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Abstract

Chromatin plays a central role in eukaryotic gene regulation. We have performed genome-wide 

mapping of epigenetically-marked nucleosomes to determine their position both near transcription 

start sites and at distal regulatory elements including enhancers. In prostate cancer cells where 

androgen receptor (AR) binds primarily to enhancers, we found that androgen treatment dismisses 

a central nucleosome present over AR binding sites that is flanked by a pair of marked 

nucleosomes. A novel quantitative model built on the behavior of such nucleosome pairs correctly 

identified regions bound by the regulators of the immediate androgen response including AR and 

FoxA1. More importantly this model also correctly predicted novel binding sites for other 

transcription factors present following prolonged androgen stimulation including Oct1 and 

NKX3.1. Thus quantitative modeling of enhancer structure provides a powerful predictive method 

to infer the identity of transcription factors involved in cellular responses to specific stimuli.

Transcription in eukaryotes is regulated by transcription factors that associate with the 

genome in a cell-type and condition-specific manner. Chromatin organization forms part of 
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the basis for this cell-type specificity by allowing or denying transcription factor (TF) access 

to DNA. The basic units of chromatin structure are the nucleosomes, which are known to 

restrict the in vivo access of certain classes of transcription factors 1. Intensive work has 

been done to reveal the correlation between nucleosome position, histone modification and 

gene expression 2–4. Genome-wide nucleosome occupancy maps have been generated in S. 

cerevisiae 5–7, Drosophila 8 and C. elegans 9, but high quality human nucleosome 

occupancy data is more difficult to acquire due to the large size of the human genome 10,11. 

While the nucleosome positioning patterns are well established at transcription start sites 

(TSS), they are less well known at enhancers. Functional enhancers are cis-regulatory DNA 

elements that are orientation and position independent and can act at variable distances from 

the TSS of the genes they regulate 12,13. Monomethylated H3K4 (H3K4me) has been 

shown to be associated with transcription factor binding at enhancers, trimethylated H3K4 

(H3K4me3) with the TSS, and dimethylated H3K4 (H3K4me2) with both the TSS and 

enhancers 14,15. To characterize the pattern of nucleosome positioning at enhancers, we 

used nucleosome-resolution ChIP-seq of H3K4me, H3K4me2 and H3k4me3 in the prostate 

cancer cell line LNCaP in response to a time-course of stimulation by the AR agonist 5α-

dihydrotestoterone (DHT).

By comparing regions of enriched histone modification (Supplementary Table 1) to AR and 

FoxA1 binding sites (4h DHT) and the promoter regions of RefSeq genes we found 

H3K4me2 ChIP-seq to be the most efficient in identifying both promoters and putative 

enhancers (Supplementary Fig. 1). To differentiate intergenic TF binding sites from 

promoters, we removed H3K4me2 regions with strong H3K4me3 ChIP-seq signals from 

subsequent analyses.

We next examined whether H3K4me2 shows positional trends relative to the known AR and 

FoxA1 binding sites. H3K4me2 signal (based on average tag count) is highest near AR 

binding sites in the absence of DHT (Fig. 1a). Upon DHT stimulation and concomitant AR 

binding, H3K4me2 signal decreases at the binding sites and increases in the flanking regions 

(Fig. 1b). The same analysis relative to the binding sites of FoxA1 shows a bimodal tag 

count distribution both before (Fig. 1c) and after (Fig. 1d) DHT treatment, consistent with 

the role of FoxA1 as a pioneer factor to facilitate AR binding16.

To investigate whether nucleosome positioning could explain the pattern observed in the 

previous analysis, we determined the likely positions of H3K4me2 marked nucleosomes 

using the NPS algorithm (Supplementary Table 1) 17. The distance from the AR motif in the 

binding site to the nearest detected nucleosome increases to ~200bp upon DHT stimulation 

(Fig. 1e, Supplementary Fig. 2a), indicating that nucleosomes tend to be less occupied 

(destabilized) at the binding site itself and more occupied (stabilized) at adjacent 

nucleosomes. Interestingly, the locations of the most positioned nucleosomes are concordant 

between DHT and vehicle (Supplementary Fig. 2b). This suggests that prior to AR 

activation, AR binding loci are already marked with two well-positioned H3K4me2-

containing nucleosomes, 250–450 bp apart, flanking the precise binding sites, along with a 

well-positioned nucleosome occluding the binding site itself. Upon AR activation, 

H3K4me2 modified nucleosomes are destabilized at the AR binding sites and are better 

positioned at the two flanking loci. While the chromatin structure relative to TSS is 
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characterized by a nucleosome free region immediately upstream and a series of well 

positioned nucleosomes downstream (Fig. 1f), we found that in general only two well-

positioned nucleosomes are evident at TF bound enhancers (Fig. 1b, c and d).

