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Abstract
Ovarian cancer (OC) accounts for more deaths than all other gynecological cancers combined. To
identify common low-penetrance OC susceptibility genes, we conducted a genome-wide
association study (GWAS) of 507,094 SNPs in 1,768 cases and 2,354 controls, with follow-up of
21,955 SNPs in 4,162 cases and 4,810 controls, leading to the identification of a confirmed
susceptibility locus at 9p22 (BNC2)1. Here, we report on nine additional candidate loci (p≤10-4),
identified after stratifying cases by histology, genotyped in an additional 4,353 cases and 6,021
controls. Two novel susceptibility loci with p≤5×10-8 were confirmed (8q24, p=8.0×10-15 and
2q31, p=3.8×10-14); two additional loci were also identified that approached genome-wide
significance (3q25, p=7.1×10-8 and 17q21, p=1.4×10-7). The associations with serous OC were
generally stronger than other subtypes. Analysis of HOXD1, MYC, TiPARP, and SKAP1 at these
loci, and BNC2 at 9p22, supports a functional role for these genes in OC development.

Invasive epithelial OC is a rare but often lethal disease. Individuals with an OC family
history have approximately a two-fold increased risk, even after accounting for mutations in
known highly-penetrant susceptibility genes, suggesting that other risk alleles await
identification. GWAS have identified common genetic variants influencing risks for a range
of cancers, including our recent identification of low-risk OC alleles at 9p22.21. The most
significant association conferred a 20% reduction in risk with each copy of the minor allele;
this association was stronger for serous subtype, suggesting that disease heterogeneity may
have reduced the power of our GWAS1. To identify further susceptibility alleles, we have
followed-up additional candidate loci from that study after stratifying cases by histological
subtype.
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Our GWAS was performed for women of European ancestry diagnosed with the major
histological subtypes of invasive epithelial OC: serous, mucinous, endometrioid, and clear
cell (Table 1, Supplementary Table 1). Phase I included 1,768 cases and 2,354 controls from
the UK genotyped using the Illumina Infinium 610K and 550K arrays, respectively. Data
were available for 507,094 genotyped SNPs and 1,549,784 imputed SNPs from HapMap.
The top-ranked 21,955 SNPs, selected based on analysis of all subtypes combined, were
genotyped in an additional 4,162 cases and 4,810 controls in Phase II leading to the
identification of a compelling association near the basonuclin 2 (BNC2) gene at 9p22.2
(p=5.4×10-22, rs3814113 for serous subtype)1. Quantile-quantile (Q-Q) plots of the
distribution of test statistics to compare genotype frequencies in cases versus controls in the
stage 1 and stage 2 data, suggested there was little evidence of any general inflation of the
test statistics (estimated inflation factor λ1000 = 1.026 and 1.0086 respectively based on the
bottom 90% of the distribution)1.

In the current study, combined Phase I and Phase II data from this GWAS were re-analyzed
overall and restricting to ‘serous only’. This revealed nine loci with a p-value ≤10-4 for all
subtypes (1p31, 1p36, 2q31, 11p14, and 17q21) and/or for serous subtype (2p22, 3q25,
7p21, and 8q24). Thirty SNPs from these loci were genotyped in an additional 4,353 cases
and 6,021 controls in Phase III; thus, data were available for combined analysis of 10,283
cases (including 5,841 serous) and 13,185 controls. In addition, results on an independent
194 cases and 40,933 controls were incorporated using metaanalyses. There was little
additional evidence of association for five loci in either the Phase III or combined data,
although trends in association were in the same direction for some SNPs (Supplementary
Table 2; Supplementary Table 3). For SNPs at two loci (2q31, 8q24), there was strong
support for associations in the Phase III data alone (p<0.001) and in the combined analyses
of all cases or serous cases only (p≤5×10-8). At two other loci, 3q25 and 17q21, there was
good evidence for associations in the combined analysis of serous cases, but these did not
quite reach genome wide significance (p=7.1×10-8 and p=1.4×10-7 respectively). No
heterogeneity across studies was observed (p>0.05); these data are summarized in Table 2,
Figure 1 and Supplementary Figure 1).

