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Abstract

Signal transduction, regulatory processes, and pharmaceutical responses are highly dependent 

upon ligand residence times. Gaining insight into how physical factors influence residence times, 

or koff, should enhance our ability to manipulate biological interactions. We report experiments 

that yield structural insight into koff for a series of eight 2,4-diaminopyrimidine inhibitors of 

dihydrofolate reductase that vary by six orders of magnitude in binding affinity. NMR relaxation 

dispersion experiments revealed a common set of residues near the binding site that undergo a 

concerted, millisecond-timescale switching event to a previously unidentified conformation. The 

rate of switching from ground to excited conformations correlates exponentially with Ki and koff, 

suggesting that protein dynamics serves as a mechanical initiator of ligand dissociation within this 

series and potentially for other macromolecule-ligand systems. Although kconf,forward is faster than 

koff, use of the ligand series allowed for connections to be drawn between kinetic events on 

different timescales.

A long-sought goal in the biochemistry of receptor-ligand interactions is to gain an 

understanding of what molecular forces contribute to binding affinity and kinetics. A 

fundamental question is, how does dissociation occur once a ligand (e.g., peptide or small 

molecule) is bound to its receptor? This is an important question since ligand residence 

times control the strength of regulatory processes1–2. One model for dissociation is simple 

diffusion of ligand from the receptor. A more mechanistic reasoning would be that a specific 
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event physically disrupts the interaction between ligand and receptor, leading to ligand 

release or ejection. Indeed, myoglobin requires structural deformations to bind and release 

oxygen3–4; however, this can be viewed as a special case since ligand is completely buried 

from solvent. We postulate that protein structural fluctuations could be a more generally 

utilized mechanism for weakening intermolecular interactions and effectively ‘pushing’ or 

shearing a ligand away from its receptor. Experimental studies directed at this question 

should benefit structure-based drug design and protein (enzyme) engineering. From a 

biological perspective, because signal transduction is driven by countless cycles of ligand 

binding and release5, insight into mechanisms of ligand release could also make possible the 

drawing of fundamental connections between internal protein dynamics and cell signaling.

To probe the potential role of dynamics in small molecule ligand dissociation, we took a 

‘medicinal chemistry’ approach of observing how protein motions change in response to 

varying structural features within a ligand series. Enzymes are common pharmaceutical 

targets and exhibit considerable dynamics that are amenable to characterization by NMR 

relaxation dispersion6–11. Thus, to test our approach, we characterized relaxation dispersion 

in E. coli dihydrofolate reductase (DHFR) in complex with eight different antifolate 

inhibitors spanning an affinity range of six orders of magnitude. Three of these were 

reported previously: methotrexate (MTX), trimethoprim (TMP), and 1 [5-((4-

chlorophenyl)thio)quinazoline-2,4-diamine]12–13 (Fig 1a). This dataset comprises a 

‘dynamics structure-activity relationship’ (DSAR) series. In other words, this approach 

probes whether the dynamics of DHFR are sensitive to structural differences in small 

molecule ligands. As part of this series, five tetrahydroquinazoline inhibitors were designed 

to bind with reduced affinity for the purpose of loosening the ligands to allow detection of 

rare motions related to ligand dissociation. Although the location and rate of μs-ms 

conformational switching in DHFR depends on specific ligand structure, a cluster of 

residues around the active site dynamically samples the same excited state in all eight of the 

complexes. From the analysis of relaxation dispersion curves, the kinetics of conformational 

switching in DHFR were found to correlate with both Ki and koff, though the conformational 

switching was always faster than koff. These data implicate a common dynamic mechanism 

for dissociation of ligands within this series, and suggest that internal protein motion may be 

a critical event for ligand dissociation in general. The medicinal chemistry approach taken 

allows focused and methodical perturbations within the active site; this is in stark contrast to 

global systematic perturbations such as temperature variations or the addition of chemical 

denaturants. Recent studies have linked conformational dynamics with catalytic timescales 

through coincidental values of rate constants 8,14. We show here – through use of a ligand 

series – that linkages can also be made between events on different timescales.

RESULTS

Antifolate series spans a large range of Ki and koff

From a previous study of the dynamics of DHFR in the presence of the high affinity (Ki ≤ 1 

nM) inhibitors MTX and TMP (Fig. 1a and Supplementary Fig. 1a–b), both inhibitors 

elicited the same pattern of slow motion in the enzyme12. We wondered whether that same 

pattern of dynamics would be observed for any inhibitor bound to the same site, regardless 
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of binding affinity or chemical structure. To address this question, a series of substrate-

competitive DHFR inhibitors, or antifolates, with Ki values greater than 1 nM was designed. 

