on fetal head growth, we
assessed the associations of the variants with head circumference using third trimester fetal
ultrasound data (n=3,781) and head circumference measured at birth (n=13,775), in
discovery and replication cohorts that had these data available (Supplementary Table 2). All
three signals showed evidence of association with head circumference in third trimester of
pregnancy and at birth (Table 2). The directions of the effects were consistent with those in
infancy.

Next, we assessed the associations of the three lead signals with intra-cranial volume (ICV)
in adulthood, measured by magnetic resonance imaging (MRI), in 8,175 individuals in the
CHARGE-consortium2. There was evidence of association between the signals near
HMGA2 and CRHR1/MAPT and ICV (Table 2). For the signal near CRHR1/MAPT, a
variant further downstream (rs9915547; r2 0.22 HapMap CEU) showed a genome-wide
significant association (P<5×10−8). All directions of the effects were consistent with the
observed associations for head circumference in infancy (Table 2).

We also assessed if there were possibly functional common variants in LD (r2 > 0.50) with
our three lead SNPs, being either non-synonymous SNPs or eQTLs. One variant, rs1060105,
in high LD with our lead signal (rs7980687 with HapMap r2 0.89), was a non-synonymous
SNP located in exon 5 of SBNO1 (missense; AGT(Ser) => AAT(Asn)). The minor allele
(A) of rs1060105 was associated with an increased head circumference in infancy (effect
size 0.081 SD; 95%CI: 0.048, 0.115; P=2.4×10−6 (N=10,768)). The underlying mechanism
is unknown. Considering that transcription regulation is highly cell-type specific, we next
evaluated whether we could find eQTLs established in brain tissue19. We did not find
eQTLs in publicly available brain expression data19. Subsequently, we also explored eQTL
databases from other tissues and identified three SNPs in LD with rs7980687 (r2 > 0.7
HapMap CEU) associated with gene transcript expression of CDK2AP1 and MPHOSPH9 in
liver tissue, monocytes and lymphoblastoid cell lines20-22. Little is known on these genes
except that both CDK2AP1 and MPHOSPH9 are involved in cell-cycle regulation
(Supplementary Table 10)23-24.

To our knowledge, this is the first genome-wide association study on head circumference in
infancy. The top two signals (rs7980687 in SBNO1 and rs1042725 near HMGA2)
associated with infant head circumference have previously been associated with adult
height1. Therefore, we also assessed the association between the 180 known height variants
and head circumference during infancy1. A strong deviation from the null-line was observed
on the QQ-plot (Supplementary Fig. 3). Besides SBNO1 and HMGA2, 23 other height
variants were nominally associated with head circumference in infancy (Supplementary
Table 11). After applying Bonferroni correction for multiple testing in this candidate gene
analysis (P<2.8×10−4), markers in/near ZNFX1 (P=6.1×10−6), OR2J3 (P=1.8×10−5) and
ZBTB38 (P=1.8×10−4) remained statistically significant associated with head circumference
in infancy.
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The relative effect size of rs1042725 near HMGA2 was similar for infant head
circumference (0.065 SD) and adult height (0.060 SD). However, the effect size of
rs7980687 in SBNO1 on infant head circumference (0.074 SD) was considerably larger than
for adult height (0.035 SD). As head size is correlated with total body size25, it might be that
the top two loci have a more general regulating role in skeletal growth and bone
development. It also could be that variants in SBNO1 affect brain growth and concurrent
head circumference, or that they affect skull growth rather than skeletal growth. The
SBNO1-gene is involved in the Notch signaling pathway26. In Drosophila, a similar gene
(sno) is required for early embryogenesis, and absence of this gene leads to maldevelopment
of the central nervous system26. In humans SBNO1 has been implicated in oncogenic
processes27-28.

The variant near HMGA2 was one of the first to be associated with adult height. Deletions
and truncations in the HMGA2-gene in mice and humans have been associated with small
and large stature29-30. The effect of HMGA2 is similar for head circumference and adult
height, thus it seems likely that it has a more general role in skeletal growth.