At the 8q24 locus, the minor allele of rs10088218 was associated with a decreased risk
(Table 2), with the association being more significant for serous subtype (odds ratio, OR,
0.76; 95% confidence intervals, 95%CI, 0.70-0.81; p=8.0×10-15); the additional 8q24 SNPs
rs1516982 (r2=0.46) and rs10098821 (r2=0.80) were also highly significant (Supplementary
Table 2). The minor allele of rs2072590 at 2q31 was associated with an increased risk which
was primarily significant for serous subtype (OR 1.20, 95%CI 1.14-1.25, p=3.8×10-14);
more significant results were also seen for serous subtype for minor alleles of rs2665390 at
3q25 (OR 1.24, 95%CI 1.15-1.34, p=7.1×10-8) and rs9303542 at 17q21 (OR 1.14, 95%CI
1.09-1.20, p=1.4×10-7).

We observed significant heterogeneity for associations at the 8q24 and 2q31 loci when cases
were stratified into four histological subtypes (p=2.9×10-4 for rs2072590, p=1.1 ×10-7 for
rs10088218) (Table 2). For both loci, the trends in association for endometrioid and
mucinous OC were in the same direction as serous cases, but there was no evidence of
association at either locus in clear cell OC. To a lesser degree, a difference in risk by
subtype was also observed at 3q25 (p=0.02 for rs2665390). We also examined SNP
associations by age and family history of OC in first-degree relatives. No differences in risk
were observed by age (Supplementary Table 4) and, among the four novel loci, no
interactions by family history were observed (Supplementary Table 5).

We also tested the most significant risk-associated SNPs at 8q24, 2q31, 3q25 and 17q21 for
association with overall survival after a diagnosis of OC, in ‘all’ case and ‘serous only’ case
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subgroups. For the latter group, we also performed an analysis adjusting for tumor stage and
grade. We found borderline evidence for an association with survival at 17q21 in all cases
(HR=1.06, 95% CI 1.00-1.13, P=0.04) and in serous only cases (HR=1.08, 95% CI
1.00-1.16, P=0.04). This effect was not greatly attenuated when adjusting for stage and
grade amongst serous cases (HR=1.06, 95% CI 0.97-1.15, P=0.15). There was no evidence
of association with survival at 8q24, 2q31 and 3q25.

We used Pupasuite (http://pupasuite.bioinfo.cipf.es/) for in silico analyses of risk-associated
and strongly-correlated SNPs (r2>0.80) in the four loci but failed to find compelling
evidence for any functional role (Supplementary Table 6). Genotyping of additional SNPs
identified from HapMap and the 1,000 Genomes Project
(http://www.1000genomes.org/page.php) is required to fine-map these loci to identify both
causal variants and target genes. Even so, known genomic architecture may provide some
insights into functional mechanisms underlying OC susceptibility. For example, common
variants at 8q24 have previously been shown to confer susceptibility to multiple cancer
phenotypes including prostate, colorectal, breast, and bladder cancers2-7, and previous
functional studies suggest that common variants may be associated with transcriptional
regulation of MYC8,9. Most risk associations at 8q24 are located 5′ of MYC; but the three
most significant SNPs for OC lie >700 kb 3′ of MYC in an apparent gene desert, suggesting
either that MYC is not the target gene for OC, or possibly that variants in this region are also
capable of distant regulation of MYC (Figure 1a).

rs2665390 at 3q25 is intronic to the TiPARP gene; there are no other candidate genes within
200 kb of this SNP (Figure 1b). TiPARP is a poly (ADP-ribose) polymerase (PARP)10 and is
a particularly intriguing candidate gene for OC for two reasons. First, recent reports show
that BRCA1/2 deficient cells survive by using PARP1 as an alternative DNA repair
mechanism11. This has led to the development of a novel therapy based on synthetic
inhibition of PARP1 for breast and ovarian cancer patients carrying BRCA1 or BRCA2
mutations12. Second, TiPARP is inducible by dioxin13, raising the hypothesis that this
environmental contaminant may influence OC risk among susceptible women.

The 2q31 locus contains a family of homeobox (HOX) genes involved in regulating
embryogenesis and organogenesis (Figure 1c). Altered expression of HOX genes has been
reported in many cancers14,15. The OC risk-associated SNP rs2072590 lies in non-coding
DNA downstream of HOXD3 and upstream of HOXD1, and it tags SNPs in the HOXD3 3′
UTR. Both genes have been implicated in neoplastic development16,17.

Finally, associated and correlated SNPs at 17q21 are intronic to SKAP1, which has strong
homology to the SRC oncogene at the C-terminal end (Figure 1d). SKAP1 regulates mitotic
progression, specifically at the transition of metaphase to anaphase18. In T-cells, constitutive
expression of SKAP1 suppresses activation of RAS and RAF1, both of which have been
implicated in the early stage development of OC19.