This series is comprised of five tetrahydroquinazoline-2,4-diamine compounds (compounds 

2–6, Fig. 1b). Compounds 2, 3, 4, and 6 are constitutional isomers and differ only in the 

placement of the methyl substituent on the tetrahydroquinazoline (THQ) ring. These 

compounds were prepared as racemic mixtures of methyl R and S forms. Inhibitor 5 lacks 

the methyl substituent and thus serves as a non-enantiomeric reference. Compounds 3 and 4 
were previously identified as competitive inhibitors of DHFR from a high-throughput screen 

of 50,000 small molecules15. We postulated that 2, 5, and 6 would have Ki values similar to 

those published for 3 and 4 on the basis of structural similarity. As with the three previously 

studied high affinity inhibitors (MTX, TMP, and 1)12–13, binding, structural, and dynamics 

properties were characterized for the THQ inhibitors in the presence of cofactor NADPH.

Ki values for the THQ inhibitors (Ki,app in the case of racemic mixtures) were determined to 

confirm previous measurements15 and to establish values for the new compounds. The Ki 

values cover a range of two orders of magnitude (0.3 – 43 μM, see Table 1), and the THQ 

compounds, as well as 1, are named according to increasing Ki/Ki,app (i.e., 1 is the strongest 

inhibitor and 6 the weakest). Overall, the methyl substituent contributes positively to the 

binding affinity, as evidenced by 2–4 having significantly lower Ki,app than the Ki of 5. 

Surprisingly, the methyl group at the C5 position of 6 increases Ki,app by > 40-fold relative 

to 2–4. The low apparent affinity of 6 relative to 2–5 is discussed in Supplementary 

Methods. From this analysis of binding affinities, it is clear that DHFR is very sensitive to 

minor changes in bound ligand structure.

Next, the binding kinetics for the THQ series were determined. The off-rate (koff or koff,app) 

for each inhibitor was determined using competitive stopped-flow fluorescence 

measurements. The series was found to span two orders of magnitude in koff (0.2 – 20 s−1), 

similar to the trend in Ki (Table 1). In fact, the relationship between Ki and koff for these five 

antifolates is linear (Fig. 1c). The calculated kinetic on-rates for the THQ series are similar, 

in the range of 3 × 105 – 3 × 106 M−1s−1. In the context of the entire antifolate series (MTX, 

TMP, and 1–6), Ki spans a range of 106, koff spans 105, and kon spans 102. It therefore 

follows that, given Ki = koff/kon and kon has relatively little variation within the ligand series, 

binding affinity is determined largely by the rate of dissociation. Within the THQ series 

alone, the effect of koff on Ki is larger than kon, but koff is less dominant than when 

considering all eight antifolates.

To test whether the precise R or S methyl orientation had a significant influence on binding, 

we separated the enantiomeric forms of 3. We found that the two forms had koff values that 

differed by 1.6-fold, suggesting that R and S forms are essentially indistinguishable. This is 

further supported by the observation that HSQC spectra of the complex formed from the 

racemic mixture did not show peak doublings, which would be expected if 3R and 3S have 

differential influence on DHFR.
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Structural differences induced by the series are minimal

In characterizing the protein dynamics of a series of receptor-small molecule complexes, any 

structural differences must be considered, as large changes can underlie differences in 

observed dynamics. Large structural changes in DHFR were not expected, given the 

chemical similarity of the antifolates. High-resolution crystal structures were determined for 

E:NADPH:3, E:NADPH:4, and E:NADPH:5 in the P212121 space group (Fig. 2a and 

Supplementary Table 1). As expected, the overall structures are highly similar (largest 

backbone rmsd = 0.28 Å). The THQs bind in the folate binding pocket of DHFR, which 

forms a small crevice in the structure but is not closed off by the protein. We note that for 

the C6 methyl substituent of 3, electron density was apparent for only one enantiomer (R) 

(Supplementary Fig. 2a), which could be due to a number of factors, such as the subtle 

difference in off-rate (see above). It is also possible that the S form also crystallized and that 

R and S methyls are not resolvable given the resolution of this structure (2.09 Å), although 

we view this as unlikely. In contrast to E:NADPH:3, electron density for both R and S forms 

in the E:NADPH:4 structure were observed (Supplementary Fig. 2b). The slight differences 

in sugar puckers resulted in R and S methyl groups occupying the same space 

(Supplementary Fig. 2b). Regardless of the enantiomers present, the THQs overlay very 

closely with one another (Fig. 2a). In addition, the 2,4-diamine moieties of 3–5 overlay 

closely to that of MTX16–17, although the orientation is slightly tilted such that the saturated 

ring of the THQs shift ~1 Å towards the side chain of Phe31.