To validate our observations and rule out the possibility of ChIP-seq artifacts or loss of the 

H3K4me2 mark rather than the nucleosome, we conducted H3K4me2 ChIP-qPCR and Input 

DNA-qPCR on five AR binding sites that exhibited these H3K4me2 patterns near the genes 

TMPRSS2, STK39, KLK3, TMC6 and TRIM35. In all cases, the Input DNA-qPCR results 

show that overall nucleosome density decreases over the transcription factor binding sites 

and increases in the flanking regions to the same extent as the H3K4me2 marked 

nucleosomes (Fig. 2a). We examined two of these cases, TMPRSS2 and STK39, in greater 

detail using primers that tile regions of interest at a finer resolution (Fig. 2b), and obtained 

similar results.

In order to determine whether the pattern of nucleosome positioning we observed at AR 

binding sites could be applied more broadly to other TFs, we used the change in H3K4me2 

marked nucleosomes at AR binding sites following acute androgen stimulation to develop a 

general model of nucleosome positions at enhancers. We identified ~65,000 well-positioned 

nucleosome pairs (4h DHT) separated by the characteristic distance of 250–450bp in which 

promoter proximal pairs were removed on the basis of having H3K4me3 > H3K4me2 (Fig. 

3a). From the analysis of the AR binding sites we developed a quantitative model based on 

the changes in the H3K4me2 signal in the flanking nucleosomes and in the region between 

them (Fig. 3a). Running the model results in a “nucleosome stabilization – destabilization” 

(NSD) score S (as defined in Fig. 3a and having a distribution as in Supplementary Fig. 3) 

for each pair of appropriately spaced nucleosomes. Indeed, when we ranked all the 

nucleosome pairs by NSD score and grouped them into bins of 500, we found that the top 

scoring bins show the highest enrichment in AR binding sites (Fig. 3b).

To further test the functional relevance of the regions identified by the model, we examined 

the evolutionary conservation across the 5,000 highest-scoring paired nucleosomes. We see 

three PhastCons conservation peaks, one major peak at the nucleosome depleted regions 

between the paired nucleosomes, and one flanking each of these nucleosomes (Fig. 3c), this 

suggests evolutionary pressure not only on the TF binding sites between the paired 

nucleosomes but also on the regions immediately outside the paired nucleosomes.

To investigate the nature of nucleosome depletion in the regions between the paired 

nucleosomes, we studied the DNA sequence features in these regions. We observe that, 

consistent with previous models 18,19, simple A/T content and AA/TT/TA/AT 

dinucleotides are depleted in nucleosome-enriched regions and enriched in nucleosome-

depleted regions, while G:C dinucleotides show the opposite trend (Fig. 3d). In addition, the 

stabilization of nucleosomes flanking the TF binding sites supports a model in which 

binding of non-nucleosomal proteins such as transcription factors forms boundaries that 

direct the in vivo positioning of nearby nucleosomes 20. A recent study also suggests that 

H3.3/H2A.Z-containing nucleosomes are intrinsically labile, which facilitate TFs access at 

regulatory sites in vivo 21. We performed H2A.Z ChIP-qPCR at 5 representative AR 

binding sites (Supplementary Fig. 4). These results show that H2A.Z is indeed enriched at 
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the central nucleosome compared with the two flanking ones for all the five sites tested 

suggesting that it may be more labile. Significantly, the mean positions of the paired 

nucleosomes at AR binding loci appear to be the same in both bound (DHT) and unbound 

(Vehicle) conditions (Fig. 2, Supplementary Fig. 2b) suggesting the existence of a common 

enhancer architecture that enables access of transcription factors to DNA.

To determine whether the model could be used to impute the identity of TFs that bind 

between nucleosome pairs, we searched for motifs in the 1000 top NSD scoring nucleosome 

paired regions. The top motifs identified are from the forkhead and steroid receptor families 

(Supplementary Table 2 and Fig. 3e, Supplementary Fig. 5a, 5b), previously shown to be 

responsible for the androgen response in prostate cancer 16. Interestingly, this approach 

predicted AR binding at several sites that were not previously identified by ChIP-chip, and 

all of a representative sample of these were validated by ChIP-qPCR (Fig. 4a, 

Supplementary Fig. 6a).