A third variant (rs11655470), in the promoter region of CRHR1/MAPT, was also related to
head circumference, though this signal did not reach genome-wide significance.
Rs11655470 lies within the 17q21 inversion, but is not strongly correlated with the inversion
(r2 0.22 HapMap CEU). This 900kb region, corresponding to the conversion, contains
several genes. The SNP is closely related to the CRHR1-gene (r2 0.59 HapMap CEU with
rs171440). Variants in/near CRHR1 have been associated with brain development and bone
mineral density31-32, although the underlying mechanisms are largely unknown. Another
gene included in the 17q21 inversion is MAPT (r2 0.22 HapMap CEU). Both common
variants and mutations in MAPT are known to be associated with Parkinson’s disease and
other neurodegenerative diseases3-5,33-34. Other genes in this region are saitohin (STH) and
granulin (GRN). STH has been associated with progressive supranuclear palsy and increased
risk of late-onset Alzheimer’s disease35-36. Mutations in GRN have been shown to cause
fronto-temporal degeneration37. It might be that common genetic variants in/near CRHR1/
MAPT affect early brain development, by altering the stability and assembly of
microtubules. Ikram et al. showed that a correlated SNP in the same region (rs9303525,
HapMap r2 0.22 with rs11655470) is associated with adult intra cranial volume, reaching
genome-wide significance2. Since the LD between the variants is low, it could be that they
represent separate independent effects on different phenotypes. When we adjusted the effect
of rs11655470 on infant head circumference for the CHARGE ICV signal (rs9915547), the
effect was attenuated but remained significant (0.059 SD (P=1.0×10−5) and 0.037 SD
(P=7.3×10−3) before and after adjustment for rs9915547 respectively), suggesting that these
signals both tag a third marker influencing both phenotypes (Supplementary Table 12).
However, although the association attenuates after conditioning on the CHARGE ICV
signal, the two signals might still independently tag different causal markers in the region
and the attenuation might be due to the weak LD, because of proximity, between the two
signals. The marker associated with head circumference is in low LD with the chromosome
17q21 inversion, while the CHARGE ICV signal is in high LD with the inversion.
Therefore, it does not seem likely that the 17q21 inversion is causally related to infant head
circumference. The biological mechanisms underlying these associations are largely
unknown.

Our study highlights early effect of variants in/near SBNO1 and HMGA2 on head
circumference in fetal life and infancy, and shows that a variant near CRHR1/MAPT is
marginally associated with head circumference in infancy. Our findings suggest that the
genetic variants in the CRHR1/MAPT region might link early brain growth with
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neurological disease in later life. Further research is needed to elucidate whether these
variants influence brain growth and neurodevelopment in early life.

ONLINE METHODS
Stage 1: GWA meta-analysis of head circumference

Discovery samples, genotyping and imputation—We selected seven population-
based studies with head circumference measured in infancy (study cohort specific median
age range 11-18 months) and GWA data available by the beginning of March 2010
(combined N=10,768): the Avon Longitudinal Study of Parents And Children (ALSPAC;
N=1,748); The Children’s Hospital of Philadelphia (CHOP; N=1,008); the Copenhagen
Study on Asthma in Childhood (COPSAC; N=369); The Generation R Study (Generation R;
N=2,240); the Lifestyle – Immune System – Allergy Study (LISA; N=357); the Northern
Finland 1966 Birth Cohort (NFBC1966; N=4,287) and the Western Australian Pregnancy
study (RAINE; N=759). Genotypes were obtained using high-density SNP arrays, and then
imputed for ~2.4 million HapMap SNPs (Phase II, release 21/22, http://
hapmap.ncbi.nlm.nih.gov/). The basic characteristics, exclusions (e.g. samples of non-
European ancestry), genotyping, quality control and imputation methods for each discovery
sample are presented in Supplementary Table 1.

Statistical analysis within discovery samples—Head circumference was measured
in infancy (age window: 6-30 months). If multiple measurements were available for one
individual within this age window, the measurement closest to 18 months was used. Sex-
and age-adjusted standard deviation scores (SD score) were constructed using Growth
Analyser 3.0 (http://www.growthanalyser.org; Dutch Growth Research Foundation,
Rotterdam, the Netherlands) in each study separately18. The association between each SNP
and head circumference was assessed in each study sample using linear regression of head
circumference SD score against genotype, assuming an additive model. Imputed genotypes
were only used where directly-assayed genotypes were unavailable.