Subtle differences in the protein structure are observable in helix C above the antifolate 

binding site, in the loop that follows helix C, and at N23 in the Met20 loop. The orientation 

of helix C is particularly noteworthy, since plasticity of this helix appears to accommodate 

the binding of various ligands, as noted previously17. Tilting of the C-terminus of this helix 

away from the antifolate binding site was identified previously in the presence of 1 (and 

NADPH), which contains a bulky and flexible side chain13. When overlaying the current 

three structures (PDB IDs 3R33, 3QYL, and 3QYO) with previously determined inhibitor 

complexes E:NADPH:1 and E:NADPH:MTX (PDB IDs 3KFY and 1RX3), we find that the 

C-terminus of helix C is tilted away from the antifolate binding site in E:NADPH:3 and 

E:NADPH:1, whereas it is positioned closer to the antifolate binding site in E:NADPH:4 
and E:NADPH:5 (Fig. 2b). In the case of 3, the R methyl substituent at C6 is oriented 

towards the helix, forcing it away. By contrast, the methyl substituents at C7 in 4 are 

directed away from the helix, and there is no methyl in 5, allowing the C helix to move 

closer to these antifolates. The position of helix C in E:NADPH:MTX is intermediate 

between the shifted extremes of complexes 1/3 and 4/5 (Fig. 2b). While this helix 

orientation appears to be sensitive to bound antifolate structure, it does not correlate with Ki 

of the bound antifolate.

Unlike the structure of E:NADPH:1 determined previously13, the ternary complexes with 3, 

4, and 5 show strong electron density within the Met20 loop. The loop was modeled in the 

closed conformation, similar to that observed in the presence of MTX. The closed Met20 

loop conformation is also observed in solution for all five ternary complexes based on NMR 

chemical shift perturbations (CSPs) (Supplementary Fig. 2c). In all three crystal structures, 

strong electron density is observed for NADPH and bound antifolates (Fig. 2a and 
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Supplementary Fig. 2a–b). Ligand orientations were also confirmed to be identical in 

solution as assessed by CSPs (Supplementary Fig. 2d–e). Based on these and the above 

considerations, no significant differences in structure are observed among these five ternary 

complexes. A straightforward comparison of differential dynamics of complexes in this 

series is therefore possible.

Slow timescale dynamics structure-activity relationships

By registering changes in DHFR’s dynamics as inhibitor structure is varied, dynamics 

structure-activity relationships (DSAR) are obtained. For each of the five THQ complexes, 

μs-ms motion was detected by 15N Carr-Purcell-Meiboom-Gill (CPMG)-relaxation 

dispersion experiments18. The dynamics of DHFR on this timescale have been shown to 

occur as a sequence of loop motions important to catalytic function when bound to 

endogenous ligands8. In addition, interesting differences in slow motions are observed in 

binary complexes that are off the enzyme’s catalytic cycle (E:folate, E:dihydrofolate) 

compared to the ‘on-cycle’ binary product complex (E:tetrahydrofolate), confirming the 

enzyme’s innate sensitivity to different ligands19. Relaxation dispersion experiments allow 

for the determination of the transverse relaxation rate due to conformational exchange (Rex), 

which is a component of the overall rate of transverse relaxation (R2):

(1)

where R2
o is the intrinsic transverse relaxation rate in the absence of exchange. Assuming a 

two-state exchange process, these experiments provide kinetic, thermodynamic, and 

structural information about the transition: Rex depends on the exchange rate constant (kex), 

the populations of ground state A and excited state B (pA and pB), and the difference in 

chemical shift between states A and B (Δω)20.