If the model is valid more generally, it should identify key transcription factors regulating 

the response of a cell population to a stimulus using the H3K4me2/3 nucleosome-resolution 

ChIP-seq data alone. As the LNCaP response to 4 hours of androgen exposure was 

dominated by AR and FoxA1, we generated nucleosome-resolution H3K4me2 ChIP-seq 

data at 16 hours after DHT treatment, when we predicted secondary transcriptional 

responses would dominate. Applying our prediction model we found NKX3.1 and Oct1 

motifs to be very significantly associated with high NSD scoring regions (Supplementary 

Table 2, p-value < 1e-7, Supplementary Fig. 5c, Fig. 5d), while the AR motif is not 

(Supplementary Table 2, Fig. 3f). NKX3.1 is a homeobox gene involved in normal prostate 

development that marks the prostate luminal epithelial stem cell and is a putative tumor 

suppressor gene in the prostate 22,23. Oct1 has been shown previously to collaborate with 

AR at a subset of AR binding loci in LNCaP cells 24. While Oct1 is constitutively expressed 

in LNCaP cells, NKX3.1 was induced 4-fold by androgens both at the 4h and 16h time point 

25.

To test whether these factors were truly differentially bound, we selected sites with high 

NSD scores (16h vs. 4h) and central sequences closely resembling the TRANSFAC-defined 

NKX3.1 or Oct1 motifs (Fig. 3e). ChIP-qPCR was performed to compare binding under 

vehicle conditions to that after DHT stimulation (4h and 16h). DHT-dependent NKX3.1 

recruitment was validated on 18 out of 22 selected regions, to a degree comparable with that 

of two known 26 NKX3.1 binding sites (Fig. 4b, Supplementary Fig. 6b). While previously 

identified Oct1 binding sites have been located in close proximity to AR binding sites 24, 

the model predicted a set of putative DHT responsive Oct1 binding sites that are 

independent of AR binding. ChIP-qPCR of these sites shows a strong response to DHT 

stimulation, where all nine sites have greater enrichment of Oct1 binding at 16 hours 

compared with 4 hours (Fig. 4c, Supplementary Fig. 6c).

We investigated whether the genomic regions identified with this model might be of 

regulatory importance. We defined “4 hour” sites and “16 hour” sites as the 5,000 regions 

with highest NSD scores after 4h DHT treatment versus vehicle, and 16h versus 4h DHT 

treatment, respectively. We then examined gene expression microarray assays at the vehicle, 
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4h, and 16h time points, and compared imputed differential binding with differential gene 

expression. At both 4h and 16h, the differentially expressed genes are more highly 

associated with imputed binding sites than non-differentially expressed genes (Fig. 4d). 

Further analysis shows that the likelihood of a gene being up-regulated increases with the 

number and score of paired nucleosome sites in the vicinity of the TSS (Fig. 4e and 4f). In 

contrast, when we examined the relationship between number and score of paired 

nucleosome sites for down-regulated genes, we found no correlation (Supplementary Fig. 7). 

These results suggest that the high NSD scoring sites are functional enhancers that play a 

functional role in gene regulation.

By performing ChIP-seq for H3K4me2 and H3K4me3, we profiled at high resolution the 

changes in nucleosome occupancy that occur at enhancers in a human prostate cancer cell 

line in response to androgen stimulation. Analysis of nucleosome occupancy near AR and 

FoxA1 binding sites revealed a striking pattern of nucleosome stabilization in a pair of 

nucleosomes flanking the binding site and elimination of a nucleosome at the site itself. We 

found several intrinsic characteristics of the middle nucleosome that distinguish it from the 

flanking ones, its sequence is more evolutionarily conserved and has a higher A/T content, 

while its histone octamer is more likely to contain the H2A.Z histone variant. This suggests 

that it may be intrinsically less stable than the flanking nucleosomes. Thus the apparent 

differences in nucleosome stability may be the result of the combination of DNA sequence, 

histone octamer composition and transcription factor binding. We developed a novel 

quantitative model and scoring function, the NSD score, that correctly identified not only the 

sites of AR binding but also allowed the prediction of the binding of other factors including 

NKX3.1 and Oct1 that mediate secondary transcriptional responses. Thus this model defines 

the characteristic pattern of nucleosome occupancy changes associated with enhancers and 

can be used to infer dynamic TF binding events that occur when a cell population transitions 

between states.