Meta-analysis of discovery samples—Data exchange was facilitated by the
SIMBioMS platform (simbioms.org)38. Prior to meta-analysis, SNPs with a minor allele
frequency <1% and poorly-imputed SNPs (proper_info ≤0.4 [SNPTEST]; r2 ≤0.3
[MACH2QTL]) were filtered. Fixed effects meta-analyses were independently conducted by
two investigators (H.R.T., D.O.M-K.). Meta-analysis was performed using the software
package: METAL (http://www.sph.umich.edu/csg/abecasis/metal/index.html); Genomic
control39 was applied during the meta-analysis stage to adjust the statistics generated within
each cohort (see Supplementary Table 1 for individual study λ-values, discovery meta-
analysis λ-value: 1.043). Meta-analysis was done using the inverse-variance method; a fixed
effects model was assumed. SNPs available in less than four discovery cohorts were
excluded. Final meta-analysis results were obtained for 2,449,806 SNPs. We considered the
top three lead signals (representing 3 distinct genomic regions on chromosomes 12 and 17)
in the discovery analysis for further follow-up in additional samples. The two loci at
chromosome 12 reached the threshold of P<1×10−6 and were therefore selected for
replication and the third locus at chromosome 17 was just above that threshold (P=1.4×10−6)
and was selected because of prior knowledge of the nearby genome wide significant hit on
intra cranial volume as described by Ikram et al.2

Stage 2: Follow-up of three lead signals in additional samples
Follow-up samples, genotyping and analysis—We used 6 independent study
samples (combined N=8,321) to follow up the three lead signals from the GWA meta-
analysis (represented by index SNPs rs7980687, rs1042725 and rs11655470). Details of
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these study samples are presented in Supplementary Table 2. If the index SNP was
unavailable, a closely correlated proxy was substituted (rs12322888 or rs12316131 for
rs7980687 [HapMap r2=0.95]; rs7970350 or rs1351394 for rs1042725 [HapMap r2=1 and
0.91 respectively]; rs12938031 for rs11655470 [HapMap r2=0.58]). In 3 of the replication
studies, the index SNPs were imputed from genome-wide genotype data (see Supplementary
Table 2). The head circumference analysis (as described above) was performed within each
study sample.

Statistical analysis
Meta-analyses of discovery and replication samples—We performed fixed effects
inverse variance meta-analyses of the head circumference association results for the three
lead signals in the seven discovery samples and six replication samples combined. Fixed
effects meta-analyses were conducted independently by two investigators (H.R.T., D.O.M-
K.), using RMeta in R [v.2.7.0]). We used the Cochran Q test and the I2 statistic40 to assess
evidence of between-study heterogeneity of effect sizes.

Informed consent (or parental consent, as appropriate) was obtained from all discovery and
follow-up study participants and study protocols were approved by the local ethics
committees.

Analyses of potential confounders
To verify that the investigated lead SNPs were not associated with other covariates which
could theoretically confound the observed associations with head circumference (including
height, weight and age at measurement; breastfeeding; maternal educational level; and sex),
we used linear or logistic regression models to assess the associations between each
covariate and genotype, in all discovery and replication samples. For height and weight, we
constructed sex- and age-adjusted SD scores using Growth Analyser 3.0 (http://
www.growthanalyser.org; Dutch Growth Research Foundation, Rotterdam, the Netherlands)
in each study separately, similar to the head circumference SD score. To investigate possible
effects of the three lead signals on head circumference through height, we first conducted
linear regression analysis with and without adjustment for height SD score. Second, we
conducted a mediation analysis and assessed the direct SNP effects and indirect SNP effects
(mediated through height) on head circumference for each of the signals using a seemingly
unrelated regression model (STATA, StataCorp LP, College Station, TX, USA) or a simple
path analysis model (MPLUS, Muthen & Muthen, Los Angeles, CA, USA), which provide
identical effect estimates. To investigate whether the associations between genotypes and
infant head circumference were similar in the sexes, we repeated the analyses in males and
females separately. Furthermore, we evaluated possible effect modification by breastfeeding
status for each of the SNPs. Where possible, we meta-analyzed results to assess overall
evidence of association.