In contrast to the high similarity of μs-ms dynamics that result from MTX or TMP binding12 

(Supplementary Fig. 1a–b), the THQ inhibitors elicit a more heterogeneous distribution of 

sites showing Rex (Fig. 3 and Supplementary Fig. 3). However, among the eight complexes 

there are twelve consensus residues with slow motions (discussed below). Thus, the pattern 

of slow motion elicited by MTX and TMP is not restricted to high-affinity antifolates. In 

addition to the consensus ‘antifolate sites’, new motions are detected near the hinge region 

(residues 38 and 88) and in α-helices C and F as Ki increases. Although within the THQ 

series there appears to be no significant correlation between Ki and number of sites with Rex, 

as a whole this series has a greater amount of Rex compared with MTX and TMP. None of 

the motions in the series are suspected to be the result of association-dissociation cycle 

effects, as koff values are slow (Table 1) and complexes are saturated to ≥ 99.5%.

As highlighted in previous NMR studies of the enzyme, the chemical shifts of a group of 

~20 residues report directly on the conformation of the Met20 loop21. These ‘marker’ 

residues have distinct chemical shifts when the loop samples either the closed or occluded 

conformation. In the E:NADPH:6 complex, significant Rex is observed at Met20 loop 

switching markers, suggestive of a functional conformational switch from closed to 

occluded21. However, only five sites show a correlation between Δω fitted from relaxation 

dispersion and Δδ for closed-to-occluded motion of the loop (Supplementary Fig. 4i; 
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residues 12, 115, 118, 120, and 149). While the loop appears to be mobile, its motion is not 

as clear and coherent as observed previously in the presence of 1 (13 sites in the 

correlation)13. We believe this Met20 loop motion to be the result of steric clash between 

nicotinamide of NADPH and the C5 methyl group of 6 within the active site (see 

Supplementary Methods). Residues within the F–G and G–H loops are the best 15N markers 

of Met20 loop switching (e.g., 115, 116, 118, 119, 120, 121, 122, 149, and 150), not those 

within the Met20 loop itself. It should be noted that the 15N Met20 loop marker residues 

within the F-G and G-H loops are not generally observed to undergo μs-ms motion in the 

presence of compounds 2–5 of the series (Supplementary Tables 2 and 4) and that even the 

best examples of closed complexes (with bound MTX or TMP) exhibit exchange broadening 

at some of the marker residues. In further support of E:NADPH:6 being different from the 

other complexes regarding its Met20 loop mobility, G121 is severely broadened in the 

presence of 6 but not for the remaining compounds of the series.

Rate of conformational switching correlates with Ki and koff

Residue-grouped fitting of relaxation dispersion data can indicate which sites move together 

in a single, concerted exchange process22. Residues that are included in a group fit are 

forced to share single kex and pA values, whereas they retain their individual Δω values. To 

probe whether the observed Rex values reflect concerted conformational exchange processes, 

group fits were carried out for all of the ternary THQ complexes. For 3, 5, and 6, group 

fitted kex values were found to range from 1000–1500 s−1, which are greater than those for 

the higher affinity antifolates (400–800 s−1), and pB remained fixed at approximately 2% 

(Table 1). It follows that the forward rate of conformational exchange (kconf,forward) ranges 

from 20–35 s−1 for these three complexes. Initial plots of kconf,forward versus Ki suggested a 

correlation for these three protein-inhibitor complexes. To further test this correlation, 

kconf,forward and Ki for MTX, TMP, and 1 were added to the plot (Tables 1 and 2)12–13,23. 

For these six complexes, covering six orders of magnitude in binding affinity, we find that 

kconf,forward correlates exponentially with Ki (Fig. 4a). As binding affinity decreases (larger 

Ki), kconf,forward increases (Table 1). Unfortunately, single-group fitting for complexes 2 and 

4 did not converge and thus are not further supportive of this trend, although an alternative 

fit for 4 was obtained (see Methods). Based on the exponential relationship between 

kconf,forward and Ki and the linear correlation between Ki and koff (Fig. 1c), kconf,forward vs. 

koff was plotted and found to correlate exponentially (Fig. 4b). We note that kconf,forward is 

always greater than koff by at least a factor of two for each complex, providing further 

evidence against kex resulting from association-dissociation cycles. This correlation of 

kconf,forward and koff, with kconf,forward > koff, is highly suggestive of a mechanistic role for 

the ground-to-excited state conformational change in ligand release. In Figure 4b, because 

koff for TMP and 1 are too slow for detection via the assay employed, they were calculated 

from Ki and their approximate kon value for the series. The koff value for MTX was taken 

from the literature24. The best fitted kconf,forward for 4 has been included in Figure 4b, even 

though group fitting was more challenging in this case; its position off the main correlation 

line suggests that additional factors may contribute to release for a particular ligand, even if 

it is part of a structurally constrained series. Nevertheless, the fact that the remaining ligands 

fall on the line suggests that the millisecond structural fluctuations potentiate dissociation 

over the entire ligand series, including MTX and TMP.
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Antifolate complexes sample the same excited state

