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Abstract

Recurrent microdeletions and microduplications of a 600 kb genomic region of chromosome 

16p11.2 have been implicated in childhood-onset developmental disorders1-3. Here we report the 

strong association of 16p11.2 microduplications with schizophrenia in two large cohorts. In the 

primary sample, the microduplication was detected in 12/1906 (0.63%) cases and 1/3971 (0.03%) 

controls (P=1.2×10-5, OR=25.8). In the replication sample, the microduplication was detected in 

9/2645 (0.34%) cases and 1/2420 (0.04%) controls (P=0.022, OR=8.3). For the series combined, 

microduplication of 16p11.2 was associated with 14.5-fold increased risk of schizophrenia (95% 

C.I. [3.3, 62]). A meta-analysis of multiple psychiatric disorders showed a significant association 

of the microduplication with schizophrenia, bipolar disorder and autism. The reciprocal 

microdeletion was associated only with autism and developmental disorders. Analysis of patient 

clinical data showed that head circumference was significantly larger in patients with the 

microdeletion compared with patients with the microduplication (P = 0.0007). Our results suggest 

that the microduplication of 16p11.2 confers substantial risk for schizophrenia and other 

psychiatric disorders, whereas the reciprocal microdeletion is associated with contrasting clinical 

features.

Rare structural mutations play an important role in schizophrenia. Recent studies have 

shown that the genome-wide burden of rare copy number variants (CNVs) is significantly 

greater in patients than in healthy controls 4-6. In addition, multiple structural variants have 

been implicated in schizophrenia. Seminal examples include the recurrent microdeletion of 

22q11.2 7, and a balanced translocation disrupting the gene DISC1 8. More recently, 
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recurrent microdeletions at 1q21.1, 15q13.3, 5,9 and 15q11.2 6,9 and copy number mutations 

at other genomic loci10-12 have been associated with schizophrenia in large cohorts.

We previously reported two cases of childhood-onset schizophrenia (COS) with a 600 kb 

microduplication of 16p11.2 4. This region is a well documented hot spot for recurrent 

rearrangements in association with autism spectrum disorders and mental retardation 1-3, 13, 
14. Genomic hotspots such as this are important candidate loci in genetic studies of 

schizophrenia.

We tested the hypothesis that microduplications of 16p11.2 are associated with 

schizophrenia by analysis of microarray intensity data in a sample of 1906 cases and 3971 

controls. Patients and controls were drawn from several different sources, as described in the 

supplemental note and supplementary table 1. Samples were analyzed with one of four 

microarray platforms (NimbleGen HD2, Affymetrix 6.0, Affymetrix 500K and ROMA 

85K). Only the 16p11.2 region was examined. Thirteen microduplications and four 

microdeletions were detected in our primary sample using standard segmentation algorithms 

(Figure 1A, Supplementary Figure 1A). Microduplications were detected in 12/1906 cases 

(0.63%) and 1/3971 controls (0.03%), a statistically significant association (Table1, P = 

1.2×10-5, OR = 25.8 [3.3, 199]).

In a subset of individuals evaluated at Cold Spring Harbor Laboratory, consisting of 1352 

cases and 1179 controls, CNV calls were verified by MeZOD, an independent CNV 

genotyping algorithm that identifies outliers in the sample based on the median probe Z-

score of the target region. These results are illustrated in Figure 1 as cluster plots. All 

microduplications and microdeletions detected in the combined sample were experimentally 

validated using an independent microarray platform (Supplementary Table 2).

In order to replicate this association, we evaluated the 16p11.2 region using microarray data 

(Affymetrix 6.0 platform) from an independent sample of 2645 schizophrenia cases and 

2420 controls. These data were collected as part of a case-control study of schizophrenia 

supported by the Genetic Association Information Network (GAIN, phs000021.v2.p1). We 

detected ten duplications and one deletion using standard HMM calling algorithms (Figure 

1A). The same events were also detected using MeZOD (Figure 1E). All 16p11.2 

rearrangements were validated by an independent microarray platform (Supplementary 

Table 2). The microduplication was detected in 9/2645 cases and 1/2420 controls, a 

significant association (P = 0.022, OR=8.3 [1.3, 50.5]).