We evaluated risk-associated SNPs and candidate genes from these four novel loci, as well
as from BNC21, for evidence of a functional role in OC development by examining genotype
associated gene expression for BNC2 (9p22), MYC (8q24), TiPARP (3q25), HOXD1 and
HOXD3 (both at 2q31), and SKAP1 (17q21). We found no evidence of genotype associated
gene expression in an analysis of 48 normal primary human ovarian surface epithelial (POE)
cell cultures (Supplementary Table 7) although power was limited due to the relatively small
numbers. We also compared the expression of each of the five candidate genes between 48
POE and 24 OC cell lines and found highly-significant differences in gene expression
between normal and cancer cells for BNC2, TiPARP, HOXD1, and SKAP1 (Figure 2;
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Supplementary Figure 2). These data suggest that BNC2 and TiPARP have a loss-of-function
role, and that HOXD1 and SKAP1 have a gain-of-function role in OC development.

Gene expression was also examined in an in vitro model of OC initiation and progression
established through oncogenic expression of MYC and mutant KRAS G12V in POE cells
(Figure 2; Supplementary Table 9). We found that BNC2 and TiPARP expression decreases,
and SKAP1 expression increases, with neoplastic development, consistent with the
expression of these genes in POE versus OC cells. We also investigated gene expression for
216 primary serous OC samples analysed by The Cancer Genome Atlas Project
(http://cancergenome.nih.gov). These data support frequent loss of BNC2 and TiPARP and
gain of HOXD1 expression in OC development (Supplementary Figure 3).

In summary, we report two confirmed novel common low-penetrance OC susceptibility loci,
and a further two candidate susceptibility loci, adding to a growing list that includes BNC2
and the 19p13 locus presented in an accompanying report by Bolton and colleagues. All six
susceptibility loci suggest possible functional relevance of candidate genes that could
plausibly be involved in OC development and aid in our understanding of disease aetiology.
Strikingly, these data also suggest that common germline variation influences the clinico-
pathological development of disease, as previously reported for the highly-penetrant
(BRCA1 and BRCA2) germline variants20.

Methods
Phase I and II

As described previously1, Phase I self-reported white European participants were from four
collections of invasive epithelial OC cases and two collections of controls22,23

(Supplementary Table 1). Logistic regression and linear trend tests examined SNP
associations (including imputed genotypes) using imputed genotype weights and ethnicity-
related principal components. Phase II SNPs were selected based on Phase I ranked test
statistics (all, serous) weighted by imputation status and accuracy (r2)24 and design score,
and participants were of European ancestry from 12 studies. Logistic regression adjusted for
a HapMap-based ancestry score25 and an ancestry-informative-marker-based principal
component.

Phase III
Sixteen studies contributed invasive epithelial OC cases and controls of European ancestry
(Supplementary Table 1). Nine loci (30 SNPs, Supplementary Table 9) were selected based
on test statistic rankings from combined Phase I and Phase II analyses (p <10-5 in all or
serous cases). Eleven studies used Taqman (two SNPs) and Sequenom MassARRAY
(remaining SNPs). Data for four studies were available from a genome wide scan using the
same Illumina Infinium 610K array that was used in Phase 1 excluding samples with call
rate <95%, >1% discordance, <80% European ancestry, or ambiguous gender. For one
study, Illumina Infinium 317K data were used with imputation based on HapMap CEU data
following 100 iterations in MACH version 1.0.16, excluding SNPs with r2 <0.30. For one
study, cases and ∼2,900 controls were genotyped on a Centaurus (Nanogen) platform
(excluding SNPs with >1.5% HapMap mismatch), and additional control data used the
Illumina Infinium 317K and HumanCNV370-duo Bead Arrays; per-SNP call rate was
>97%, and concordance was >98.5%. Logistic regression modeled the number of observed
or imputed minor alleles; no confounding by age was observed. Combined analyses adjusted
for study and tested heterogeneity with Cochran's Q statistic and I2 values. Effect
modification and differences in risk by subtype were tested with interaction terms and
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polytomous regression, respectively. Summary-level data was available for the ICE study;
thus meta-analytic techniques fitted fixed and random effects26,27.