Relaxation dispersion experiments can also provide structural information about the excited 

state. As mentioned previously, from data on the eight drug/inhibitor complexes, there are 

~twelve consensus residues undergoing μs-ms motion (Fig. 5a). We define a residue as a 

consensus site if slow motion is detected at that position (when assignable) in (a) ≥ 2/3 of 

the eight complexes (residues 8–11, 14, 29, 31, 111–113), or (b) ≥ ½ of the complexes when 

Rex is significant in the other half but lies just below our stringent requirement of 2 s−1 

(residues 7 and 30). A number of these sites were initially identified from the least dynamic 

complexes, those with MTX or TMP bound12. The dynamic change in chemical shift (Δω) 

at these consensus sites fitted from relaxation dispersions for each complex were analyzed. 

For each individual residue, the fitted Δω parameter clusters around the same value, despite 

changes in chemical structure and binding affinity for the different inhibitors (Fig. 5b). This 

clustering of Δω values indicates that the same excited state is being sampled by the 

consensus residues in each of the eight antifolate complexes. This pattern of Δω values does 

not correlate with Δω fitted from previous studies of DHFR bound to physiological, folate-

derived ligands (Supplementary Fig. 4j)8 and hence is unique to the antifolates studied here. 

In addition, because poor correlations between Δω fitted from the dispersion data and Δδ 

from chemical shift changes (E:NADPH – E:NADPH:antifolate) were observed for the 

consensus sites (Supplementary Fig. 4a–h), the antifolates appear to be bound in the excited 

state. We propose that these residues sampling a novel excited state mediate dissociation of 

antifolate ligand. This state is sampled at somewhat different rates, but the concerted motion 

of the consensus residues is conserved across these antifolate complexes.

We note that while these complexes share this common dynamic sampling, differences in 

slow motions remain among the complexes12–13 (Fig. 3, Supplementary Table 2). Thus, this 

shared motion appears to be able to exist in the context of additional motions (or lack 

thereof) in other regions of the enzyme.

DISCUSSION

Binding and dissociation are the two fundamental processes that determine a ligand’s 

affinity for its receptor. Mechanistic insight into these processes is therefore expected to 

facilitate rationale design of drugs and macromolecules with desired ligand binding 

properties. To evaluate whether conformational dynamics should be considered as relevant 

to ligand dissociation, we monitored the dynamics of a classic drug target, DHFR, that is 

known to undergo extensive motions on the μs-ms timescale. The wide range of affinities of 

the eight inhibitor complexes studied elicited a variety of dynamic behavior in the enzyme, 

and therefore this constitutes a dynamics structure-activity relationship (DSAR). This is 

distinct from, yet complementary to, flexibility-activity relationships (FAR), which focuses 

on dynamics of the bound ligand as shown previously for peptide ligands of Pin125. Our 

results underscore the benefits of using a series of ligands to extract a kinetic relationship 

between internal motion and dissociation. A similar benefit from use of a ligand series was 

demonstrated recently for correlating ps-ns dynamics with conformational entropy in the 

case of calmodulin26.
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Here we show that, for a series of homologous antifolates binding to DHFR, binding affinity 

(Ki) is determined largely by koff. We also demonstrate from CPMG relaxation dispersion 

measurements that the rate of millisecond-timescale internal motions in the enzyme 

(kconf,forward) is related to both binding affinity and koff for the series. Specifically, the 

correlation of kconf,forward to koff provides evidence that internal protein motion is a 

mechanical initiator of ligand dissociation. Analysis of chemical shifts suggests that DHFR 

samples an identical excited state in solution regardless of which particular antifolate is 

bound, and that this state is novel because it differs from the excited states observed in the 

absence of ligand and in physiological complexes (Supplementary Fig. 4j). It is also worth 

noting that the THQ complexes undergo switching ~3 times faster than the physiological 

complexes. Because ligand is bound in the excited state and the rates of internal motion 

correlate with koff, we propose that this excited state is en route to dissociation of inhibitor 

and kconf,forward provides an upper limit to koff.