Analysis of fetal head circumference and intra cranial volume
We explored associations of rs7980687, rs1042725 and rs11655470 with third trimester fetal
head circumference and head circumference at birth, assuming an additive model using
linear regression. Fetal head circumference was measured by ultrasound in three studies
(combined N=3,781 singleton pregnancies) in third trimester of pregnancy (gestational age
window 27-36 weeks). Only one measurement per subject was included in the time window.
If multiple measurements were available within the time-window, the one closest to the
median of 32 weeks of the gestation was used. We calculated gestational age specific SD
scores using previously published growth charts41. This analysis was adjusted for sex. Head
circumference was measured at birth, or within the 31st day of life, in 12 studies (N=13,775;
Supplementary table 2). We created SD scores for head circumference within each of the
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cohorts and assessed the association with each SNP, adjusted for sex and gestational age. If
head circumference was measured in the first month, we used gestational age at birth + age
(weeks) at measurement in the first month. Combined effect estimates were calculated using
fixed effects meta-analyses.

We used the meta-analysis on intracranial volume in adults, measured by MRI, in the
Cohorts for Heart and Aging Research in Genetic Epidemiology (CHARGE) consortium42

as a third additional phenotype. Data collection methods, phenotype definition, baseline
characteristics, and results of the meta-analysis are described elsewhere in this issue2,43.

Analysis of known adult height variants with infant head circumference
We used the discovery meta-analyses to assess the associations of the previously identified
180 known adult height loci1 with head circumference in infancy, using the same model as
described above. We also checked whether very closely related SNPs (HapMap r2 >0.95)
showed higher significance levels than the originally reported SNPs. SNPs with a P-value
lower than 2.8×10−4 (0.05/180) were considered significant.

Variance explained
To estimate the percentage of variation in birth weight explained by each of the associated
loci, we obtained the adjusted-R2 from univariate linear regression models of head
circumference against genotype. We then calculated a mean value from all discovery and
replication studies, weighted by sample size.

Non-synonomous SNPs and eQTLs
We assessed SNPs in LD with the three lead signals and checked for non-synonomous SNPs
or eQTLs to identify possible functional variants explaining the associations with head
circumference. First, we used the SNP Annotation and Proxy search developed by the Broad
institute (http://www.broadinstitute.org/mpg/snap/) to select all SNPs in LD (r2 > 0.50) with
our three lead signals. We used the 1000 Genomes Pilot 1 set as SNP dataset for rs7980687
and rs1042725 and the HapMap r22 as SNP dataset for rs11655470 (r2 > 0.50) since this
SNP was not available on the 1000 Genomes dataset. Next, we evaluated whether these
SNPs were non-synonomous using dbSNP search engine from NCBI. To evaluate whether
there were cis-eQTLs in LD with our lead signals we searched publicly available eQTL
databases through the NCBI GTEx (Genotype-Tissue Expression) eQTL Browser (http://
www.ncbi.nlm.nih.gov/gtex/test/GTEX2/gtex.cgi) and the Generic Genome Browser (http://
eqtl.uchicago.edu/cgi-bin/gbrowse/eqtl/). In total, these browsers search nine databases for
eQTLs. Only cis-associations (defined as genes within 1Mb) that reached the P-value
threshold for significance, as used in the original papers describing the gene expression
datasets, were included in Supplementary Table 10. The statistics behind the eQTL analysis
and calculation of the threshold for declaring significance of the associations are described
in the published and validated eQTL datasets20-22.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Directly genotyped and imputed SNPs are plotted using filled circles with their meta-
analysis P values (as −log10 values) as a function of genomic position (NCBI Build 36). In
each plot, the discovery-stage SNP taken forward to replication stage is represented by a
purple diamond (defining a global meta-analysis P value). Local LD structure is reflected by
the plotted estimated recombination rates (taken from HapMap) in the region around the
associated SNPs and their correlated proxies. The correlations of the lead SNP to other SNPs
at the locus are shown on a color scale from r2<0.2 dark blue; 0.2=<r2<0.4 light-blue;
0.4=<r2<0.6 green; 0.6=<r2<0.8 orange; r2>=0.8 red. Superimposed on the plot are the
recombination rates (light blue line, second y axis). Gene annotations are shown as the dark
blue arrows. The regional plots were drawn using the LocusZoom software36.
1a Regional plot of locus 12q24.31
1b Regional plot of locus 12q15
1c Regional association plot of locus 17q21.1; downstream of the lead signal, rs9915547 is
indicated (r2 0.22 HapMap CEU with rs11655470), which showed a genome wide
significant association with adult intra cranial volume (P=1.5×10−12) as described in Ikram
et al.2
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