Genotyping Quality Control Measures—The Ovarian Cancer Association Consortium
(OCAC) has established robust genotyping quality control (QC) guidelines to ensure
accurate genotyping, particularly across multiple studies. Data included must pass the
following quality control criteria: (1) > 3% sample duplicate samples included in each study;
(2) samples from cases and controls mixed on 384 well plates; (3) samples that consistently
fail (e.g. for >20% of all SNPs) are removed; (4) genotype data for a SNP are removed if
call rates > 90% for each individual 384-well plate, but if > 25% plates from any site are
excluded for this reason then all the data from that site are excluded; (5) the overall call rate
for a SNP for each study > 95%, which is calculated after ineligible samples and plates are
excluded; (6) genotyping concordance rates for the duplicates >98%; (7) Hardy Weinberg
Equilibrium (HWE) in White European controls must be P≥0.005. If HWE P = 0.05-0.005
the genotyping clustering quality is reviewed by members of the OCAC genotyping
committee (PDP; GC-T, SJR, HS) before inclusion. In addition, as part of overall QC,
genotyping consistency across labs is evaluated by genotyping a panel of CEPH-Utah trios
including 90 individual DNA samples, 5 duplicate samples and 1 negative control
(http://ccr.coriell.org/Sections/Search/Panel_Detail.aspx?PgId=202&Ref=HAPMAPPT01).
Genotyping concordance between centres has to be > 98% in order for the genotype data to
be included. Genotyping QC for Phase 1 and Phase 2 of the GWAS have been described
previously1.

Genotyping QC in the current study: In Phase 1, 507,094 out of 540,573 SNPs (94%)
passed QC. In both Phase 1 and Phase 2 duplicate concordance rates were 99.9%. For phase
3 the data from the five studies using GWAS data met the following overall quality control
criteria; (1) Caucasian and greater than 80% European Ancestry; (2) Sample call rate ≥95%:
(3) SNP call rate ≥95%; (3) 100% concordance of duplicates (81 replicate pairs) (4) HWE
for each SNP P ≥ 10-4. The Sequenom and Taqman data met the OCAC criteria described
above. The results from Phase 3 genotype QC for each of the 30 SNPs are summarized in
supplementary table 10.

Survival Analysis
Among the study participants, 7,222 cases had survival time information available and 2,791
died within five years after diagnosis. The effect of the 8q24, 2q31, 3q25 and 17q21 loci on
time to all-cause mortality after EOC diagnosis was assessed using Cox regression stratified
by study and modeling the per-allele effect as log-additive. Because the EOC cases showed
a variable time from diagnosis to study entry, we allowed for left truncation with time at risk
starting on date of diagnosis and time under observation beginning at the time of study
entry. The analysis was right censored at 5 years after diagnosis in order to reduce the
number of non-EOC related deaths.

Gene Expression Analysis in POE and OC Cell Lines
Normal POE cell lines were established from brushings of histologically-confirmed disease-
free ovaries from total hysterectomies at University College London Hospital, UK; short-
term cultures were established as previously described28. The non-neoplastic status and
epithelial (non-fibroblastic) nature of cells was confirmed by staining for CA125, CK7,
FVIII, and FSP. RNA was extracted from POE and OC cell lines (Supplementary Table 11)
using RNeasy Mini Kits (QIAgen). Reverse transcribed (RT) RNA was analysed for
expression by semi-quantitative real-time PCR using the Applied Biosystems 7900HT
genetic analyzer. Gene expression was normalized against the endogenous controls
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and β-actin. Real time expression
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data were analysed using the comparative Delta-Delta Ct method. Expression values of all
cell lines were generated relative to either the lowest or highest expression of a POE cell
line, normalized against GAPDH and β-actin. Differences in the relative expression of each
candidate gene between OC and POE cell lines were assessed using a nonparametric
Wilcoxon Rank sum test. For allele-specific expression analysis, expression was calculated
relative to the average expression of common homozygotes for each SNP normalized
against the expression of the endogenous control genes; linear regression and Wilcoxon
Rank sum tests assessed difference in expression across genotypes.