In previous work, connections between internal motions and protein activity have been 

drawn when an internal switching rate precisely matches a macroscopic rate constant8,14. 

We show here, through the use of a homologous ligand series, that such matching is not 

required to mechanistically connect two functional events. Ligand dissociation is 

fundamental in macromolecular interactions, and insights into what stimulates dissociation 

have potentially broad implications for manipulating biological systems. The main insight 

revealed here is that dissociation can be driven by defined protein internal motion, 

presumably at the interface, rather than by a fully stochastic process. This inference of 

motions driving dissociation would seem to be expected for a buried binding site in which a 

‘lid’ must open for release; however, in this particular case, the ligand binding site is 

exposed, and yet dissociation appears to not be stochastic.

At what point during the conformational sampling does release actually occur? The simplest 

model consistent with our data is the following conformational gating model:

(2)

Upon transitioning to the excited state (state B), ligand remains initially bound but is subject 

to release while the gate is open, with rate constant koff,B. In this model, release might 

depend on sub-millisecond motions that essentially kick out the ligand or break non-

covalent interactions through shearing motions. Release from the open gate could also occur 

in a stochastic manner based on the overall strength of interactions (see below). Eqn. (2) is 

formally equivalent to the Linderstrom-Lang model for amide H/D exchange27. Hence, the 

overall rate constant for dissociation can be expressed28 as koff = (kconf,fwd·koff,B)/(kconf,fwd 

+ kconf,rev + koff,B), which can be rearranged to

(3)
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in which Kconf = kconf,fwd/kconf,rev and koff is the bulk dissociation rate constant. Use of eqn. 

(3) yields values of koff,B ~25–100 times that of koff, indicating significantly faster 

dissociation from the excited state (Supplementary Table 5) compared to the rate obtained 

when assuming simple dissociation from the ground state. We note that this gating model 

excludes ligand rebinding and hence is consistent with kinetic decay experiments. Rebinding 

may occur via different structures/mechanisms since the antifolate excited state is not 

observed in the holoenzyme (DHFR:NADPH, see Figure S4j).

What is somewhat surprising from the correlation of kconf,forward to Ki and koff is that the 

relationship is log-linear. It follows that DHFR is not productive at releasing inhibitors each 

time it reaches the excited state, as kconf,forward is always greater than koff. Thus, the enzyme 

appears to be more efficient at release as the rate of internal motion increases. Within the 

gating model, this may be explained by a loss of substituents. Adding substituents to the ring 

beyond the 2,4-diaminopyrimidine scaffold (e.g., methyls in THQ series, methoxy groups in 

TMP, etc.) could have a dual effect on the steps shown in eqn. (2): (i) these groups could 

serve to slow switching, as observed, due to stabilization of both ground and excited states, 

and (ii) by providing additional contacts to protein, these substituents would reduce the 

probability of stochastic release from the excited state, as observed (Fig. 4b, Table 1). 

Overall, the lack of a true linear relationship indicates an additional process (beyond the 

conformational change detected here) is associated with the final release of ligand.

An important caveat is that any ligand bearing resemblance to the series (or that binds to the 

same active site) should not necessarily obey the correlation in Figure 4b. Indeed, 2 and 4 do 

not (see Supplementary Results). It is reasonable to expect that numerous mechanisms for 

ligand release could compete with one another, and some ligands may trigger specific 

mechanisms over others due to their chemical structure. We have been fortunate here in 

using a panel of ligands that share a common mechanism that is distinct from release of 

folate-derived ligands. It will be interesting to see whether other ligand series against 

different proteins show similarity in behavior as was observed here.

Gaining an understanding of the molecular basis of koff has implications for structure-based 

drug design. If protein dynamics are found to correlate with koff in other systems, this type 

of analysis may be useful in optimizing ligand residence times to meet the desired 

pharmaceutical modulation of disease states. The DSAR methodology provides more than 

just a correlation between the rate of internal motions and koff – it also potentially provides 

structural information on residues sampling multiple conformations and even what the 

structure of the excited state(s) may be29–30. This combined information would be useful in 

directing medicinal chemistry efforts toward modulating the stability of excited states that 

promote efficient ejection of inhibitors.