The odds ratios in our primary and replication datasets were not significantly different 

(Breslow-Day-Tarone test P = 0.46). Thus, our initial result was replicated in an 

independent sample. For the combined sample, the association of schizophrenia with 

microduplication at 16p11.2 was highly significant (P=4.3×10-7, OR=14.5 [3.3,62]). Sex of 

the subject did not have a significant effect on the association (Supplementary Note)

Our present findings, and those from previous studies1-3, 13, 14, suggest that mutations at 

16p11.2 confer high risk for schizophrenia and for other neuropsychiatric disorders. Clinical 

variability associated with the 16p11.2 microduplication is evident from the heterogeneity of 

psychiatric diagnoses among microduplication carriers in five families in our series 
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(Supplementary Figure 2). In these families, ten relatives carried the microduplication found 

in the proband. The diagnoses of these relatives were: schizophrenia (N=3), bipolar disorder 

(N=1), depression (N=2), psychosis signs not otherwise specified (N=1), and no mental 

illness (N=3). We were able to determine the parent of origin in four families, and in all 

cases the microduplications were inherited from a non-schizophrenic parent. The 

observations in these few families suggest that penetrance of the duplication is incomplete, 

though substantial (perhaps 30-50%), and that expression is highly variable.

In order to more precisely define the spectrum of psychiatric phenotypes associated with 

rearrangements of 16p11.2, we performed a meta-analysis of data on schizophrenia, bipolar 

disorder, and childhood developmental disorders (combining autism and global 

developmental delays). We integrated data from this study with four publicly available 

datasets 1,3,5, 15 to generate a combined sample of 8590 individuals with schizophrenia, 

2172 with developmental delay or autism, 4822 with bipolar disorder, and 30,492 controls 

(Supplementary Note, Supplementary Table 3). In this combined sample, the 

microduplication of 16p11.2 was strongly associated with schizophrenia (Table 2, OR = 8.4 

[2.8, 25.4], P = 4.8×10-7) and autism (OR = 20.7 [6.9, 61.7], P = 1.9×10-7). The association 

with bipolar disorder was also significant (OR = 4.3 [1.3; 14.5], P = 0.017). The reciprocal 

microdeletion of 16p11.2 was strongly associated with developmental delay or autism (OR = 

38.7 [13.4, 111.8], P = 2.3×10-13), as reported previously1-3. However, the deletion was not 

associated with schizophrenia or bipolar disorder (Supplementary Note). These results 

suggest that the microduplication is associated with multiple psychiatric phenotypes, 

whereas the reciprocal microdeletion is more specifically associated with developmental 

delay and autism.

We explored the association of 16p11.2 microduplications and microdeletions with two 

clinical measures, head circumference and height. Available data were compiled from 32 

patients with 16p11.2 mutations who had a diagnosis of schizophrenia, autism spectrum 

disorder or developmental delay (Supplementary Note, Supplementary Tables 4 and 

references 13, 16). Z-scores for head circumference and height were calculated using 

standard growth charts from the Centers for Disease Control. Head circumference was 

greater among 23 patients with microdeletions relative to 9 patients with microduplications 

(Supplementary Table 5). The mean orbital frontal circumference (OFC) values of patients 

with microdeletions and microduplications were 1.25 and -0.28, respectively (two-tailed 

Wilcoxon Rank Sum Test P = 0.0007). In addition, mean head circumference of the 

microdeletion group was significantly greater than the population mean (P = 0.0001), 

whereas the mean head circumference of the microduplication group was not statistically 

significant (P = 0.29). The association between the 16p11.2 microdeletion and larger head 

circumference was observed in multiple diagnostic categories and was not specifically 

attributable to patients with autism (Supplemental Table 5). The microduplication and 

microdeletion groups did not differ significantly in height.

Microduplication of 16p11.2 is associated with increased risk of schizophrenia between 8 

and 24-fold. This region joins a growing list of genomic hotspots that confer high risk for 

the disorder. The odds ratios in our series for the 16p11.2 microduplication and 

schizophrenia are comparable to odds ratios for deletions at other schizophrenia-associated 
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genes and regions. Deletions of 1q21.1, 15q13.3, and NRXN1 have reported odds ratios 

ranging from 7 to 18 5,9,10.

