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Variants associated with blood lipid levels may be population-specific. To identify low-frequency variants

associated with this phenotype, population-specific reference panels may be used. Here we impute nine

large Dutch biobanks (B35,000 samples) with the population-specific reference panel created by the

Genome of the Netherlands Project and perform association testing with blood lipid levels. We report the

discovery of five novel associations at four loci (P value o6.61� 10�4), including a rare missense variant in

ABCA6 (rs77542162, p.Cys1359Arg, frequency 0.034), which is predicted to be deleterious. The frequency

of this ABCA6 variant is 3.65-fold increased in the Dutch and its effect (bLDL-C¼0.135, bTC¼0.140) is

estimated to be very similar to those observed for single variants in well-known lipid genes, such as LDLR.
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G
enome-wide association studies (GWAS) have identified a
large number of loci associated with blood lipid levels and
analysis suggest there are additional susceptibility loci that

have not yet been discovered1–3. Despite the fact that rare
functional variants are known to play a major role in lipid
metabolism1–3, there has been limited success in finding such
variants in population-based studies using next-generation
sequencing. Even if the effect of these variants is expected to be
larger than that of common variants, the sample size needed to
detect these rare or low-frequency variants increases dramatically
with variant rarity. As the frequency of rare variants may increase
in certain populations because of drift and founder effects4, the
power of searches for rare functional variants may improve by
the use of reference sets specific to distinct populations. Such
references allow for better quality imputation of rare variants
especially those with increased frequency in the population of
interest3,5,6. Previous studies have successfully detected rare
variants by imputation into larger sets of individuals in isolated
populations followed by association testing to detect variants
associated with the trait of interest7–9.

Here we describe an imputation-based GWAS for circulating
lipid levels using a custom-built reference panel for the Dutch
population (Genome of the Netherlands, GoNL, http://www.
nlgenome.nl/), in which the whole genomes of 250 parent–
offspring trios were sequenced at B13� coverage5,6. Owing to
the trio design, the phasing quality of the reference panel was
better than that of the 1000 Genomes (1-kG) Phase 1 panel. In

this study we show that using this population-specific reference
panel we were able to identify five novel associations at four loci.

Results
Nine large Dutch epidemiological cohorts (comprising 36,000
samples in total) were imputed with the GoNL reference panel
(B19.5 million single-nucleotide polymorphisms (SNPs)) on an
identical protocol6,10. All cohorts conducted association analysis
on the imputed variants assuming an additive genetic effect
on high-density lipoprotein cholesterol (HDL-C), low-density
lipoprotein cholesterol (LDL-C), total cholesterol (TC) and
triglyceride (TG) levels (Methods, Supplementary Methods and
Supplementary Table 1), and the results were meta-analysed. We
used conditional analysis implemented in GCTA11 to identify
variants associated independently with lipid levels.

Both rare (minor allele frequency (MAF) o0.01), low
(0.01oMAFo0.05) and common variants (MAF40.05) were
associated with HDL-C (N¼ 60 variants), LDL-C (N¼ 142
variants), TC (N¼ 134 variants) and TG (N¼ 16 variants) in
both known and novel loci (Methods, Supplementary Tables 2–5
and Supplementary Fig. 1). In Fig. 1 we compare the allele
frequencies that reach genome-wide significance in the GCTA
analysis (P value o5� 10� 8) to those reported in refs 1,2
(Fig. 1). The majority of the known HDL-C (31 of 45, 68.9%),
LDL-C (24 of 34, 70.6%), TC (33 of 48, 68.6%) and TG (13 of 30,
43.3%) loci described in ref. 1 replicated at a P value
o3.18� 10� 4 (Bonferroni correction based on 157 variants;
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Figure 1 | Identified variants for plasma lipid levels. Distribution of the variants identified by conditional analysis implemented by GCTA to be

independently associated with the lipid traits (a) HDL-C (60 variants), (b) LDL-C (142 variants), (c) TC (134 variants) and (d) TG (16 variants)) over MAF

bins after meta-analysis of discovery cohorts (black). The histograms also include loci identified in ref. 1 (grey) and ref. 2 (white).
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Methods, Supplementary Figs 2 and 3 and Supplementary
Tables 6–7). We also confirmed several of the HDL-C (6 of 27,
22.2%), LDL-C (7 of 21, 33.3%), TC (4 of 23, 17.4%) and TG (1 of
12, 8.3%) loci described in ref. 2 at a P value o6.02� 10� 4

(Bonferroni correction based on 83 variants) despite a sample size
of B20% of the other studies.