METHODS

Synthesis of (6-methyl-5,6,7,8-tetrahydroquinazoline-2,4-diamine) (compound 3)

Compound 3 was prepared by a one-step condensation reaction, similar to that described 

previously31. Briefly, dicyandiamide (10.19 g, 0.12 moles) and 4-methylcyclohexanone 

(11.33 g, 0.10 moles) were combined in a round bottom flask fitted with a Dean-Stark trap 
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and a condenser. The reaction was heated in an oil bath at 180 °C for three hours. Boiling 

water was added to the reaction as it was transferred to a separatory funnel for extraction. 

The desired compound was extracted from the aqueous layer with hot chloroform. The 

chloroform washes were dried over anhydrous magnesium sulfate before solvent was 

removed via rotary evaporation. A golden yellow liquid with white precipitate remained. 

Additional white solid was precipitated via addition of hexanes to the yellow liquid. The 

solid was isolated via filtration.

Synthetic procedures for 2 and 4–6 follow from that described above (Supplementary 

Methods). Spectroscopic data for all five compounds is summarized in Supplementary 

Methods. The enantiomers of 3 were separated on a Thar Investigator analytical/semi-

preparative SFC. Purification was carried out using 20% isopropyl alcohol (0.1% 

diethylamine) in CO2 with a CHIRALPAK IC column from Chiral Technologies.

Ki determination

As described previously, biochemical competition assays using a 96-well plate reader were 

used to determine the inhibition constant (Ki) for 2–613,15. The decrease in absorbance at 

340 nm was monitored over time in a 2D titration of inhibitor and substrate.

Protein expression and purification

Isotopically labeled wild-type E. coli DHFR was over-expressed and purified as described 

previously12. Purified apo-DHFR was flash frozen, lyophilized, and stored in a desiccator at 

4 °C until use.

NMR Spectroscopy

For ternary inhibitor complexes, samples contained 1 mM DHFR in NMR buffer (70 mM 

HEPES, 20 mM KCl, 1 mM EDTA, 1 mM DTT [pH 7.6]), 15 mM NADPH, 2.5–10 mM 

antifolate (E:NADPH:2 – 10 mM; E:NADPH:3 – 2.5 mM, E:NADPH:4 – 8–10 mM; 

E:NADPH:5 – 10 mM; E:NADPH:6 – 10 mM), 10 mM glucose-6-phosphate, 10 U 

glucose-6-phosphate dehydrogenase, and 10% D2O for spectrometer locking purposes. All 

samples were protected from light and air exposure by containment in amber NMR tubes 

flame-sealed under argon. Stock solutions of 2–6 were prepared in 10% D2O/H2O and 

PULCON was used to determined the concentration of each stock, relative to either valine or 

trimethoprim standards32. NMR experiments were performed as described previously, using 

both room temperature (500, 600, and 700 MHz) and cryogenic (500 and 700 MHz) 

probes12–13. NMRPipe was used to process NMR data, and data visualization was 

accomplished with the combination of NMRDraw and NMRView33–34. Refer to 

Supplementary Methods for further experimental details on assignment and relaxation 

experiments.

CPMG relaxation dispersion—15N CPMG relaxation dispersion experiments were 

conducted on highly deuterated (>80%) DHFR for the E:NADPH:2 and 4–6 complexes 

while protonated DHFR was used for E:NADPH:3. Complexes with bound 2–4 were 

examined using a TROSY relaxation dispersion experiment at 700 MHz with a room 

temperature probe. Data collection at 700 MHz for complexes with bound 5–6 utilized a 
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cold probe and the regular non-TROSY experiment. Collection and analysis of the data was 

completed as described previously12–13.

For group fits, all residues in a particular complex exhibiting significant μs-ms motion 

(excluding the C-terminal residues, see Supplementary Table 3) were grouped together, 

following the method of Mulder et al22. Single kex and pA values were fit for a group, 

whereas Δω values were fit in a residue-specific manner. Residues found to have a 

significantly improved local fit relative to the group fit (i.e., having a χ2group/χ2local ratio of 

> 2) are reported with Δω values from the local fit instead of the group fit. Although it is 

possible that multiple groups with slightly different exchange parameters exist for individual 

complexes, because such differences are small in most complexes, they cannot be easily 

resolved and the simplest case of a single group was used. In the case of E:NADPH:2 and 

E:NADPH:4, single-group fits of all residues together would not converge. Upon removal of 

four residues with increased local kex values (37, 50, 54, and 58), group fitting for 

E:NADPH:4 converged and the residues appeared to fit together based on χ2 ratios. This 

same approach for E:NADPH:2 resulted in convergence (40, 44, 48, 50, 54, 57, 98, 115, and 