METHODS

ChIP-seq and ChIP-qPCR

The prostate cancer cell line LNCaP was obtained from the American Type Culture 

Collection. ChIP and ChIP-seq libraries construction for histone marks H3K4me1/2/3 were 

performed as previously described 14, the libraries were sequenced to 35bp with the 

Illumina Genome Analyzer. ChIP experiments for AR, NKX3.1 and Oct-1 as well as ChIP-

qPCR were performed as previously described 27.

Peak calling

Significantly enriched regions were detected using the MACS software 28 using default 

parameters. Mononucleosomes were detected using the NPS analysis of nucleosome 

positions with default parameters 17.

AR and FoxA1 binding sites definition

Data sets of AR (FDR of 5%) and FoxA1 (FDR of 1%) binding sites were from our previous 

works 16,25.
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Model for identifying differential transcription factor binding locations

NPS was used to identify nucleosome positions based on treatment condition data. 

Nucleosome intervals were defined as the 200bp centered on the center position of the NPS 

identified nucleosomes. Nucleosome pairs with center positions lying in a range between 

250 and 450 bp were identified for further analysis. For each nucleosome pair the number of 

tags in the nucleosomes and in the inter-nucleosomal region was counted. A tag was 

considered to belong to a genomic interval if, when shifted 73 bp in a strand directed 

direction, the entire tag fell within that interval. These pairs are then given a NSD score (S) 

by the formula

That takes into account changes in H3K4me2 ChIP-seq tag counts falling on the flanking 

nucleosomes as well as the region lying between them. Tag counts were scaled in proportion 

to the overall counts in the treatment and control samples. In this formula, n is the tag count, 

superscript “treat” and “control” refer to DHT and vehicle conditions, respectively. 

Subscript “flank” refers to the 200bp of sequence centered on each flanking nucleosome, 

and “central” refers to the sequence between these regions (Fig. 3a).

Motif statistics

Known DNA motifs that are enriched relative to the center of model predicted TF binding 

sites were identified using the following statistic. Motif analysis was conducted on 600bp 

DNA segments, each segment representing one nucleosome pair. Each segment was derived 

from a 1kb sequence centered at the midpoint between a nucleosome pair from which 200bp 

centered on each of the nucleosomes was excluded. All subsequences within these 

sequences were scored by a TRANSFAC motif 29 and the genomic background sequence 

composition to identify hits above a probability cutoff. Let xi, be a value between 0 and 1, 

which denotes the relative location of motif hit i out of N total motif hits (where 0 and 1 

represent the respective center and edge of the sequence). We define a z score, z=Σi=1 to N 

(xi − 0.5)/√(N/12) that represents the positional bias of a motif toward the centers of the 

regions. Different integer cutoffs were tested for each motif, and the cutoff resulting in the 

highest z was selected. This statistic is based on the assumptions that insignificant DNA 

motifs will be uniformly distributed across the sequences and the null distribution of 

Σi = 1 to N xi can be estimated as the N-fold convolution of uniform density functions.

Gene expression analysis

Affymetrix U133 Plus 2.0 microarray data were analyzed using the RMA algorithm 30 

using acustom CDF probe (v11) mapping to RefSeq genes 31. Differentially expressed 

genes were identified using the SAM algorithm at a local FDR of 10% 32. The nearest 

putative TF binding sites were associated with each non-redundant RefSeq gene 

transcription start site. The statistical significance association between putative TF binding 

sites was calculated using Fisher’s exact test where genes were categorized according to 
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whether they were differentially expressed, and whether they had at least one putative TF 

binding site within 20kb of the transcription start site.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Signal distribution and nucleosome position analysis in the AR and FoxA1 binding 
regions identified by ChIP-chip experiment and the TSS
H3K4me2 signal distribution relative to the center of the AR motif (a, b) and FoxA1 motif 

(c, d) in the binding regions. The x-axis represents the distance to the center of the best AR 

or FoxA1 motif match in a given binding site. The y-axis represents normalized ChIP-Seq 

tag count numbers. “Veh” represents the unstimulated condition; “4h” represents stimulated 

conditions with treatment of DHT for 4 hours. (e) Distance from the AR motif to the center 

of the nearest nucleosome in the AR binding sites under vehicle (red) and 4 hours after DHT 

stimulation (blue). (f) H3K4m2 and H3K4me3 signal distribution relative to the TSS.
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Figure 2. qPCR validation of the nucleosomes stabilized-destabilized around AR binding sites
(a) Five AR binding sites near the genes TMPRSS2, STK39, KLK3, TMC6 and TRIM35. 