To identify novel loci associated with blood lipid levels, we
selected from the list of variants identified by GCTA, those
variants located more than 1 Mb away from previously identified
loci. This resulted in six novel associations at five loci (Methods,
Tables 1 and 2 and Supplementary Table 8). The five loci are not
in linkage disequilibrium (LD) with previously described GWAS
loci (Methods and Supplementary Table 9). Conditional analysis
in the discovery cohorts showed that these new variants were
independent from previously identified loci (Supplementary
Table 10 and Supplementary Fig. 4). Of the five loci, three
(rs149580368, rs77542162 and rs144984216) have an increased
frequency in GoNL compared with 1-kG (Phase 1 integrated
release v3, April 2012, all ancestries; Table 1), suggesting that
there may have been genetic drift in the Dutch population for
these loci4. Yet, as each of these loci has a MAF40.005, we
assumed that these alleles also segregate in other populations of
European descent4, such as those of the Cohorts for Heart and
Aging Research in Genomic Epidemiology (CHARGE)
consortium. Therefore, we set out replication in independent
samples from the CHARGE cohorts using the 1-kG reference
panel (Phase 1 integrated release v3, April 2012, all ancestries).
We were able to replicate five out of the six variants using the
Bonferroni-corrected P value threshold of 8.33� 10� 3 (Table 2,
Methods and Supplementary Table 11).

Of the replicated variants, rs77542162 is the most interesting
variant. This missense variant is associated with both LDL-C and
TC (Supplementary Figs 5 and 6) and is located on chromosome
17 within the ABCA6 gene (ATP-binding cassette, subfamily A
(ABC1), member 6). The frequency of this variant is 1.31-fold
higher in the discovery cohorts than in the replication cohorts
and even 3.65-fold higher in the GoNL population than in the
1-kG population. This missense variant changes the amino acid
cysteine into arginine at position 1359 (Cys1359Arg) and is

predicted to be damaging for the structure and function
of the protein by Polyphen2 (ref. 12), MutationTaster13 and
LRT14. The effect size of rs77542162 (bLDL-C¼ 0.135 and
bTC¼ 0.140) is very similar to those observed for other single
variants in well-known lipid genes, such as LDLR and CETP,
as reported in ref. 1. The membrane-associated protein encoded
by this gene is a member of the superfamily of ATP-binding
cassette (ABC) transporters that transport various molecules
across extra- and intracellular membranes. This protein is a
member of the ABC1 subfamily, which is the only major ABC
subfamily found exclusively in multicellular eukaryotes. ABCA6 is
clustered with four other ABC1 family members on chromosome
17q24 and appears to play a role in macrophage lipid
homeostasis.

One other replicated variant, rs149580368, is also enriched
with a 1.92-fold increase in frequency in the Dutch population
compared with the 1-kG population. This intergenic variant
(Supplementary Fig. 7), without a significant cis-eQTL effect, is
located between the protein-coding genes C17orf105 (chromo-
some 17 open reading frame 105) and MPP3 (membrane protein,
palmitoylated 3). Two replicated variants have similar frequencies
in the GoNL and 1-kG reference sets: rs4752801 (Supplementary
Fig. 8), an new intergenic variant with a high frequency
(MAF¼ 0.355) that is located in a region previously identified1,
and rs117162033 (Supplementary Fig. 9), an intronic variant in
the myosin F (MYO1F)-coding gene. C17orf15, MPP3 and
MYO1F have no known impact on lipid levels. As the
imputation quality of rs117162033 is lower than the other
variants, we validated the imputation of this variant using the
same approach as published in ref. 15. We compared in a random
sample of 65 participants of the GoNL reference panel their
sequence and best-guess GoNL-imputed genotypes and found
that the concordance was 100% (all participants were correctly
imputed). The association between TG and the intronic variant in
the MYO1F gene is remarkable because of the low frequency of
the variant. This confirms the conclusions as published before
about the GoNL reference panel, that the trio-based phasing
contributed significantly to the imputation quality of rare
variants5.