Previous genome-wide studies of copy number variation did not find a significant 

association with the microduplication of 16p11.2 and schizophrenia. This event is rare, and 

its appearance in a cohort may be influenced by several factors, including resolution of the 

detection platform, methods of analysis, and chance. In the International Schizophrenia 

Consortium (ISC) study 5, microduplications spanning >50% of the 16p11.2 region were 

detected in 5/3391 cases and 1/3181 controls. These results are consistent with our findings, 

but the association did not meet the criteria for genome-wide significance in that study. In 

the SGENE consortium study of schizophrenia 9, the 16p11.2 microduplication was not 

selected as a candidate because the event was not observed in the initial phase of that study 

as a de novo mutation, which was the key criterion for inclusion in the association analyses.

Microduplication at 16p11.2 is associated with multiple neuropsychiatric phenotypes. 

Phenotypic heterogeneity has been observed for virtually all structural variants associated 

with schizophrenia. For example, in a large Scottish pedigree harboring a translocation 

disrupting DISC1, translocation carriers had diagnoses of schizophrenia, bipolar disorder, 

major depressive disorder, or no mental illness 8. Similarly, microdeletions of 1q21.117,18, 

15q13.319, 22q11.2 20, and neurexin-1 21,22 10,12 are associated with adult psychiatric 

disorders and with autism and other pediatric neurodevelopmental disorders.

The association between the 16p11.2 microdeletion and increased head circumference is 

interesting given that the microdeletion appears specific to autism and developmental delay. 

Several studies have found increased head circumference in patients with autism 23-30, 

leading to the suggestion that early brain overgrowth may be a key neurobiological 

mechanism in the disorder 31. A recent study has shown that microdeletions and 

microduplications of 1q21.1 are associated with microcephaly and macrocephaly 

respectively18. Taken together, these studies suggest that some mutations underlying 

neurodevelopmental disorders may also lead to changes in brain volume.

The 16p11.2 microduplication spans a region of approximately 600kb containing 28 genes 

(Supplementary Figure 1B), including multiple genes with potential roles in 

neurodevelopment. At least 17 of the 28 genes are expressed in the mammalian brain 

(Supplementary Table 6). Behavioral features have been reported in mouse knockout models 

of Mapk3 -/- Doc2a-/-and Sez6/2-/- 32-34. Further studies are needed in order to identify the 

specific gene or genes in this region for which dosage effects contribute to increased risk for 

psychiatric and neurodevelopmental disorders.

Our findings further strengthen the evidence demonstrating a role for rare mutations in 

schizophrenia 4-6,9. Collectively, these studies demonstrate that schizophrenia is 

characterized by marked genetic heterogeneity. The 16p11.2 locus by itself accounts for 

only a small fraction of the illness. At the same time, duplication of this region confers 

substantial risk to the individuals who carry it. The fact that a single mutation is rare does 

not negate its potential relevance to the broader patient population. The collective effect of 

rare mutations at many different loci may account for a substantial proportion of affected 
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individuals 4,5. Furthermore, the microduplication of 16p11.2 and rare mutations at other 

loci will likely impact overlapping neurobiological pathways. Characterizing these critical 

brain processes will contribute substantially to our understanding of the origins of 

schizophrenia and provide important targets for treatment development.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Microduplications and microdeletions at 16p11.2 in persons with schizophrenia and 
controls
(A) 16p11.2 rearrangements were detected in a primary sample of 1906 cases and 3971 

controls (Panels A, B, C, D) and a replication sample of 2645 cases and 2420 controls (Panel 

A, E). The single microduplication and three microdeletions detected in the primary control 

set are presented based on the Affymetrix 500K coordinates (hg18). All other CNVs were 

validated in the NimbleGen HD2 platform and are illustrated based on the validation 

coordinates (Panels B, C, D, E) The median z-score for the 535kb 16p11.2 target region is 

plotted on the X-axis and the median z-score of flanking invariant probes is plotted on the 

Y-axis. Data are presented separately for the ROMA (B), Affymetrix500K (C), NimbleGen 

HD2 (D), and (Affymetrix 6.0 (E) platforms. CNVs were called using thresholds of >2 SD 

for ROMA and >1 SD for all other platforms ( ). MeZOD and the HMM algorithms 

detected the same deletions and duplications at 16p11.2.
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