119 removed); however, the residues did not group well together based on χ2 ratios. Group 

fits for complexes with bound 2 and 4 are reported, but it should be noted that the fits were 

not conducted in the same fashion as for the rest of the series. One interesting point to 

mention is that E:NADPH:2 and E:NADPH:4 resulted in similar group fitting for both the 

‘slow’ and ‘fast’ moving sets of residues. We speculate that the similar placement of the 

methyl substituent in these two inhibitors may underlie why they appear to cause faster 

switching motions in DHFR. Also, for inhibitors 2 and 4, the possibility that both R and S 

enantiomers bind could also result in different switching than for the remainder of the series, 

although this appears not to be the case for 6.

The sign of Δω was determined from peak positions in HSQC and HMQC spectra35. Sign 

determination for Δω was completed on six of the eight ternary complexes (E:NADPH:2 and 

E:NADPH:4 excluded). Given the strong pattern of Δω sign observed for the antifolate 

consensus residues (Fig. 4d), the signs for the complexes with 2 and 4 were assumed to 

agree with the pattern. Additionally, the sign of Δω determined for the three other THQ 

compounds (3, 5–6) should be representative of 2 and 4. Fitted parameters and the sign of 

Δω are summarized for each complex in Supplementary Results.

Protein crystallization and structure determination

Crystals of E:NADPH:3, E:NADPH:4, and E:NADPH:5 were grown using similar 

conditions as described previously13,17,36. See Supplementary Methods and Results for 

details of crystallization, data collection, and structure refinement.

Determination of koff

A fluorescence competitive binding assay, as described previously, was used to determine 

koff for 2–6 from the E:NADPH holoenzyme13,37. Refer to Supplementary Methods for a 

detailed methods description.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The series of reduced-affinity and previously characterized antifolates. (a) Chemical 

structures of the previously characterized antifolates – methotrexate (MTX), trimethoprim 

(TMP), and 1. (b) Chemical structures of the reduced-affinity antifolates 2–6. (c) The 

relationship between koff and Ki for the series of reduced-affinity antifolates (R = 0.99).
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Figure 2. 
High resolution crystal structures for the series. (a) Overlay of the crystal structures for 

E:NADPH:3 (blue), ENADPH:4 (teal), and E:NADPH:5 (maroon). NADPH is shown in 

cyan and bound antifolate in the colors designated per complex. (b) Expansion of the C-

helix, now overlaying five inhibitor-bound complexes (E:NADPH:1 in dark grey and 

E:NADPH:MTX in light grey). PDB IDs are listed parenthetically. (c) Differential 

puckering of the saturated ring in the bound inhibitors, colored as in (a).
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Figure 3. 
Slow timescale dynamics for the reduced-affinity inhibitor series. Sites along the backbone 

with detectable μs-ms motion are highlighted in colored spheres for each complex, ordered 

from left to right by increasing Ki value. The number of residues with significant Rex is 

given parenthetically.
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Figure 4. 
Internal motions vary with Ki and koff. (a) The forward rate of motion (kconf,forward) fit from 

relaxation dispersion data for each complex varies exponentially with the Ki value for the 

bound inhibitor (R = 0.97). The open circle represents the best fit for E:NADPH:4. (b) An 

exponential correlation is also seen between kconf,forward and koff (R = 0.97). Data points in 

red have predicted koff values, as described in the text. koff for TMP and 1 were calculated 

based on estimated values for kon. For 1, the average kon for the THQ series was used. For 

TMP, because of its greater similarity to MTX, kon was taken to be intermediate between 

MTX and the average value for the THQ series. The data point for E:NADPH:4 (unfilled 

circle) does not fall along this exponential correlation, suggesting that this correlation may 
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not always be predictive. The dashed curve represents what would be expected if the 

correlation were linear. Error bars represent standard deviations (originating from Monte 

Carlo simulations in the case of kconf,forward).
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Figure 5. 
Antifolate consensus sites sample a structurally similar excited state. (a) The twelve 

antifolate consensus sites are highlighted in yellow colored spheres. (b) Dynamic Δω values 

fitted from relaxation dispersion for these twelve sites cluster for each residue. The eight 

complexes are colored by the bound inhibitor, as indicated in the legend. Averages were 

calculated only from residues that have the dominant sign. No bar is shown if that residue 

did not exhibit significant slow motion while bound to a particular inhibitor. Error bars 

result from standard deviations derived from Monte Carlo simulations.
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