Table 1 | Summary descriptions for the variants associated with HDL-C, LDL-C, TC or TG.

SNP Chr Position EA NEA Gene MAFGoNL MAF1-kG MAFGoNL/MAF1-kG (P value for
two population proportions)

rs4752801 11 47,907,641 G A Close to the NUP160 0.347 0.338 1.027 (0.258)
rs149580368 17 41,874,745 A C Between C17orf105 and MPP3 0.029 0.015 1.923 (o0.0001)
rs77542162 17 67,081,278 G A ABCA6 0.030 0.008 3.647 (o0.0001)
rs144984216 19 20,479,901 T C ZNF826P 0.028 0.011 2.555 (o0.0001)
rs117162033 19 8,627,569 T C MYO1F 0.007 0.007 0.957 (o0.0001)

EA, effect allele; GoNL, Genome of the Netherlands; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; MAFGoNL and MAF1 kG, the minor allele frequency of the effect
allele in the GoNL reference panel and in the 1-kG reference panel (Phase 1 integrated release v3, April 2012, all ancestries), respectively; NEA, non-effect allele; SNP, single-nucleotide polymorphism;
TC, total cholesterol; TG, triglyceride.

Table 2 | Results for the variants associated with HDL-C, LDL-C, TC or TG.

Trait SNP Discovery phase Replication phase Combined discovery and replication

N MAF Rsq b s.e.b P value N MAF Rsq b s.e.b P value MAF b s.e.b P value

HDL-C rs4752801 33,613 0.355 0.992 �0.023 0.003 1.62E� 12 31,422 0.362 0.985 �0.012 0.003 5.63E�05 0.359 �0.017 0.002 8.39E� 15
HDL-C rs149580368 36,000 0.036 0.674 �0.075 0.010 4.23E� 14 21,281 0.023 0.621 �0.079 0.014 5.90E�09 0.031 �0.077 0.008 1.53E� 21
LDL-C rs77542162 35,624 0.034 0.734 0.135 0.023 6.67E�09 21,969 0.026 0.773 0.125 0.031 4.35E�05 0.031 0.131 0.019 1.33E� 12
TC rs77542162 36,109 0.034 0.731 0.140 0.025 1.29E�08 29,196 0.027 0.785 0.095 0.028 6.61E�04 0.031 0.120 0.019 7.31E� 11
TC rs144984216 31,622 0.046 0.573 �0.140 0.024 7.88E�09 24,913 0.025 0.632 �0.056 0.036 1.22E�01 0.039 �0.114 0.020 1.58E�08
TG rs117162033 26,122 0.016 0.511 �0.143 0.025 8.02E�09 10,296 0.021 0.573 �0.133 0.030 7.98E�06 0.018 �0.139 0.019 3.10E� 13

HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; MAF, minor allele frequency; SNP, single-nucleotide polymorphism; TC, total cholesterol; TG, triglyceride.
MAF, the weighted average of minor allele frequency for the effect allele across all studies in the discovery phase, replication phase or combined, respectively. N, sample size after QC. Rsq, the mean
imputation quality of all cohorts. b is the effect of the effect allele in mmol l� 1.
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In this current study, the GoNL reference panel was used for
imputations of the discovery cohorts and the 1-kG reference
panel for the imputation of the replication cohorts. Although it
would be interesting to impute with a combined reference panel
of both the GoNL data, the 1-kG data and other sequence data,
this effort is ongoing.

This study shows that the imputation of a population-specific
reference panel into large epidemiological cohorts can reveal both
low-frequency and rare variants associated with blood lipid levels
using classical association testing approaches. The three variants
with increased frequency in the Dutch population as compared
with the 1-kG population include a rare, predicted to be
deleterious missense variant in ABCA6, which has increased
frequency 3.65 times larger in the Dutch population. The effect of
this variant is comparable to that of variants in the LDLR gene, a
gene for which several population-based screening programmes
have been initiated. Our findings suggest that next-generation-
sequencing effort may yield clinically relevant findings. Our paper
further shows that next-generation-sequencing efforts in specific
homogeneous populations as the Dutch may yield clinically
relevant findings worldwide.