“AR ChIP-chip” represents the AR ChIP-chip signals; “H3K4me2 Veh” and “H3K4me2 4h” 

represent H3K4me2 ChIP-Seq signals before and after 4 hours of DHT treatment. “Input 4h/

Veh” represents the qPCR assay of nucleosome fold change for DHT treatment relative to 

vehicle; “H3K4me2 4h/Veh” represents the qPCR assay of fold change for H3K4me2 signal 

for DHT treatment relative to vehicle, standard deviation is shown. Each horizontal bar 
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represents a NPS peak region. (b) Detailed qPCR analysis of the AR binding sites near the 

genes TMPRSS2 and TMC6. Each horizontal bar represents a qPCR amplification region.
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Figure 3. Motif analysis in the paired nucleosome regions
(a) Flowchart of the prediction model. The formula for the NSD score is described in 

“Methods” section. “treatment” and “control” refer to treatment and vehicle control 

conditions, respectively. “flank” refers to the 200bp of sequence centered on each flanking 

nucleosome, and “central” refers to the sequence between these regions. (b) The fraction of 

AR binding sites in score ranked paired nucleosome bins with decreasing score (4h vs. Veh). 

Paired nucleosome regions are ranked by scores representing the differences in H3K4me2 

tag counts before and after DHT treatment. These ranked regions are grouped into bins of 

500. Represented here is the number of regions in each bin that overlap with AR ChIP-chip 

enriched regions. (c) Evolutionary conservation in the vicinity of the 5000 highest scoring 

nucleosome pairs. Mean PhastCons scores representing DNA sequence conservation over 17 

species is plotted as a function of the distance from the midpoint between paired 

nucleosomes. (d) DNA sequence content associated with nucleosome positioning. The 5000 

highest scoring paired nucleosome regions, aligned at the midpoint, were analyzed for 

simple DNA sequence features: the distribution of A/T mononucleotides (black), G:C 

dinucleotides (red) or A:T dinucleotides (green). (e) Logos of AR, FoxA1, NKX3.1 and 

Oct1 motifs from TRANSFAC library. (f) The fraction of AR binding sites in score ranked 

paired nucleosome bins with decreasing score (16h vs. 4h).
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Figure 4. ChIP-qPCR and gene expression analysis of NSD scoring sites
ChIP-qPCR validation of predicted (a)AR, (b)NKX3.1 and (c)Oct1 binding sites. Box plots 

were generated from ChIP-qPCR data obtained from three independent experiment testing 

10 sites for AR, 22 sites for NKX3.1 and 9 sites forOct1. The individual ChIP-qPCR assays 

are shown in Supplementary Fig. 5. (d) Correlation of paired nucleosome regions with gene 

expression. The fraction of differentially regulated genes with paired nucleosome regions 

within 20 kb is shown. The top 5000 paired nucleosome regions were selected under the 

conditions of DHT 4 hours vs. vehicle and DHT 16 hours vs. DHT 4 hours. Differentially 

regulated genes were identified as described in the “Methods” section. “4hregulated” 

represents the fraction of DHT 4 hours vs. vehicle differentially regulated genes with at least 

one DHT 4 hour vs. vehicle paired nucleosome region within 20kb of the transcription start 

site. “4h non-regulated” represents the fraction of non-regulated genes under the same 

condition. “16h regulated” and “16h non-regulated” represent the fractions under the 

condition of DHT 16 hours vs. DHT 4 hours. Correlation of score and number of NSD 

scoring sites and up-regulated gene expression, (e) 4h vs Veh, (f) 16h vs 4h. X axis 

represents the lower bound n of the number of sites within 20kb of the TSS of a gene, Y axis 

represents the odds ratio calculated by the formula (up-regulated genes with at least n sites/

non-regulated genes with at least n sites)/(all up-regulated genes/all non-regulated genes). 

Red, green and blue dots represent the top 5000, 10,000 and 20,000 NSD score sites, 

respectively.
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