An in vitro Genetic Model of Neoplastic Transformation in Normal Ovarian Epithelial Cells
Methods used for the immortalization of ovarian epithelial cells and over-expression of
MYC (IOEcmyc) are described elsewhere29. All cell lines were grown in NOSE-CM28.
Using FuGene6 (Roche), iOEcmyc cell lines were transfected with
pcDNA3.1.neo.KRASG12V (Addgene) to create cell lines stably expressing a mutant form of
KRAS (KRASG12V). KRASG12V expression was confirmed by RFLP-PCR. Mutant allele
expression was confirmed by RFLP-PCR. Anchorage-independent growth assays were
performed as previously described30. To test invasiveness, 0.125×106 cells were
resuspended in serum-free medium and added to rehydrated invasion membranes (Millipore)
for 24 hours. 10% serum (Invitrogen) was added to the lower chamber as a chemo-attractant.
Invaded cells were lysed, stained with a fluorimetric dye, and analysed on a Varioskan
platereader (Thermo). To culture cells in 3D, tissue culture plastics were coated twice with
1.5% polyHEMA dissolved in 95% ethanol and cultured for 14 days. For
immunohistochemistry, spheroids were fixed in neutral buffered formalin (VWR), processed
into paraffin and stained for MIB1 or WT1 using standard techniques. For microarray
analyses, RNA was extracted from spheroids using the QIAgen RNeasy kit (Qiagen), and
experiments used the Illumina HT-12 BeadChip platform (Illumina).
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Figure 1.
Genomic architecture of the four novel ovarian cancer susceptibility regions identified from
the EOC-GWAS. Key: Clear triangles- the location of SNP with the most statistically
significant association at each locus; Grey triangles- the location of SNPs correlated with the
associated SNP with r2>0.8 (a) The 8q24.21 locus: the most significant SNP (rs10088218)
lies >700kb distal to CMYC in an otherwise ‘gene desert’. Lower resolution map:
rs10088218 is located with respect to 13 other SNPs (black triangles) significantly
associated with susceptibility to prostate cancer (PrC), colorectal cancer (CrC), breast cancer
(BrC), urinary bladder cancer (UBC) and renal disease (ReD). Higher magnification map:
rs10088218 is located with respect to 10 other HapMap SNPs correlated with rs10088218
(b) The most significant SNP at 3q25.31 (rs2665390) lies within TiPARP, the only gene
within a ∼200kb region spanning this SNP. Higher resolution map: rs2665390 location with
respect to the only other highly correlated HapMap SNP, which is also in TiPARP. (c)
2q31.1 contains the HOXD gene family. The most significantly associated SNP (rs2072590)
lies in a non-coding region ∼5kb distal to HOXD3 and ∼10kb proximal to HOXD1. Higher
resolution map: The location of rs2072590 with respect to two correlated SNPs, one 3′ of
HOXD3, the other distal to HOXD4. (d) 17q21.31 contains rs9303542, which is located in
the intron of SKAP1, which lies distal to the HOXB family of transcription factors. This
SNP is correlated with several other SNPs all located in SKAP1.
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Figure 2.
Gene expression analysis for five candidate EOC susceptibility genes: (a) BNC2 (9p22); (b)
TiPARP (3q25); (c) CMYC expression (8q24); (d) HOXD1 (2q31), and (e) SKAP1 (17q21).
Two different types of analysis are shown: the first panel of each pair shows real time RT-
PCR analysis of each gene comparing gene expression between 48 POE and 24 OC cell
lines. Gene expression is shown was normalised against b-actin. Expression was also
normalized against GAPDH, which gave similar results (supplementary figure 2). Error bars
sow standard deviation. The second panel of each pair shows expression microarray data
from an in vitro stepwise model of neoplastic transformation POE cells. Briefly, gene
expression in immortalised POE (iOE) cells, verses iOEcmyc cells overexpressing CMYC,
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verses iOEcmyc.kras cells overexpressing CMYC and mutant KRAS. (a) BNC2 expression is
significantly lower in OC cell lines verses normal POE cells for both endogenous controls.
In the model of neoplastic transformation, BNC2 expression decreases significantly with
each additional oncogenic event, as the cells acquire a more neoplastic phenotype. (b)
TiPARP shows significantly reduced expression in OC cells compared to POE cells for both
endogenous controls; TiPARP expression also decreases sequentially in the neoplastic
transformation model. (c) CMYC expression is significantly increased in OC compared to
POE cells for both endogenous controls and increases in the transforming cell line model.
(d) Expression of HOXD3 and HOXD1 was evaluated. HOXD3 expression was too low to
draw reliable conclusions. HOXD1 increased in OC compared POE cells, suggesting
activation in OC development. (e) SKAP1 expression was significantly greater in OC
compared to POE cells. A trend towards increased expression was also observed in
progressively transforming iOE cells.
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