Methods
Study descriptions. The descriptions of the including cohorts can be found in the
Supplementary Methods. A written informed consent was obtained from all study
participants for all cohorts and local ethical committees at participating institutions
approved individual study protocols.

Study samples and phenotypes. A summary of the details of both the discovery
and replication cohorts participating in this study can be found in Supplementary
Tables 1 and 12.

Only samples of Dutch ancestry were used in the discovery cohorts; the samples
in the replication cohorts are from various ancestries (see Supplementary Table 12).
In all studies, except MESA Whites, all individuals who used lipid-lowering
medication at the time the lipid levels were measured, were excluded. In MESA
Whites, the total cholesterol values for individuals on lipid-lowering medication
were divided by 0.8. In all studies except for LLS and PREVEND, the subjects were
fasting when the lipid levels were measured. In LLS all samples were non-fasted
and in PREVEND 2.99% were non-fasted. The LDL-C levels were measured within
the ERF, Croatia-Korcula, Croatia-Split, Croatia-Vis, FamHS and Lifelines cohorts,
within the other cohorts the Friedewald equation was used to calculate the LDL-C
levels16.

The lipid measurements were adjusted for sex, age and age2 in all cohorts.
Various methods were used to account for family relationships: in ERF grammar-
gamma, GenABEL version 1.7.6 (refs 17,18) was used; in the Croatia-Korcula,
Croatia-Split, Croatia-Vis and Generation Scotland cohorts mmscore
(GenABEL)17 was used; and in LLS, qt-assoc was used. In CHS the clinic was used
as extra covariate, in Lifelines PC1 and PC2, in FamHS the field centre, the
genotyping array (Illumina 550 k, 610 k and 1 M), PC5 only for TC and PC1 only
for LDL, in FHS the cohort (offspring and third generation) and PCs, in MESA
Whites 2 PCs and study site, in NTR-NESDA PCs and chip effect, in ORCADES
the genotyping array and PC1, PC2 and PC3, in PROSPER-Dutch only PC1 and in
both PROSPER-Scottish and PROSPER-Irish PC1-PC4.

Genotyping and imputations. Detailed information about genotyping and
imputations per cohort can be found in the Supplementary Methods. In summary,
all cohorts were genotyped using commercially available Affymetrix or Illumina
genotyping arrays, or custom Perlegen arrays. Quality control was performed
independently for each study. To facilitate meta-analysis, each replication cohort
performed genotype imputation using IMPUTE19 or Minimac20 with reference to
the GoNL project data for the discovery cohorts and with reference to the 1-kG
project data for the replication cohorts.

GWAS in all discovery cohorts. All nine discovery cohorts ran separate the
genome-wide association study for each of the four traits: HDL-C, LDL-C, TC and
TG. Supplementary Table 13 shows the genomic control factor l per trait per
cohort and Supplementary Figs 10–13 show the l per MAF bin per trait per cohort.
We therefore used only the SNPs with a R240.3, R2o1.1 and expected minor
allele count (expMAC¼ 2�MAF�R2 � sample size) 410. Most inflations are
observed within the ERF study, especially in the lowest-frequency variants, which is
probably caused by the family structure in this cohort.

Meta-analysis of discovery cohorts. The association results of all studies were
combined and the s.e.-based weights were calculated using METAL21. This tool
also applies genomic control by automatically correcting the test statistics to
account for small amounts of population stratification or unaccounted relatedness.
METAL also allows for heterogeneity. We used the following filters: 0.3oR2o1.1
and expMAC410.

After meta-analyses of all available variants, we excluded the variants that are
not present in at least six of the nine cohorts. We also excluded all variants that are
labelled as being in the inaccessible genome, since the quality of those SNPs cannot
be guaranteed22. The remaining variants per trait, see Supplementary Table 14,
were used to create Manhattan plots and QQ plots, see Supplementary Figs 14 and
15. The meta-analysis resulted in 1,905 SNPs with a P value less than 5� 10� 8 for
HDL-C, 2,626 SNPs for LDL-C, 3,133 SNPs for TC and 1,310 for TG.

Confirmation of known loci. Previously, Teslovich et al.1 and Willer et al.2

identified 157 loci associated with one of more of the lipids. Teslovich et al.1

identified 47, 37, 52 and 32 loci to be associated with HDL-C, LDL-C, TC and TG,
respectively. The positions of these loci were reported on human genome build 36;
we therefore lifted these positions over to human genome build 37 and checked the
association results after the meta-analysis of all discovery cohorts. The effect size of
these loci was reported in mg dl� 1, whereas in this study we use mmol l� 1. We
therefore multiplied the effect size for the loci associated with TG with 0.0259 and
the other loci with 0.011. Supplementary Fig. 2 and Supplementary Table 6 show
the comparison per trait of our meta-analysis of all discovery cohorts with the
results of the meta-analysis in ref. 1. We did the same for the loci identified in
ref. 2, see Supplementary Fig. 3 and Supplementary Table 7. The effect size of these
loci could not be compared with our results, since trait residuals within each study
participating in the meta-analysis in ref. 2 were adjusted for sex and age2 and
subsequently quantile normalized. Their GWAS was performed with the inverse
normal transformed trait values.

Selection of independent variants. In order to select only associated variants that
were independent of previous findings, we used the GCTA tool11. This tool
performs a stepwise selection procedure to select multiple associated SNPs by a
conditional and joint analysis approach using summary-level statistics from a
meta-analysis and LD corrections between SNPs estimated from the GoNL
reference panel, release 4. This analysis revealed 60 independent variants associated
with HDL-C, 142 independent variants associated with LDL-C, 134 independent
variants associated with TC and 16 independent variants associated with TG. By
using this approach, we were able to identify additional independent variants in
known loci. Figure 1 shows that we identified both common and rare variants and
more rare variants compared with refs 1,2. There is an overlap between the
genome-wide significant SNPs of the different traits, and also between the
independent SNPs of the different traits, as shown in Supplementary Fig. 1.

Identification of potential novel variants. To identify potential novel variants,
we first excluded all variants within 1 Mb of a known loci from refs 1,2. Since the
number of loci associated with the four traits differ, we end up with 7,946,245 SNPs
for HDL-C, 8,014,693 SNPs for LDL-C, 7,923,530 SNPs for TC and 7,468,790 SNPs
for TG. For all traits we do find some genome-wide significant loci, see
Supplementary Figs 16 and 17. We used the GCTA tool to select only those
variants that are independently associated with the lipid trait. This analysis revealed
two novel independent variants associated with HDL-C, one novel independent
variant associated with LDL-C, two novel independent variants associated with TC
and one novel independent variants associated with TG, see Supplementary Table 8
and Supplementary Fig. 18. We used PLINK to test whether these six variants are
in LD with the known loci from refs 1,2. None of the six variants are in LD with
known loci associated with the same trait on the same chromosome (R2o0.14).

Replication of potential novel variants. The six potential novel loci were
replicated in 11 cohorts: CHS, Croatia-Korcula, Croatia-Split, Croatia-Vis, FamHS,
FHS, Generation Scotland, MESA Whites, ORCADES, PROSPER-Scottish and
PROSPER-Irish. The association results of all cohorts were combined and the
s.e.-based weights were calculated using METAL21. The Bonferroni correction for
multiple testing was 8.33� 10� 3. This resulted in the significant replication of five
out of the six variants, see Supplementary Fig. 19 and Supplementary Table 11.

Conditional analysis. Within the discovery cohorts we performed a conditional
analysis to see whether the novel variants are independent of the known loci from
refs 1,2. Supplementary Table 10 shows the results within these cohorts with and
without adjusting for the known loci for the trait in question, if available in the
GoNL reference panel. Since the unadjusted and adjusted results are similar, we
conclude that the newly identified variants are independent of the known loci.
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